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ABSTRACT

We present a high performance memory attachment for custom hardware accelerators on re-
configurable SoC platforms. By selectively replacing the conventional on-chip bus wrappers by
point-to-point connections, the full bandwidth of the DDR DRAM-based main memory is made
available for the accelerator data path. At the same time, the system continues to run software at
an almost undiminished execution speed, even when using a full-scale Linux as virtual-memory
multi-tasking operating system. Despite the performance gains, the approach also reduces chip
area by sharing the already existing bus interface to the DDR-DRAM controller with the hardware
accelerator. System-level experiments measuring both software and accelerator performance on a
representative rSOC platform show a speedup of two to four over the vendor-provided means
of attaching accelerator cores, while still allowing the use of standard design flows. The results
are expected to be portable to other platforms, as similar on-chip buses, protocols, and interface
wrappers are employed in a great number of variations.

1 Introduction

Building Systems-on-Chip (SoCs) is complicated by their inherently heterogeneous nature.
This necessitates efficient communication of their components both with external periph-
erals as well with each other. In this context, the memory subsystem plays a crucial role,
as a growing number of SoC components require master-mode access (self-initiate trans-
fers) to memories, and memory transfers account for the vast majority of overall bus traf-
fic. Low-latency, high-bandwidth memory interfacing is thus highly desirable, especially
in application domains where excess clock cycles and associated power consumption, in-
curred due to waiting for the completion of memory accesses, are not acceptable. For high-
performance embedded systems, the CPU(s) alone already demands a significant share of
the memory bandwidth to keep cache(s) filled, but the memory bottleneck becomes even
tighter when custom hardware accelerators (abbreviated here as HW) are integrated into the
system. These blocks, often realized by IP cores, frequently rely on a fast memory path to
realize their efficiency advantages, both in speed and power, over software (SW) running on
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conventional CPUs.
For interconnecting SoC components, a variety of standards have been proposed [1][2].

In context of this work, we examined the IBM CoreConnect [3] approach more closely, which
is also used in the widespread reconfigurable SoCs (rSoC) based on Xilinx Xilinx Virtex II-pro
(V2P) platform FPGAs.

These popular devices allow the creation of SoCs in a reconfigurable fashion, by em-
bedding efficiently hardwired core components such as processors into the reconfigurable
ressources. However, as we will demonstrate, they implement an even less performant sub-
set of CoreConnect than the specification itself would allow. The supposedly high-performance
means of attaching accelerators directly to the processor local bus (PLB) for memory access,
as recommended by Xilinx development tools (Embedded Development Kit, EDK) [5], leads
to a cumbersome high-latency, low-bandwidth interface instead.

Interestingly, our observations are not limited to the domain of reconfigurable SoCs, but
also apply to hardwired ASIC SoCs such as the IBM Blue Gene/L compute chip [6]. Here,
even the more advanced version 4 of the PLB had to be operated beyond the specification in
order to provide a sufficiently fast link between the L2 and L1 caches, the latter feeding the
PowerPC 440 used as processor on the chip at 700 MHz. In addition to the “overclocking”
of the interface, it was also used as a dedicated point-to-point connection, instead of the bus
fashion it was originally intended for (it would not have achieved the required performance
then).

2 Base Platform Xilinx ML310

Since the simulation of an entire system comprising both one or more processors, custom ac-
celerators, memories, and I/O peripherals is both difficult and often inaccurate, we employ
an actual HW platform for our experiments.

The Xilinx ML310 [4] is an embedded system development platform which resembles
a standard PC main board (see Fig. 1). It features a variety of peripherals (USB, NIC, IDE,
UART, AC97 audio, etc.) attached via a Southbridge ASIC to a PCI bus, which provides a re-
alistic environment for later system-level evaluation. In contrast to a standard PC, the CPU
and the usual Northbridge ASIC have been replaced by a V2P FPGA [7], which comprises
two PowerPC 405 processor cores that may be clocked at up to 300MHz. They are embedded
in an array of reconfigurable logic (RA). Thus, the “heart” of the compute system (CPUs, ac-
celerators, buses, memory interface) is now reconfigurable and thus suitable for experiments
in architectures. With sufficient care, this rSoC can implement even complex designs with a
clock frequency of 100 MHz (a third of the embedded CPU cores’ clock frequency).

The ML310 is shipped with a V2P PCI reference design (show on a gray background
in Fig. 1). This design consists of several on-chip peripherals, which are attached to a sin-
gle PowerPC core by CoreConnect buses. These peripherals comprise memory controllers
(DDR DRAM and Block-RAM), I/O (PCI-Bridge, UART, the System ACE compact flash
based-boot controller, GPIO, etc.), an interrupt controller, and bridges between the different
CoreConnect buses.

On the SW side of the system, we run the platform under Linux. While the use of such
a full-scale multi-tasking, virtual memory might seem overkill for the embedded area, the
market share of Linux variants in that field is roughly 20% ([8], VxWorks 9%, Windows 12%).
Furthermore, Linux stresses the on-chip communication network more than a light-weight
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Figure 1: ML310 system (from Xilinx manuals)

RTOS, and is thus better suited for load-testing our architecture.

3 Vendor Flow for rSoC Composition

Regardless of the target technology, actually composing an SoC is a non-trivial endeavor. In
addition to the sheer number of components (e.g., as demonstrated by the ML310), different
components also have different interface requirements (e.g., an UART vs. a processor core)
or may note be not available using one of the supported standard interfaces at all. For our
platform, standard interfaces would be either the PLB interface already mentioned above,
or the simpler Open-Peripheral Bus (OPB), which will be described below. Non-standard
interfaces are common to HW accelerator blocks that often have applications-specific attach-
ments, which are then connected to standard buses by means of so-called wrappers. These
convert between the internal and external interfaces and protocols. In some cases, the dif-
ferent protocols are fundamentally incompatible and can only be connected with additional
latencies or even loss of features (such as degraded burst performance).

The Xilinx EDK [5] SoC composition tool flow supports two standard means for inte-
grating custom accelerators into the reference design. The simpler way is the attachment via
OPB [3], shown in Figure 2. The idea here is to isolate slower peripherals from the faster
processor bus by putting them on a dedicated bus with less complex protocols. OPB attach-
ments thus implement a relatively simple bus protocol, having 32 bits transfer width at 100
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MHz clock. The most important OPB operation modes are:

• Single beat transfers (one data item per transaction)
• Burst transfers of up to 16 data words (limited by processor bus)
• Master/slave (self/peer initiated) transfers

However, the simplicity comes at the price of higher access latencies compared to PLB
attachment. These are due both to the OPB wrapper of the block as well as the PLB-OPB
bridge which must be traversed when communicating with high-speed blocks on the PLB
(such as the processor and the main memory).

The PLB attachment is the second proposed way of integrating HW accelerators, shown
in Figure 3. Its protocol has more features aiming for high-performance operation, but is
also more complex than the OPB one. Hence, bus wrappers are nearly always needed when
connecting to the PLB. The most important PLB operation modes are:

• Single beat transfers (one data item per transaction)
• Burst transfers up to 16 data words
• Cacheline transfers (one cacheline in 4 data beats, cache-missed word first)
• Master/slave (self/peer initiated) transfers
• Atomic transactions (bus locking)
• Split transactions (separate masters/slaves performing simultaneous reads/writes)
• Central arbiter, but master is responsible for timely bus release

Additionally, the PLB interface also operates on 64 bits of data at 100 MHz (twice the
bandwidth of OPB), accompanied by lower access latencies with just two bus wrappers left
between HW and DDR-DRAM controller for the main memory. Note that the controller itself
also requires a wrapper. However, since the memory never initiates transactions by itself, a
slave-mode wrapper suffices for this purpose.

4 Practical Limitations

As discussed in the previous section, attaching a HW accelerator to the PLB offers perfor-
mance increased over an OPB attachment. However, there are still practical limitations: The



IBM PLB Spec v3 Xilinx V2P PLB
Clock 133 MHz 100 MHz
Single cycle yes no (wrappers)
transactions
Burst length unlimited 16 words

Table 1: PLB specification vs. implementation

Min. Size [Slices] Max. Size [Slices]
Wrapper for (slave only) (full master-slave)
OPB 27 544
PLB 180 2593

Table 2: Area overhead for bus wrappers in vendor flow

original CoreConnect specification [3] allows for unlimited PLB burst lengths, with transac-
tion latencies being as short as a single cycle (if the addressed slave allows it). Unfortunately,
as shown in Table 1, the actual implementation of the specification on the V2P-series of de-
vices does not support all of the specified capabilities.

In addition to being clocked at only 100 MHz, PLB is further hindered by its relatively
complex protocol and an arbitration-based access scheme, both leading to long initial laten-
cies. Furthermore, in the Xilinx V2P implementation, the maximum burst length is limited
to just 16 words. The bus wrappers employed in the vendor tool flow impose additional
latency and can also require considerable chip area (see Table 2). Even the performance-
critical controller for the DDR-DRAM main memory is also connected to the PLB by means
of a wrapper (see Figure 3). This combination of restrictions renders the memory subsys-
tem insufficient for 64 bit, DDR-200 operation (1600 MB/s theoretical peak performance, the
maximum supported by the actual DDR DRAM memory chips used on the ML310 main-
board).

5 FastLane Memory System

However, since we are experimenting with a reconfigurable SoC, we can choose an alternate
architecture. To this end, we designed and implemented a new approach to interface the
processor, custom HW accelerators and the main memory.

The main concept behind the FastLane high performance memory interface is the direct
connection of the memory-intensive accelerator cores to the central memory controller with-
out an intervening PLB. By also using a specialized, light-weight protocol, we can avoid the
arbitration as well as the protocol overhead associated with PLB. This leads to a greatly
reduced latency, with no wrapper left between accelerator core and RAM controller, as op-
posed to two wrappers in the Xilinx reference design. We can now also make the full data
bus width of the RAM controller available to the accelerator, eventually enabling true 64 bit
double data-rate operation. Figure 4 shows the new memory subsystem layout.

For even further savings, the accelerator(s) now also share the PLB slave attachment of
the DDR controller wrapper. Thus, no additional chip area is wasted on wrappers (which
have now become redundant). The master mode side of the accelerator is connected via
FastLane directly to the interface of the DDR controller, but can accept data transfers from
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Figure 4: FastLane: Attaching HW accelerator directly to DDR controller

the processor (e.g., commands and parameters) via the shared PLB slave. Both interfaces
internally use a simple double handshake protocol, streamlined for low latency and fast
burst transfers.

Many algorithms implemented on HW accelerators can profit from higher-level abstrac-
tions in their memory systems, such as FIFOs/prefetching for streaming data, and caches
for irregular accesses. To this end, the Memory Architecture for Reconfigurable Computers
(MARC, shown in Figure 5) can be inserted seamlessly in the FastLane, using a compat-
ible protocol. MARC offers a multi-port memory environment with emphasis on caching
and streaming services for (ir)regular access patterns. MARC, which is described in greater
detail in [9], consists of 3 parts:

• The core encapsulates the functionality for caching and streaming services, the cache
tag CAM (Content Addressable Memory), cacheline RAM and stream FIFOs. The core
also arbitrates the back ends and front ends, aiming to keep all of them working concur-
rently but resolving conflicts when accessing the same resource.

• The front ends provide standardized, simple interface ports for both streaming and
caching using a simple double-handshake protocol.

• The back ends adapt the core to several memory and bus technologies. New backends
can be easily added as required.

While the FastLane approach aims to provide optimal conditions for the compute-intense
HW accelerators, it must also consider that the rest of the system, specifically the proces-
sor(s), also require access to the main memory and may be intolerant to longer delays in
answers to their requests. For example, interrupts, timers and the process scheduler cause
memory traffic even on an idle system, and a too-slow response leads to system instabilities.
Bus master devices (capable of initiating transfers on the bus) may experience buffer over-
or underruns if the transfer is not completed in time due to bus contention caused by a HW
accelerator.

This implies that the CPU and other bus master devices must always have priority over
the accelerator block (which can be explicitly designed to tolerate access delays). The re-
quired arbitration logic is completely hidden from the accelerator within the FastLane in-
terface. The CPU (and other bus master devices) may interrupt master accesses of the accel-
erator at any time, while the accelerator cannot interrupt the CPU, and has to wait for the
completion of a CPU-initiated transfer.
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6 Operating System Integration

When considering accelerators at the system level, it is obvious that these HW cores must
also be made accessible to application SW in an efficient manner. Given their master-mode
access to main memory, this is non-trivial in an OS environment supporting virtual memory.
The memory management unit (MMU) translates the virtual userspace addresses as seen by
SW applications into physical bus addresses, which are sent out from the processor via the
PLB. Address translations and the resolution of page faults are transparent for SW. Since
the accelerators do not have access to the processor MMU with its page address remapping
tables, this implies that hard- and software communication in a virtual memory environ-
ment must use both userspace and physical addresses. Furthermore, since the HW is neither
aware of virtual addresses, nor can it handle page faults, the memory pages accessed by the
accelerator must be present in RAM before starting the accelerator.

The solution to this requirement is a so-called Direct Memory Access buffer (DMA buffer).
In the Linux virtual memory environment, a DMA buffer is guaranteed to consist of con-
tiguous physical memory pages that are locked down and always present in physical RAM,
they can never be swapped out to disk.

As described previously, there are now two addresses pointing to the buffer, the first
being the physical bus address as seen by the accelerator, the second being the virtual
userspace address representing the same memory area for application SW.

The algorithms running on the accelerator often require a set of parameters for their op-
eration, which are transferred from the SW application by performing writes to the memory-
mapped accelerator registers. These are actually handled by the PLB slave shared with the
memory controller and forwarded to the accelerator HW. From the SW perspective, the
memory mapped registers are simply accessed via a pointer to a suitable data structure.
Bulk data (e.g., image pixmaps etc.) is also prepared by the SW within the previously al-
located DMA buffer (e.g., read from a file), which can be manipulated by SW as any other
dynamically allocated memory block. Then, the the offsets from the start of the DMA buffer
where various data structures are located (both for input and output) are simply passed as
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parameters to the accelerator. After starting the accelerator by writing to its command regis-
ter, the accelerator fetches the bulk data directly from memory, preferably in efficient burst
reads, without involvement of SW running on the processor. In a similar fashion, it also de-
posits the output data in the DMA buffer, and then indicates completion of the operation via
an interrupt to the processor. Now SW can take over again.

On the OS side, this functionality is completely encapsulated in a character device driver
that performs the appropriate memory mappings for the slave-mode registers and the DMA
buffer.

7 Experimental Results

To demonstrate the effectiveness of our approach, we exercised several system load scenar-
ios. The basic setup is identical in all cases: We mimic the actions of an actual HW accelerator
by a hardware block that simply repeatedly copies a 2 MB buffer from one memory location
to another as quickly as possible, totaling to 4 MB of reads and writes per turn, and mea-
sure the transfer rate in MB/s. In addition to the accelerator, we run different softwares
programs, chosen for their specific load characteristics on the processor. We then measure
the HW execution time (the time it takes to copy memory data at full speed) and the SW
execution time (the time it takes for a given program to execute on the processor) for both
the original vendor-provided as well as our FastLane memory interface. The extreme cases
(HW accelerator and processor idle) are also considered.

The suite of software programs was chosen to represent an everyday mix of typical appli-
cations that also perform I/O and calculations in main memory (instead of just running en-
tirely within the CPU caches). The scp program from the OpenSSH suite [10] was instructed
to copy a local file, sized 4 MB, via network to a remote system. The same is done without
encryption by netcat [11]. The GNU gcc [12] C compiler was evaluated while compiling the
netcat sources.

To also cover the embedded system domain where SoC platforms similar to V2P are often
employed, the ETSI GSM enhanced full rate speech codec [13] and an image processing
pipeline as often found in printers were included ([14], JPEG RGB to CMYK conversion as
part of the HP Labs Vliw EXample development kit), both representing typical embedded
applications. The various programs can be characterized as follows:

• scp provides a mix of CPU- and I/O load
• netcat exercises network I/O exclusively



Application V2P ref design FastLane
Exec. Time [s] Mem. Rate [MB/s] Exec. Time [s] Mem. Rate [MB/s]

idle system 18.81 213 5.67 705
scp 55.11 73 12.82 312
netcat 53.07 75 19.27 208
gcc 32.14 124 17.42 230
GSM 19.05 210 6.35 630
imgpipe 44.67 90 19.33 207

Table 3: HW accelerator run times and available bandwidth using original and FastLane
memory subsystem implementations

Application HW inactive V2P ref design FastLane
scp 4831 ms 61052 ms 5828 ms
netcat 3130 ms 55938 ms 3901 ms
gcc 40686 ms 166655 ms 52908 ms
GSM 25981 ms 40045 ms 27767 ms
imgpipe 3545 ms 5109 ms 4018 ms

Table 4: SW run times on idle system and using accelerator attached by original and FastLane
memory subsystem implementations)

• gcc interleaves short I/O- and long calculation phases
• GSM provides codec stream data processing
• imgpipe implements multi-stage image processing

The first set of measurements shown in Table 3 considers the memory throughput of the
HW accelerator under different CPU load scenarios. Here, we show the time for a single 2
MB block copy (four mega-transfers), as well as the resulting memory throughput, when
using the original vendor-provided PLB interface as well as our FastLane for connecting the
HW accelerator. It is obvious that FastLane significantly increases the throughput in all load
scenarios, in some cases by a factor of up to 4.3.

The set of measurements shown in Table 4 quantifies the influence of the different mem-
ory attachments on the execution time of software running on the processor that also access
main memory in different load patterns.

The results show that, despite its high throughput to the HW accelerator, FastLane does
not significantly impair the processor: SW execution times are almost unaffected by the HW
memory transfer, owing to the absolute priority of the CPU (cf. Section 5) over the HW ac-
celerator. In contrast, the original vendor-provided reference design exhibits a steep SW per-
formance decline, increasing execution by a factor of up to 14x over that of SW running with
the FastLane-attached accelerator. FastLane thus enables the accelerator to access memory
bandwidth that is appears to be completely unused by the original memory interface.

One might assume that the FastLane approach of giving the CPU override priority for
bus access will cancel out the theoretical performance gains of FastLane over the original
PLB-based accelerator attachment. However, we measured that even under these conditions,
FastLane is able to provide the accelerator with roughly half of the theoretically available
memory bandwidth (which is 800 MB/s in the single-data rate mode used here): Practically



achievable are 32b data words at a rate of 352 MB/s and 64b words at 705 MB/s, yielding
a bus efficiency of 88%. Going to double data rate mode (planned as a refinement) would
double these rates again. At the same time, the multi-tasking OS and the SW application
continue to run at almost full speed.

In scenarios where fast SW interrupt response is not required, for example, and it is
possible to freeze the processor entirely (e.g. by stopping the clock signal), FastLane makes
the full memory bandwidth available to the accelerator. This is not achievable using the
original PLB attachment, which even with a frozen processor is only able to exploit just 25%
of the theoretically available read bandwidth and 33% when writing.

8 Conclusion and Future Work

We presented a high performance memory attachment for custom HW accelerators. Our
approach can increase the usable memory throughput by more than 4x over the original
vendor-provided PLB attachment (included in the Xilinx EDK [5] design suite). Addition-
ally, it required less chip area and left performance the performance of SW applications
running on the on-chip processors almost unaffected.

From a practical perspective, FastLane integrates into the standard EDK design flow and
is as easy to use as the original attachment. Although the results are not directly transferable
to platforms other than Virtex 2 Pro system FPGA, it is clear that reduced bus and wrapper
overhead will always result in smaller logic and lower latencies. Hence, other platforms may
also benefit from this approach.

Our current and future work focuses on improving the OS support (transparent ad-
dresses between HW and SW) as well as the supporting full 64b double-data rate operation
in FastLane.
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