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Abstract: Future nano scale devices will expose different characteristics than todays
silicon devices. While the exponential growth of non recurring expenses (NRE, mostly
due to mask sets) can be anticipated even for new technologies, problems such as the
dramatically increased defect density require new approaches to build functional de-
vices at reasonable prices. Improved CAD algorithms can help to solve these prob-
lems, or in some cases, they can be seen as enabling technology to broaden the use of
paradigms such as reconfigurable computing. In this work we discuss in which stages
of design, manufacturing, and deployment new CAD algorithms are required.

1 How to make Productive use of Billions of Logic Gates

Following the road of Moore’s law, the number of transistors on a chip doubles every 24
months. After being valid for more than 40 years, the end of Moore’s law has been forecast
many times now. Yet, technological advances have keep the progress intact.

While the technological forecast for the next 5 to 10 years still concentrates on traditional
CMOS logic realized on silicon, it seems likely that other technologies will take over in
this time frame. A good candidate is CMOL[SFG+03][DL05], which uses carbon nano
tubes together with silicon-implemented CMOS circuits. With this technology, logic el-
ements can be built at a much higher density than possible with lithographic processes
using etching to build up physical structures.

In the last year, graphene films have been found as another candidate technology for future
digital devices[DSMJ09]. In contrast to CMOL, no actual logic devices have been built
yet, leaving the design and cost implications unclear. However, it can be speculated that
the extremely small structures used here will also be susceptible to higher defect rates.

1.1 Consequences

Further shrinking of the feature size of traditionally manufactured chips causes two major
problems.

1. Mask costs increase exponentially. This makes it prohibitively expensive to produce



small quantities of chips for one particular design.

2. Defect density increases dramatically. This reduces the yield of the chip production.

Unfortunately, these problems will not be solved by alternative technologies. In fact, the
defect density will increase even more dramatically in CMOL structures. Here, a large
number of the nano tubes will not be functional. Thus, it is practically impossible to
manufacture defect-free devices of reasonable size.

Although well known fault tolerant design techniques exist, it is extremely tedious to
harden designs against defects. Also, these techniques lead to a considerable increase
in area consumption and might also cause a performance degradation (think of the noto-
rious triple modular redundancy). Thus, these techniques might not be practical for large
designs or for high defect rates, which can be expected from technologies like CMOL.

1.2 Current philosophy to deal with these Problems

In short, we can conclude at this point that the two major problems for chip design and
manufacturing are the dramatically increasing defect rates and the exponentially grow-
ing mask costs. We will now give a brief review of the current strategies to solve these
problems.

1.2.1 Defect minimization

Defects are currently mostly considered at the chip production stage. Manufacturers try
to minimize the defect density with more precise lithography, improved clean room con-
ditions and thorough process monitoring. Beyond the production stage, few attempts have
been made to tolerate higher defect densities. Typically, designers include spare elements
(logic, memory, processor cores, ...) that can take over from defective parts. Devices are
post processed and “trimmed” in the factory to appear fully functional. We will discuss
this approach in much more detail in section 2.1.1.

These approaches will not work for defect rates that are several orders of magnitude higher
than today.

1.2.2 (Re)configuration

The exponentially increasing cost of masks lead to larger minimum quantities for an effec-
tive chip production. This can be achieved by using one chip for more than one purpose.
A well known method to enable this multi-purpose use is (re)configuration. Configuration
can be seen as a structural programming. It means to use one and the same structural
element for different purposes in different configurations. Reconfiguration refers to the
ability to change a configuration of a device during runtime1.

1Other definitions for configuration and reconfiguration might exist. We use this relatively relaxed definition
as it covers the widest range of applications.



Reconfiguration can be applied to structural elements at different granularities. One can
use bit level elements resulting in Field Programmable Gate Array (FPGA)-like devices.
Here, the reconfigurable elements typically implement logical operations on the boolean
inputs. Alternatively, one can use word (or sub-word) level elements resulting in so called
coarse-grain reconfigurable arrays (CGRAs). In this case, the reconfigurable elements typ-
ically implement arithmetic operations that might even include multiplication or division.
FPGAs are already well established in digital circuit design and have captured many ap-
plication areas (especially those with smaller volumes). In contrast, CGRAs are a topic of
current research, but are still awaiting some commercial success.

1.3 Paper Outline

In the following section, we will discuss general approaches that can be used to solve the
two prevalent problems. In the third section we will further discuss which contribution
enhanced CAD algorithms can make to these approaches. Finally, we will give a short
conclusion.

2 General Approaches

Given the characteristics of nano-scale devices described in the previous Section, we will
now discuss some of the issues that must be addressed.

2.1 Handling of defective devices

Regardless of the actual base technology (e.g., nano-scale CMOS or “true” nano-technologies
such as carbon nano tubes, nano wires, or graphene films), the fabricated chips will have
a much higher defect density than the previous generation of deep sub-micron devices. In
this section, we will examine how this can be handled in practical usage.

2.1.1 Fab-side hiding of general defects

The first approach tries to preserve the illusion of defect-free devices (at least in the view of
the designer) by providing sufficient redundancy on the die (below the architectural level).
Fab-time tests discover the actual defects present on each chip. Then, techniques such as
laser or e-beam cutting (breaking connections) or programming anti-fuses (establishing
connections) are employed to activate redundant resources to specific defects.

Such techniques are already in practical industrial use to increase the yields of 100% visi-
ble defect-free devices for DRAMs [FHM+05] and FPGAs [YL05] [Alt] [CCCV06].

However, the growing defect densities of nano scale devices would require excessive de-
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Figure 1: Fab-side defect hiding for limited application set

grees of redundancies to keep up this illusion, raising chip costs to uneconomical levels.
Note that growing redundant areas would themselves be subject to an increasing number
of defects.

Thus, in the nano scale era, chip defects will be visible beyond the fab line and will need
to be dealt with in a more specialized manner than sheer redundancy.

2.1.2 Application-specific defect handling

A. For a limited set of applications The scope of 100% defect-free functionality can be
narrowed from all (user-visible) resources on the chip to just those required for individual
(or small sets of) applications (see Figure 1).

For current deep sub-micron CMOS devices, this is already being done at an industrial
level for up to two applications [Xil08]. In these programs, the vendors are provided with
a complete mapping of the application(s) to the target device (generally in the form of
completely pre-placed and pre-routed bit streams). Thus, the specific resources required
for the mapped designs are precisely known. For this design, the requirement of totally
defect-free chips (as would be required for general use) can now be relaxed to just being
defect free for the specific application mapping. Note that this strategy does incur some
NRE costs for setting up application-specific chip testing (< USD 100K). Also, this is only
feasible for a small number of applications. More applications would most likely stress a
larger number of different resources on the device, thus increasing the chance of defects
becoming visible (and lowering the effective yield).

With specialized CAD tools, this effect could be reduced, however: One could design the
implementation tool flow (mapping, placement and routing) in such a manner that multiple
applications are processed to employ the minimum number of different resources on the
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Figure 2: Vendor-side customization of user-site hardware

chip. This would both increase the chance of application set-specific defect free devices
as well as reduce the chip test overhead (which is proportional to the number of resources
tested). Research on such algorithms has been performed for speeding-up dynamic partial
reconfiguration (only resources that are different between two successive configurations
have to be reconfigured) [JK08][HMW04], they could be adapted for defect-handling pur-
poses.

B. For general applications, customized vendor-side If a larger set of different appli-
cations has to be mapped to potentially defective devices, at some point it becomes neces-
sary to compute device-specific configurations (instead of selecting configuration-specific
devices, as discussed above).

In contrast to the dynamic approach discussed in Section 2.2.2, this can also be statically
performed vendor-side and does not necessarily require chip fab assistance. In this sce-
nario, shown in Figure 2, a solution vendor would buy unconfigured devices from a fab
that have an agreed-upon minimum logic capacity, but also an essentially random distri-
bution of defects. For each device, the vendor would either be provided with their location
in the form of a defect map by the fab, or test the devices itself. The defect map could be
provided within each device (e.g., in the form of a robust high-density PROM, written at
the fab), or externally to it (e.g., per-lot data files).

Assuming that the frequency of updates to the applications remains reasonably low (on
the order of weeks to months, an interval typical for in-the-field software updates), the
following approach could be viable: When a software update necessitates an update of the
device configurations, the user in the field connects to the vendor-side update server. Either
a device ID (referencing the defect database at the vendor) or the complete on-device



defect map itself is transferred to the vendor. At the vendor, fast CAD tools running on a
highly parallel compute farm of fast servers now map, place and route the new version of
each application to the device, omitting its specific defects. The device-specific bit streams
are then transmitted to the user site for installation. This entire process can be encapsulated
in automatic updater programs and be performed transparently to the user.

Note that the need for fast CAD tools in this scenario is different from that outlined in
Section 2.2.2. For the vendor-side remapping described here, the term “ fast” describes a
time-interval acceptable to the user-site updater (which can range from a few-minutes to
even days for automatic updaters running in the background). Also, the compute environ-
ment for customizing the applications to the device (large compute farm) is significantly
different from that of 2.2.2 (embedded computing).

C. For general applications, customized at the user-site As a mid-point between de-
vices appearing to be 100% defect-free (A., redundant resources activated fab-side) and
the static customization of bit-streams for individual chips (B., vendor-side) it is possible
to expose a limited set of redundancy (e.g., just 20% of additional tracks) to a user-side
flow. Contrast this with the prior approaches, where we either had enough redundancy
to appear totally defect-free (A.), or no explicitly designated redundancy at all (B., we
just ran the complete implementation flow to work around defects using the generic, but
functional on-chip resources).

In the approach proposed in [RD09], a vendor-provided bit stream for an application con-
tains not just one mapping of a configuration, but also has alternate routes for each point-
to-point connection that use one of the redundant wires (called reserved wires in [RD09]).
Defective wires are determined by user-side testing. In this fashion, a single bit stream can
be used to successfully configure all devices that have a defect density in the routing fabric
less than the provided redundancy.

This approach does not require vendor intervention into the device-specific customization
process. Instead, it is performed at bit stream load-time on the user-site. However, this
flexibility comes at the price of both increased bit stream sizes and load times (by over
40x and 160x, respectively [RD09], even for modest applications).

2.2 Increasing fabrication volume

As discussed in the Introduction, the exponentially rising NRE costs when fabricating a
new chip design (e.g., for mask preparation) allow the use of cutting-edge fab processes
only for extremely large production volumes. Reconfigurable devices are very suitable
for this scenario, since they remain general-use parts even after fabrication. While re-
configurable devices have been employed successfully (in terms of performance, energy
efficiency, etc.) in a wide variety of fields [LR05], they are still not as ubiquitous as would
be desirable to exploit the economies-of-scale on extremely expensive fab processes.

The most often given reason for not using reconfigurable devices, even when doing so
would result in improved performance or energy efficiency, is the difficulty of actually



porting an application away from software to run on the device instead. Today, this process
involves languages unfamiliar to a software developer (e.g., HDLs such as Verilog and
VHDL) as well as a familiarity with digital logic design and computer architecture.

Thus, in order to significantly increase chip production volumes of reconfigurable devices,
it becomes essential to make the technology actually accessible to a wider user-base of
non-hardware design experts. The research in and development of appropriate CAD tools
and models of computation thus becomes crucial for the entire economic viability of nano-
scale chip fabrication (and not just the ease of implementing a single application on a
reconfigurable device, as today!).

2.2.1 Static compilation to reconfigurable devices

Numerous past and present research efforts aim at raising the abstraction level of “pro-
gramming” a reconfigurable device from hardware-like concepts (gates, registers, etc.) to
software-like levels [BVCG04] [KK05] [PBD+08]. Often, these flows accept as input a
conventional software programming language such as C (though usually just a subset), and
automatically translate the semantics of the C program into efficient hardware structures
suitable for the reconfigurable device.

The first of these flows have been used in production settings [Men09] and research con-
tinues to advance both in the degree of language features supported (e.g., arrays, pointers,
irregular control flow) as well as the efficiency with which they can be translated into hard-
ware structures (e.g., automatic recognition of regular data streams and their mapping to
DMA engines instead of caches).

Many of these flows have in common that their results achieve very high peak performance
only for a limited number of language constructs (e.g., an inner loop with just affine index
calculations, containing neither control flow and nor pointer operations in its body). While
a large number of important programs (e.g., from digital signal or media processing) does
indeed fall in this category, and can thus be successfully accelerated, many other general-
purpose applications (word processing, compilers, etc.) contain more convoluted data and
control structures and are only translated in a very limited fashion (if at all) for hardware
execution on a reconfigurable device.

If our aim is to make reconfigurable devices attractive compute elements for a much wider
range of applications, thus leading to the massively increased production volume crucial
for the economical use of nano-scale fabrication processes, we need to look beyond static
translation techniques.

2.2.2 Dynamic compilation to reconfigurable devices

Dynamic translation examines an executing software program and generates hardware
structures for frequently executing instruction sequences without regard for the high-level
language structures they originated from. This has the disadvantage that some high-level
language structures for which very efficient hardware realizations can be created (e.g., the
DSP-style loop described for static compilation) might not be recognized from the instruc-



tion stream. But now all suitable instruction sequences, regardless of their origin, can be
translated to an appropriate hardware accelerator in a just-in-time manner.

While it is unlikely to reach the peak-performance achievable by powerful static compilers
employing, e.g., whole-program analysis and optimization, dynamic hardware compilation
has a number of advantages. First, since the process can operate from both machine code
sequences (e.g., generated from C) as well as byte codes (such as generated by Java or
the .NET languages). Thus software developers may continue to use the programming
languages they are most proficient in, without worrying about the hardware aspects of the
implementation.

Second, from the hardware perspective, the instruction or byte code sequences captured
during execution act as a portable intermediate format. The same binary can be executed
on a later model reconfigurable device (possibly larger and faster), and profit from the
increased compute capability without user or developer intervention. This is similar to
the approach proposed by OpenCL [Khr09], which translates the actual source code of
compute kernels at run-time into the most efficient form for the current execution platform
(one or more CPUs, zero or or more GPUs).

Third, since no hardware/software partitioning takes place in advance, the characteristics
of the current execution (e.g., input data characteristics, user actions, etc.) are used to
guide the hardware translation, not a single profile captured during a static compilation
flow. Instead of the static cherry-picking of just promising compute kernels, the dynamic
translator works on a much finer granularity and potentially moves a larger fraction of
the executing program to hardware acceleration. This makes the approach attractive for
the handling of general-purpose programs that often lack the structures focused on by the
static compilers.

Fourth, the dynamic generation of hardware structures (which will be discussed in greater
detail in Section 3.2) is perfectly suited to mapping around the device-specific defects
inherent in the use of nano-scale technologies. Thus, the difficulties and possibly complex
solutions discussed in Section 2.1 (e.g., large customization compute farms at vendors,
etc.) can be avoided.

The feasibility of this approach has been shown in the WARP processor [VSL08, LV09],
which extracts hardware structures from ARM instruction sequences at runtime. WARP
demonstrated not only the successful extraction, but showed that the entire hardware im-
plementation flow (mapping, placement, routing) could be performed on-the-fly with suf-
ficient efficiency. More ambitious attempts [GH05] aim to go beyond WARP’s limitations
(e.g., mapping sequences to just combinational operators on a very simple reconfigurable
device architecture).



3 Open Problems

3.1 Effects of granularity

Choosing the right granularity for the reconfigurable fabric is a question that might be an-
swered differently in light of the problems that the nano scale era imposes on the designer.

3.1.1 New fine grain logic structures

Today, fine grain logic is typically implemented as lookup tables (LUTs). A small number
of LUTs is combined into one larger element called configurable logic block or logic
array block. This hierarchy allows reduced external connectivity while preserving high
connectivity internally. Defects that occur in LUTs can only be healed by replacing them
with spare LUTs. Also, defective routing resources can only be healed by replacing them
with spare resources. Unfortunately, this does not only require additional area for the spare
route, but also for the additional connection points. Thus, it seems to be very inefficient to
implement a considerable amount of redundancy using current FPGA architectures.

Alternatively, researchers have already looked at other building blocks. Programmable
logic arrays (PLAs) have been investigated and seem to solve some problems[DN05]. A
nanoPLA based on carbon nano tubes is depicted in figure 3. The two rows each form
a NOR plane. Both NOR planes are cyclically connected, such that signals can be prop-
agated several times through a single PLA. Horizontal wires can be used as input and
output. Redundancy can be provided in this case at a smaller granularity. PLAs can in-
clude spare rows and columns. Also, re-routing becomes easier, since inputs as well as
outputs of PLAs are almost fully exchangeable. Remapping of an existing circuit under
defect conditions becomes almost trivial in this case. Yet, this type of architecture intro-
duces new synthesis problems, since the mapping of general circuits onto a network of
PLAs is not well understood currently. Thus, technology mapping onto PLAs is one of the
open CAD problems that need to be solved.

As the field of research in alternative fine grain architectures is not very popular today,
it might well happen that researchers come up with totally different building blocks. But
even then it is highly improbable that existing mapping algorithms can be used.

3.1.2 On-chip test capabilities

Some approaches to the handling of defect devices require that the chip itself can evaluate
the logic and routing resources that are fully operational. Current architectures rely on
external testing to evaluate the defect/operational resources. Providing efficient internal
measures to probe for defect/operational resources is an open problem that is closely re-
lated to the architecture of the building blocks. Some research has been done with respect
to LUT based elements, but in our opinion this is not sufficient, especially, with much
higher defect rates.
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3.1.3 Defect tolerant coarse grain architectures

By definition, CGRAs use more complex elements as building blocks. Thus, these blocks
use much larger numbers of transistors (or whatever element the base technology provides
to implement logical functions). Consequently, the probability of a defect in such an
element is much higher than in fine grain logic. To reach a sufficient amount of yield,
it will be necessary to implement defect-tolerant coarse grain elements. To the best of
our knowledge, no research has been carried out in this area up to now (while this is not
directly a topic of CAD, it deserves to be mentioned here).

As the number of nodes that have to be handled by mapping, placement and routing is at
least two orders of magnitude smaller than with fine grain logic, we can afford to tolerate
a reasonable large number of defective processing elements in the CGRA fabric. The
much smaller complexity allows us to map and place applications around defective nodes.
This relaxes the requirements on the defect tolerance of processing nodes. Nevertheless,
we still need to apply architectural improvements to reach a sufficiently high number of
defect-free processing nodes.

3.2 Using dynamic SW/HW migration to broaden applicability

As mentioned in section 2.2.2, dynamically selecting code sequences at runtime as candi-
dates for a hardware mapping has several benefits. In this case, the control and data flow
has to be extracted from the execution binary of the underlying software platform.

Most of the current research in this area is focused on producing better results, often at
the expense of longer runtime or larger memory requirements. In the case of dynamic
compilation, however, we are pursuing a different goal. We value shorter run time, trading



it for a lower result quality. In general, this goal can be captured by the following phrase:
Trade 10% result quality for a factor of ten reduction in the runtime. Empirical observa-
tions made with the state of the art place & route tool VPR[BRM99] show that, at least for
FPGA placement, this aim is achievable.

3.2.1 Mapping of applications

The control and data flow that has been extracted from application code may contain ar-
bitrary operations. Also, it may contain alternative execution branches whose direction
depends on runtime data (if-else statements). These structures have to be mapped
on the CGRA in such a way that complex operations, which might not be available na-
tively, are decomposed into a set of simpler operations. Furthermore, alternative execution
branches are not desireable, especially in the body of loops. Two concepts can be used
to avoid real control flow in this case. 1.) Both branches might be executed and the ap-
propriate result is selected at the end of both computations. Additional measures have to
be taken to avoid unnecessary waiting for the complementary execution path if it is not
required. 2.) Operations can be predicated, meaning that they are attributed with condi-
tions. If the conditions are met, the operation is carried out. Typically, one of the operands
is passed through the operation unchanged if the condition is not met. In general, both
variants require modifications of the control and data flow.

In case the CGRA is not homogeneous, not all operations can be assigned to all nodes.
Thus, mapping is interdependent with placement and routing.

A further complication that needs to be addressed by the mapping algorithm is the pipelin-
ing of loop bodies. Simply mapping the body of a loop onto a CGRA typically leads to
relatively poor performance and utilization. Execution of loop bodies can be overlapped
and, in a second step, the loop can be partially unrolled to extend the scope of mapping
and improve utilization.

None of today’s most advanced mapping approaches take into account all options dis-
cussed here[?]. For example the DRESC framework[MVV+03] neither considers the
decomposition of operations, nor is it able to unroll loops. Also, most current mapping
approaches require enormous amounts of computing time, making them infeasible in a
dynamic compilation environment.

3.2.2 Placement of processing elements

Placement and routing are NP complete problems. Thus, most approaches today use some
heuristics to avoid this bottleneck. A very popular heuristic here is simulated annealing.
It involves the exchange of nodes in the array and the computation of a cost function.
Since these steps are repeated many times, it is a natural idea to speed up this process by
executing it on dedicated hardware. For FPGAs, this approach has already been initially
investigated with good success[WD03]. We are not aware that a similar approach has been
used on CGRAs, though. Alternatively, other heuristics could also be employed for this
problem. Genetic algorithms seem to work well for smaller problems and could also profit



from hardware support.

Both approaches cannot be parallelized easily. Thus, even with hardware support, these
placement algorithms might take too long in a dynamic compilation environment. A totally
different approach could try to optimize the placement locally in a cellular automaton-like
structure. Each cell of the cellular automaton would handle a small number of processing
elements and exchanges processing nodes with their direct neighbours. The supporting
hardware could be implemented directly in the CGRA fabric would thus scale much better
with the size of the CGRA. Additionally, this approach could be enhanced with some kind
of supervisory process that could observe global parameters and would adjust local control
parameters in each cell in order to achieve a global balance of cells.

3.2.3 Routing of data

The routing problem for reconfigurable devices has long been studied in context of tradi-
tional FPGAs. The core problem consists of successfully routing all required connections
using the limited resources on the device. The Pathfinder algorithm [ME95] has been ex-
tremely successful for this application, it is used as the heart of many routing tools (both
academic and industrial). Pathfinder relies on incrementally increasing the cost of “popu-
lar” resources (preferred by many nets) to drive nets that do have acceptable alternatives
away from the congested resource until no resource on the device is overextended.

For the nano-scale devices discussed here, two additional aspects need to be examined.
First, the algorithm can be extended to work around defective resources. This is used
in [RD09], where the router generates alternatives for an assumed maximum number of
defects in each routing segment. These alternatives are then available at bitstream load
time to route around the defects on the specific device (see section 2.1.2.C).

Second, the dynamic generation of hardware (as suggested in section 2.2.2 as a means to
increase fabrication volume) becomes only feasible with fast-running algorithms. With the
memory and compute requirements of Pathfinder (due to storing and repeatedly searching
the graph consisting of every routing resource present on the device), it appears that it
is unsuitable under these conditions. However, this problem can be tackled in a number
of ways: Since we are mainly interested in CGRAs, we can argue that the switching of
entire N -bit busses requires storing/processing only of 1/N of nodes in the routing graph
(compared to that of an FPGA that routes each bit individually).

Then, as suggested in section 3.2.2, we can dedicate some of our hardware area to accel-
erate the routing process. Accelerators for routing have been suggested a number of times
[Ios86, RR87, WKS87]. The most promising approach for nano-scale devices, however,
appears to be that used in [DHW06], where the routing fabric of the device itself has been
extended to perform the required traversals of the routing graph in parallel. Thus, with
increasing device size, the degree of parallelism scales correspondingly. Even for fine-
grained FPGAs, this approach has resulted in speed-ups of five to six orders of magnitude
over fast router implementations in software.

Note that the same idea, using the fabric to represent itself in CAD algorithms, could
also be employed for generating the defect map that the defect-avoidance steps of the



implementation steps require.

3.2.4 Combined approaches

As discussed in the previous sections, mapping, placement and routing may be highly
interdependent, especially if the processing elements and their connections are not fully
homogeneous. Thus, it is a natural idea to combine all three of these steps into one gen-
eralized optimization problem. The evaluation of legal configurations is more complex
in this case than when the three problems are solved separately. Thus, the scope of such
combined approaches is typically reduced to loop kernels of moderate size. Possible ap-
proaches to solve the underlying optimization problems are either exact solvers such as
integer linear programming, or heuristic solvers such as simulated annealing (used in the
DRESC framework[MVV+03]). Both approaches have very high runtime requirements,
thus they seem unsuitable for dynamic compilation. Here, new heuristic solutions are
required, providing a better balance between runtime and result quality.

4 Conclusion

In this work we have shown that the two prevalent problems of chip production in the
nano scale era can only be solved by new tools and methods in design and application.
We have shown that the expected defect density requires new strategies and architectures,
especially for configurable logic. These strategies and architectures are highly dependent
on appropriate CAD algorithms. We have also shown that, besides the traditional use
of static reconfiguration, a more dynamic approach promises a wider applicability. This
dynamic use of reconfiguration also requires suitable CAD algorithms. It is our belief that
research for these new CAD algorithms must start today in order for them to be at hand
when real nano scale devices become available in commercial quantities.
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