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ABSTRACT
In high-level synthesis, loop pipelining is a technique to im-
prove the throughput and utilisation of hardware datapaths
by starting new loop iterations after a fixed amount of time,
called the initiation interval (II), allowing to overlap subse-
quent iterations. The problem is to find the smallest II and
corresponding operation schedule that fulfils all data depen-
dencies and resource constraints, both of which are usually
found by modulo scheduling.

We propose Moovac1, a novel integer linear program (ILP)
formulation of the modulo scheduling problem based on over-
lap variables to model exact resource constraints. Given
enough time, Moovac will find a mimimum-II solution. This
is in contrast to Canis’ state-of-the-art Modulo SDC ap-
proach, which requires heuristic simplifications of the re-
source constraints. Moovac can thus be used as a reference
to evaluate heuristics, or in a time-limited mode as a heuris-
tic itself to provide a best-so-far solution.

We schedule kernels from the CHStone and MachSuite
benchmarks for loop pipelining with Moovac, Modulo SDC
and a prior exact formulation by Eichenberger.

Moovac has competitive performance in its time-limited
mode, and delivers better results faster than the Modulo
SDC scheduler for some loops. Often its structure leads to
quicker solution times than Eichenberger’s formulation.

Using the Moovac-computed optimal solutions as a ref-
erence, we can confirm that the Modulo SDC heuristic is
indeed capable of finding optimal or near-optimal solutions
for the majority of small- to medium-sized loops. However,
for larger loops the two algorithms begin to diverge, with
Moovac often being significantly faster to prove the infea-
sibility of a candidate II. This can be exploited by running
both schedulers synergistically, leading to a quicker conver-
gence to the final II.

CCS Concepts
•Hardware → Operations scheduling; Reconfigurable
logic and FPGAs;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CASES ’16, October 01-07, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN 978-1-4503-4482-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968455.2968512

1. INTRODUCTION
To achieve compute performance, the FPGA-based recon-

figurable computing generally relies on spatial parallelism,
while conventional CPUs still emphasise higher clock rates.
A high-level synthesis (HLS) system that creates FPGA-
based accelerators from sequential languages such as C must
exploit all available sources of parallelism in order to achieve
a meaningful speed-up compared to the execution on a soft-
ware-programmable processor at a higher clock rate. One
such source of parallelism is loop pipelining : New loop iter-
ations are started after a fixed number of time steps, called
the initiation interval (II). This can result in a partially
overlapping execution of subsequent loop iterations.

Let SL be the latency of the datapath representing the
loop body. Executing n iterations of the loop sequentially
then takes n·SL time steps. Assume the loop’s inter-iteration
dependencies allow it to be executed with an initiation in-
terval II < SL, then executing n iterations will require only
(n − 1) · II + SL time steps, i.e. the last iteration is issued
after (n− 1) · II time steps and ends after the SL time steps
to fully evaluate the result of the datapath. This means that
the smaller II is relative to the schedule length, the higher is
the theoretical speed-up achievable through loop pipelining.

HLS-generated datapaths typically have to obey certain
resource constraints, such as the number of requests the
memory controller can handle in parallel. Additionally, op-
erations relying on scarce on-chip resources, such as DSP
slices, might be multiplexed between different uses in the
datapath. We call the operations requiring these constrained
hardware blocks resource-limited operations.

After an initial warm-up time, a loop’s datapath executes
operations from different iterations in parallel. Therefore, it
is no longer sufficient that an operation schedule fulfils the
resource constraints individually for each time step. With
the overlap, the constraints now have to hold for congruence
classes of time steps (step# modulo II).

Consider the example loop and its corresponding data-
flow graph in Fig. 1a. We assume that the multiplication
has a latency of 2, and all other operations have a latency
of 1, i.e. their result is available in the next time step. The
solid edges are precedence edges; the dashed edge represents
a dependency on the addition’s value in the previous itera-
tion. For brevity, the loop counter and the test for the exit
condition are omitted. The limited resource in this example
is the memory port, which can serve either the read or the
write operation in each time step. Fig. 1b illustrates the
pipelined execution of this loop for an II of 2. Note that the
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(b) Modulo schedule and its overlapping execution for II=2

Figure 1: Pipelined execution of a loop

inter-iteration dependency and the resource constraint are
still fulfilled by the overlapping execution of the iterations.
The read operation is started in every even time step, i.e. in
the congruence class 0 modulo 2, and the write operation is
started in every odd time step, i.e. in the congruence class
1 modulo 2.

Computing a (preferably small) feasible II and the associ-
ated operation schedule is called modulo scheduling.

1.1 Related work
Loop pipelining is most useful when targeting processors

having multiple parallel function units. Out-of-order pro-
cessors rely on dynamic scheduling to derive the appropri-
ate execution sequences at run-time. Parallel in-order pro-
cessors (such as VLIW architectures), or statically sched-
uled hardware accelerators created by HLS, however, rely
on the compiler/synthesis tool to pre-compute their execu-
tion schedules.

The underlying modulo scheduling problem is the same,
with the primary objective being to find a schedule with
the minimally feasible II. However, VLIW modulo sched-
ulers typically face tight resource constraints in each cycle
(due to the limited number of functional units, registers, and
buses). Modulo schedulers targeting HLS face fewer resource
constraints (hardware accelerators may use dozens or even
hundreds of operators), but need to support operator chain-
ing, i.e. scheduling multiple low-latency operators into a
single clock cycle, to achieve acceptable performance. Thus,
when considering related work, not all techniques proposed
for one target may be beneficial for the other.

Modulo schedules can be determined either by heuristics or
by solving mathematical formulations, typically in the form
of integer linear programs (ILP). While heuristics are not
guaranteed to find the optimal solution (and often only pro-
duce feasible solutions), they usually come with a shorter

computation time.

Rau and Glaeser first described the concept of modulo sched-
uling for a VLIW architecture [15]. Since then, several
heuristic algorithms were proposed (e.g. [9, 14, 13]) and
compared in a survey by Codina et al. [2].

More recently, Zhang and Liu [20] implemented a mod-
ulo scheduler on top of the SDC scheduling framework [3].
The flexibility of the SDC framework enables the easy in-
tegration of operator chaining into the modulo scheduling
process, in contrast to previous attempts to extend other
modulo scheduling algorithms with this capability [17]. The
idea was improved by Canis et al. [1], marking the state of
the art in HLS modulo scheduling. However, no comprehen-
sive study investigating the quality of scheduling results for
loops from typical HLS input programs has been published
yet.

An early work by Hwang et al. [11] presented a mathe-
matical formulation of a modulo scheduler capable of han-
dling many HLS-specific requirements, but its practicality
was only evaluated with one small example loop.

The most recent and advanced mathematical formulations
of the problem were proposed by Eichenberger and Davidson
[7] and Dupont de Dinechin [6]. Both formulations employ
time-indexed decision variables, i.e. a binary variable xti
models that an operation i is scheduled to time step t with
t ∈ [0, II) [7] or t ∈ [0, T ) for an expected maximum schedule
length T [6].

Our proposed formulation uses integer valued variables to
model the start times, and overlap variables [5] to handle
resource and modulo constraints. Venugopalan and Sinnen
[18] showed that, compared to classical approaches, the over-
lap formulation leads to a smaller specification of the under-
lying problem structure and thus faster solution times.

We expect to retain these beneficial properties when re-



purposing the formulation for the modulo scheduling prob-
lem. For example, in contrast to the time-indexed approach-
es, the number of decision variables is independent of the
candidate II, and resource-unlimited operations, which are
common in the HLS setting, are represented by only one
variable. A comparison of our approach against a reimple-
mentation of Eichenberger’s formulation will show that this
is indeed the case (see Section 3.2.2).

Without explicitly naming them, overlap variables were
used in a non-modulo scheduling formulation by Wilson et
al. [19].

Still, to the best of our knowledge, overlap formulations so
far have not been presented and evaluated for solving the
HLS modulo scheduling problem.

1.2 Contributions
As its core contribution, this paper proposes a new ILP-

based formulation of the HLS modulo scheduling problem
with exact resource constraints using overlap variables that
is faster on average than both a heuristic approach and a pre-
vious ILP formulation. A second contribution of this work is
an extensive experimental evaluation of the techniques using
two popular benchmark suites, with observations on the ap-
plicability of modulo scheduling to loops typically found in
HLS kernels. This work is also the first to assess the quality
of results of the Modulo SDC heuristic at this scale.

1.3 Structure
First, we discuss considerations that are common to all

modulo scheduling approaches. Then, we present Moovac,
our novel ILP-based formulation of the problem, in compar-
ison to Canis’ state-of-the-art Modulo SDC algorithm. In
the experimental evaluation section, we show the results of
scheduling loops from the CHStone and MachSuite bench-
mark suites and discuss specific findings. Before concluding,
we propose ideas to further improve Moovac to make it fea-
sible to schedule even larger loops in the future.

2. MODULO SCHEDULING
The primary objective for any modulo scheduling algo-

rithm is to find the smallest II that guarantees that all inter-
iteration dependencies and all resource constraints are met.

Modulo schedulers usually determine a lower bound for
the II and attempt to schedule a loop with increasing can-
didate IIs until a feasible solution is found. We review the
well-known calculation of such a bound and propose an im-
provement at the end of this section.

The problem signature in Table 1 characterises a single
scheduling attempt for one fixed candidate II.

The input consists of a directed graph consisting of a set of
operations O (nodes) with a fixed integer latency of Di, and
a set of directed edges E modeling the dataflow and other
precedence relations among the operations. In addition to
the usual intra-iteration dependencies, a loop may contain
inter-iteration dependencies, also known as recurrences or
loop-carried dependencies. As these dependencies point in
the opposite direction of the normal dataflow, we call them
backedges.

The operations O are carried out on resources (e.g. logic
gates, DSPs, memories . . . ), of which some types, but not
all, are limited in number. Let R be the set of distinct re-
sources types, whose usage has to be limited when schedul-

Table 1: Problem signature for modulo scheduling

Input
II candidate initiation interval

O = {0, . . . , n− 1} operations
Di, i ∈ O delay / latency of operation i

E = {(i→ j; b)} ⊆ O ×O × {0, 1}
dependency edges in datapath.
b = 1⇔ edge is a backedge

R = {mem, dsp, . . . } resource types
A = {ak | k ∈ R} available instances of resource

type k
Lk ⊆ O resource-limited operations of

type k
L =

⋃
k∈R Lk union of all resource-limited oper-

ations

Output
ti, i ∈ O start time for operation i
ri, i ∈ L index of resource instance used by

operation i

Table 2: Problem specification and resulting modulo sched-
ule for the loop in Fig. 1a

O = {+, *, read, write}
D+ = Dread = Dwrite = 1 D∗ = 2

E = {(+→ *; 0), (read→ *, 0), (+→ write; 0)}
∪ {(+→ +; 1)}

R = {mem}
amem = 1

Lmem = {read, write} = L

t+ = 0 tread = 0 t* = 1 twrite = 3

rread = 0 = rwrite = 0

ing. We assume that every resource type k ∈ R provides
ak uniform instances that can be used by at most one oper-
ation at any time. This means that at most ak operations
scheduled to start in time steps in the same congruence class
(modulo II) can use k concurrently. We will identify the dif-
ferent instances by an integer index in the range [0, ak − 1].

We further assume that every operation requires at most
one limited resource k. We represent these resource-limited
operations as members of the respective sets Lk. We define
L to be the set of all resource-limited operations for brevity.

Once a feasible solution has been found, we are inter-
ested in an integer start time ti for each operation and, for
resource-limited operations, an assignment to a specific in-
stance of the appropriate resource type.

Table 2 shows the scheduling problem of the initial exam-
ple from Fig. 1a in this notation.

2.1 Modulo SDC
Canis et al.’s recently proposed Modulo SDC algorithm

[1] builds on top of a special type of linear program (LP)
called system of difference constraints (SDC). Such an LP



only contains constraints of the form x1 − x2 ≤ C, in which
the decision variables x1, x2 represent operation start or end
times, and C is a constant integer. By construction, a SDC
is represented by a totally unimodular constraint matrix,
which guarantees that an optimal solution found by an LP
solver will only consist of integer values for the decision vari-
ables. Therefore, the operation start times extracted from
such a solution can be used in the HLS flow without further
processing.

It was shown that typical constraints occurring in HLS
scheduling, especially the intra- and inter-iteration depen-
dencies between operations, can be mapped to the SDC
framework. However, due to their non-linear nature, it is
not possible to directly handle the resource constraints for
modulo scheduling within the framework.

To circumvent this problem, the Modulo SDC algorithm
uses a heuristic that starts with a non-resource constrained
schedule and iteratively assigns resource-limited operations
to time steps. This assignment is fixed in the underly-
ing SDC by adding new equality constraints. The SDC is
solved afterwards to check the feasibility of the current par-
tial schedule. Should the schedule become infeasible, the
algorithm uses backtracking to revert some of the previous
assignments and resumes.

Canis mentions using a perturbation-based priority func-
tion to determine the order in which resource-limited oper-
ations are selected to be assigned, but states that no partic-
ular priority function is necessary due to the backtracking
approach. We therefore opted for a simpler height-based
priority function in our implementation of the Modulo SDC
scheduler. In order to make it more comparable to our novel
approach, we use a more generous (wall-clock) time bud-
get instead of limiting the number of attempts to assign
resource-limited operations in the original paper, and use
CPLEX [4] as the underlying LP solver.

In summary, the Modulo SDC approach aims to stay within
the confines of the SDC framework, which is LP-solvable
in polynomial time, and handles the resource constraints
heuristically on top of it.

2.2 Moovac
We propose to tackle the modulo scheduling problem dif-

ferently: Our formulation will handle the resource constraints
integrated with all other constraints, thus making all infor-
mation on the problem available to the solver. We accept
that this makes the formulation a general Integer LP (ILP)
with exponential runtime in the worst case.

However, using a novel formulation approach [18] for the
resource constraints, we expect to achieve a problem struc-
ture that can be solved in reasonable time for problem in-
stances relevant in practice.

We first describe a HLS compiler-agnostic version of the
formulation, and discuss additional constraints potentially
required by concrete HLS systems at the end of this section.

2.2.1 Decision variables
We model the problem with the decision variables shown

in Table 3: As stated at the beginning of the section, the
output we are seeking is a start time ti for every operation
i ∈ O, and the resource instance index ri for each resource-
limited operation. Let i ∈ Lk, then ri is identified by an
integer index in the range [0, ak − 1]. With the externally
specified delay Di, operation i’s result will be available in

time step ti + Di. These variables are directly part of our
ILP formulation.

The ILP formulation needs to solve an ordering problem
(ordering of the operations) and an allocation problem (al-
locating operations to available resources). There are vari-
ous different approaches how to formulate such a scheduling
problem in an ILP, using different decision variables. Recent
work on a related scheduling problem has shown that using
overlap variables is more efficient than other approaches [18].
We take this approach here.

First we define variables for all resource-limited operations
i ∈ L to reflect the nature of the modulo scheduling: mi

is the congruence class (modulo II) implied by the current
start time ti. mi is represented by an integer in the range
[0, II − 1]. yi is a helper variable in the computation of mi;
its value is bound to the integer division ti/II. The start
time ti can then be expressed as ti = yi · II +mi

The overlap variables on all pairs of operations i, j ∈ Lk

that use the same resource type k are then defined as follows:
εij = 1 indicates that i’s resource instance index is strictly
less than j’s resource instance index. Analogously, µij = 1
models that i’s congruence class index is strictly less than j’s
congruence class index. We will use these overlap variables
to express the “inequality” relation in the constraints below
to enforce correct feasible ordering and resource allocation.

2.2.2 Objective function
We instruct the ILP solver to compute an ASAP schedule

by requesting the sum of each operation’s start time to be
minimized (Eq. (4) in Fig. 3).

2.2.3 Constraints
Fig. 3 shows the constraints in the Moovac formulation.

Precedence.
All precedence relations are modeled by constraint (5). It

is best explained by considering the cases “normal edge” and
“backedge” separately. For b = 0, the constraint models the
fact that the target operation j can only be started after the
source operation i computed its result. For b = 1, note that
i will be started later than j in the schedule. The constraint
now enforces that the distance between i’s end time and
j’s start time is shorter or equal to the candidate II, i.e. i
will have computed its result before j is started in the next
iteration.

Resources.
We use the overlap variables discussed above to model

whether two operations use the same resource instance (εij)
or whether they start in time steps in the same congruence
class (µij) in an overlapping manner.

As both sets of overlap variables are defined by a strictly
less relation, for a given pair of operations i, j, εij and εji,
as well as µij and µji cannot be 1 at same time. This is
ensured by constraints (6) and (9).

The overlap variables are bound to their desired values by
the constraint pairs (7), (8) and (10), (11), respectively. For
brevity, we explain their function in the context of µij (10),
(11), as the constraints for εij (7), (8) work analogously.

Constraint (10) is fulfilled if

mi < mj or µij = 0 (1)



Constraint (11) is fulfilled if

mi ≥ mj or µij = 1 (2)

In both constraints, the second expression uses the candidate
II as a big-M constant, meaning that its value is big enough
to fulfil the constraint regardless of the rest of the expression.
Due to the apparent contradictions, this pair of constraints
can only be fulfilled if and only if mi < mj and µij = 1, or
mi ≥ mj and µij = 0, resulting in the desired behaviour.

With the help of these overlap variables, the actual com-
bined modulo and resource constraint (12) ensures that ev-
ery pair of operations i, j is either assigned to different re-
source instances (εij + εji = 0 ⇔ ri = rj) or mapped to
different congruence classes, or both.

Constraint (13) defines the congruence class index mi as
expressed by the operation’s start time ti modulo II.

Constraint (14) bounds the resource instance indices for
each limited operation of type k to be less than the exter-
nally specified limit ak. Analogously, constraint (15) ensures
that an operation’s congruence class index is less or equal
to the candidate II.

An upper bound for the schedule length.
With constraint (16) we cap each operation’s latest fin-

ish time, and in effect the datapath’s overall latency, to
a candidate-II-independent upper bound (explained below),
which limits the ILP solver’s freedom to fruitlessly try out
increasingly late start times for operations in the search.

A modulo schedule may finish later than a non-modulo
schedule adhering to the same precedence and resource con-
straints, e.g., when an operation on the datapath’s critical
path has to be started later because the desired modulo slot
is already occupied by another operation. This is generally
acceptable, as the expected performance gains by executing
the datapath with a smaller II outweigh the increased la-
tency, especially if it is known that a loop runs for many
iterations once started.

The proposed bound is based on a construction scheme.
We illustrate its steps in Fig. 2 by applying it to our intro-
ductory example. Assume we schedule all operations strictly
sequentially (1). By ignoring the backedges, the dependen-
cies between the operations are acyclic, therefore a topologi-
cal order exists. We search for the operation with the longest
latency Dmax (2), and reserve a window of Dmax time steps
for every operation in the loop (3). Some windows’ start
times may be mapped to the same congruence class. In the
example, we show the situation for Dmax = II = 2, where
all windows start in time steps congruent to 0 modulo II. In
order to resolve the resource conflict between the read and
the write operation, an empty time step is introduced be-
fore the window containing the write operation, effectively
moving the write’s start time and the start times of all sub-
sequent operations into another congruence class. In the
worst case, Dmax is a multiple of the candidate II. Then,
the start times of all moved windows still fall into the same
congruence class. It may thus be required to insert empty
time steps in front of every window.

The latest finish time of such a schedule, and also our
proposed upper bound, is

SLmax = |O| · (Dmax + 1) (3)

Note that this scheme does not lead to a feasible modulo
schedule in general, as it does not obey the fact that all
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Figure 2: Construction scheme for SLmax, illustrated for
the example loop in Fig. 1a and II = 2

backedges have to be of shorter or equal length (defined as
ti +Di − tj for a backedge i→ j) than the II.

Domain constraints.
Constraints (17) - (22) are domain constraints to enforce

non-negativity respectively boolean values (expressed as in-
tegers 0 and 1) for the decision variables.

Additional constraints.
In its generic form above, the Moovac formulation is ap-

plicable to any HLS. Concrete HLS systems however may
impose additional constraints on the resulting schedule, e.g.
in Nymble [10], a HLS system that internally uses a per-loop
control-dataflow graph as its main intermediate representa-
tion, there are special transfer operations that retrieve val-
ues from inner loops. Nymble’s backend expects that these
operations are scheduled exactly one time step after the op-
eration representing the inner loop finishes. Let loop be the
loop operation, and xfer the transfer operation. Then a
constraint of the form tloop +Dloop +1 = txfer is required to
achieve the desired schedule. These relative timining con-
straints [3] can be added easily to the Modulo SDC’s under-
lying LP as well as to Moovac’s ILP - a benefit of using a
mathematical framework for scheduling.

Operator chaining, i.e. combinatorially combining multi-
ple operations in a time step, is an essential technique in HLS
to achieve good performance. We support operator chaining
by allowing operations with Di = 0. Cycle time constraints
[3] prohibit excessive chaining, based on platform-specific
operator latencies. The basic idea is to estimate the com-
binatorial delay between pairs of operations i, j. Then, by
dividing the delay by the desired cycle time (e.g. 10 ns for
100 MHz), the number of time steps s that must separate
i’s and j’s start times are computed and encoded as a con-
straint of the form ti + s ≤ tj .

In our Modulo SDC and Moovac implementations, we use
the same relative timing and cycle time constraints.

2.2.4 Time-limited operation
Each scheduling attempt with the Moovac formulation is

executed as one invocation of the ILP solver. This enables



minimize
∑
i∈O

ti (4)

subject to ti +Di ≤ tj + b · II ∀i→ j; b ∈ E (5)

εij + εji ≤ 1 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (6)

rj − ri − 1− (εij − 1) · ak ≥ 0 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (7)

rj − ri − εij · ak ≤ 0 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (8)

µij + µji ≤ 1 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (9)

mj −mi − 1− (µij − 1) · II ≥ 0 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (10)

mj −mi − µij · II ≤ 0 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (11)

εij + εji + µij + µji ≥ 1 ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (12)

ti = yi · II +mi ∀i ∈ L (13)

ri ≤ ak − 1 ∀k ∈ R : ∀i ∈ Lk (14)

mi ≤ II − 1 ∀i ∈ L (15)

ti +Di ≤ SLmax ∀i ∈ O (16)

ti ∈ N ∀i ∈ O (17)

ri ∈ N ∀i ∈ L (18)

yi ∈ N ∀i ∈ L (19)

mi ∈ N ∀i ∈ L (20)

εij ∈ {0, 1} ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (21)

µij ∈ {0, 1} ∀k ∈ R : ∀i, j ∈ Lk, i 6= j (22)

Figure 3: Moovac: Objective function and constraints

Table 3: Moovac: Decision variables

ti i ∈ O start time
ri i ∈ L index of resource instance used by

operation
mi i ∈ L index of congruence class (modulo

II)
yi i ∈ L helper in congruence class compu-

tation

εij ∀k : i, j ∈ Lk

{
1 ri < rj

0 otherwise

µij ∀k : i, j ∈ Lk

{
1 mi < mj

0 otherwise

ti, ri, yi and mi are non-negative integer variables. εij and
µij are integer variables constrained to {0, 1}.

us to impose a time limit on the solution search for a more
practical application. Should the solver deplete the time
budget without finding any feasible solution, we register the
current candidate II as infeasible. When the solver does find
a solution within the time limit, but was not able to prove
its optimality in respect to the objective function (Eq. (4) in
Fig. (3)), we accept that best-so-far solution. Alongside the

solution, the ILP solver returns a gap value, specifying how
close the feasible solution is to the yet-to-be-found optimal
solution, in terms of the ASAP objective function. When the
solver returns a solution without depleting any time limit,
the solution is optimal, both in terms of the II (it is the
minimal feasible II) and the ASAP schedule.

2.3 Bounds for the II
All approaches compared in this paper use the II as an

input parameter for the modulo scheduling problem. They
start with a lower bound value for the II and increment it
by one until a feasible schedule is found. The closer the
lower bound is to the smallest feasible II, the less scheduling
attempts are needed. Tight bounds therefore reduce the
expected overall scheduling runtime.

A trivial upper bound MaxII for the candidate IIs is
the length of any resource-constrained non-modulo schedule.
Candidate IIs larger than this value indicate that it would
actually be faster to execute this loop in a non-overlapping
manner.

A well-known lower bound MinII is defined as

MinII = min(ResMII,RecMII) (23)



that is, the minimum of the resource-constrained minimum
II and the recurrence-constrained minimum II. The former
is defined as

ResMII = max
k∈resource types

⌈
#ops using resource k

#available slots for k

⌉
(24)

This is an application of the pigeonhole principle: A candi-
date II cannot be feasible if the loop contains more opera-
tions using a limited resource k than can be assigned to the
available resource slots in every modulo slot 0 . . . (II − 1).

The recurrence-constrained minimum II is induced by the
backedges. For example, consider an operation in iteration
i that depends on the value of another operation computed
in iteration i − 1. For a candidate II to be feasible, the
precedence between the two operations must still hold even
with the overlapping implied by such an II. Formally, we
define

RecMII = max
b∈backedges

{min length(b)} (25)

Canis et al. [1] propose to enumerate all cycles in the
dataflow graph representing the loop’s body in order to cal-
culate the RecMII.

However, this can be simplified if the backedges are known
in advance: We use a non-modulo and non-resource-con-
strained SDC scheduler to quickly calculate optimal ASAP
and ALAP start times for the source and target operations
of each backedge b = i → j. Its minimum length can then
be determined as

min length(b) = ASAP(i) +Di −ALAP(j) (26)

The ASAP/ALAP scheduler takes the same compiler-specific
constraints as the modulo schedulers into account, resulting
in a more realistic lower bound for the II.

Note that both approaches (Canis’ and ours) actually un-
derestimate the RecMII somewhat. This is due to them
considering each backedge individually. However, due to
interactions between the dependency cycles formed by the
backedges, it might not be possible to schedule them all at
their minimal total length (sum of edge lengths). This inac-
curacy (which we will address in future work) does not af-
fect the solution quality of our approach, it may just induce
futile solver iterations attempting to reach an unreachable
minimum II.

Also, we currently consider all backedges to express loop-
carried dependencies to the immediately preceding iteration,
leading to conservatively larger IIs. A better dependency
analysis (also the subject of future work) will be able to
accurately discover longer dependency distances, and thus
allow for smaller II (as the dependency will be fulfilled over
multiple loop iterations).

3. EXPERIMENTAL EVALUATION
We now evaluate the Moovac and Modulo SDC schedulers,

implemented as presented in this work, on a large number
of benchmarks from the CHStone [8] and MachSuite [16]
collections.

In order to assess the solution speed of the Moovac sched-
uler in comparison to prior mathematical formulations, we
also implemented Eichenberger’s modulo scheduling approach

Table 4: Resource limits

Resource type Available instances

Memory Load/Store 1 each
Integer Div 8
Integer other ∞
FP Add/Sub/Mul 4 each
FP other 2 each

(denoted as “EB” in the discussion below) as a representa-
tive of the traditional time-indexed formulations. It is de-
fined by Equations (1), (2), (5) and (20) in [7]. We addded
the same cycle time- and relative timing constraints and ob-
jective function as used in the other schedulers.

3.1 Test setup
We implemented all schedulers in the Nymble HLS com-

piler [10]. Nymble is based on the LLVM framework [12],
version 3.31, and uses the framework’s analyses and optimi-
sations.

All function calls in the benchmark programs are inlined
exhaustively. The resulting modules are optimised with
LLVM’s preset -O2, but without performing loop unrolling.

The generated schedules were verified by RTL simulation
of the accelerator modules generated by Nymble.

The scheduling approaches were run on a server system
with Intel Xeon E5-2667 v2 processors operating at 3.3 GHz,
and 256 GB RAM. We used CPLEX 12.6.3 [4] as (I)LP
solver for all schedulers. CPLEX was configured to run in
its single-thread mode.

The schedulers operated according to the resource limits
in Table 4.

3.2 Results
We present the scheduling results for the benchmark pro-

grams in Table 5. In our experiments, we used a baseline
time budget of 5 minutes, and an extended budget of 60
minutes to assess whether allowing more runtime improves
the overall scheduling quality. The time budgets were used
to limit the search for a feasible schedule for a single candi-
date II, including the time to construct the respective linear
programs via the CPLEX API.

For each test case, we list the number of loops it contains,
as well as the average number of operations, resource-limited
operations, and precedence edges contained in these loops.
We summarise the scheduling attempts with the different
approaches by counting the number of loops for which a
valid modulo schedule was found. For these loops, we count
the graphs that could be scheduled with the candidate II
achieving the lower bound (column “II = MinII”), and the
graphs that could be scheduled with an II strictly less than
the trivial upper bound (column “II < MaxII”). The latter
two columns are independent and do not necessarily add up
to the overall number of feasible schedules. Also, note that
MinII and MaxII may be equal. The column “timeout”
gives the number of scheduling attempts that were canceled
because the time budget was depleted for a candidate II. We
prefix the number of timeouts with a star for each loop for
which a feasible solution was found, but the solver was un-
able to prove its optimality. To characterise the effort needed

1A port to the most recent version 3.8 is currently underway.



for scheduling, we present the accumulated time required for
all scheduling attempts. In the remaining columns, we com-
pare the IIs found by Moovac against the results obtained
with Modulo SDC and EB, and count the number of graphs
for which either approach found the shortest II.

As an example, we interpret the 5 minute budget results
for CHStone/adpcm: The test program contains 30 loops
that have on average 94 operations, 9 resource-limited oper-
ations and 317 precedence edges.

Moovac and Modulo SDC are able to find a feasible mod-
ulo schedule for all 30 loops, whereas EB only does so for
28 loops. For 28 of the 30 loops, these schedules achieve
the lower bound MinII for the respective loop. However,
many loops in this example have MinII = MaxII. Thus,
a feasible II lower than MaxII exists only for 9 of the 30
loops. Conversely, this means that 21 of the 30 loops are not
amenable to loop pipelining at all. Scheduling the 30 loops
took a total of 256 minutes with Moovac, 232 minutes with
Modulo SDC and 408 minutes with EB. These total times
include attempts in which the 5 minute time budget would
be exceeded for a candidate II. In this case, Moovac exceeded
its allocated budget 51 times, whereas Modulo SDC only did
so 45 times, and EB hit the limit 81 times. For two loops,
the ILP solver found a feasible, but possibly non-optimal
solution for the linear program generated by Moovac within
the time limit. For one loop each, Moovac and Modulo SDC
found a schedule for a smaller II than the other approach.
The table shows that Moovac finds schedules with a shorter
II than EB for 2 loops. In this particular case, these two
loops are the ones for which EB does not find any valid
modulo schedule at all within the time budget. For the re-
maining 28 loops, all schedulers where able to schedule the
loop with the same II.

3.2.1 Moovac vs. Modulo SDC
The results show that it is possible to find modulo sched-

ules for almost all loops in 22 typical HLS input programs
in just over 8 hours when using the 5 minute time limit per
scheduling attempt. Both approaches encountered at least
two loops each where they struggled to find a solution even
for the trivial MaxII. In terms of the general applicabil-
ity of modulo scheduling to HLS kernels, 85 % of loops are
scheduled with the lower bound II, and roughly a half of the
loops are in principle amenable to loop pipelining, as they
are scheduled with an II < MaxII.
Our study is the first to confirm that the state-of-the-art
Modulo SDC heuristic is actually finding optimal schedules
for the majority of loops. However, we also observed that
Moovac, despite its ability to find provably optimal IIs, is
surprisingly fast: It schedules the 200+ smallest loops (with
less than 125 operations) in under 3 minutes. A key bene-
fit of the integrated problem formulation is Moovac’s ability
to actually prove the infeasibility of the ILP constructed
for a scheduling attempt, whereas the Modulo SDC sched-
uler might get stuck without ever finding a solution, indi-
cated here by the number of loops that encountered a time-
out. Among the remaining 22 larger loops, we discover a
few loops (in CHStone/adpcm and MachSuite/aes) where the
scheduling problems apparently become too complex to be
solved by the ILP solver in the given time budget. Here,
the Modulo SDC approach is faster and better, as it finds a
solution for a smaller II than the Moovac scheduler.
These findings lead us to propose a synergistic scheduling ap-

proach, where we run both schedulers in parallel on each loop,
and accept the first feasible solution from either Moovac or
the Modulo SDC scheduler. With this approach, we are able
to schedule all loops in 429 minutes, in comparison to 489
minutes when using only Moovac and 753 minutes when us-
ing Modulo SDC alone, showing that the strengths of both
approaches complement each other.
In these experiments, Moovac is approximately 1.5x times
faster than Modulo SDC, but computing similar results.
Furthermore, given sufficient time, Moovac finds the opti-
mal solution. When combining Moovac with Modulo SDC,
the scheduling time is reduced by an additional 15 %. Please
note that the initially published version of Modulo SDC did
not use a time limit, but imposed a limit on the number of
backtracking steps before increasing the candidate II. How-
ever, our early experiments showed that this mechanism pre-
vented Modulo SDC from finding solutions for large graphs
in CHStone, as the original experimental evaluation of Mod-
ulo SDC used smaller graphs than those in our benchmarks.
For a fair comparison, we run both algorithms with the same
time limit for each candidate II instead.

Compared with the state-of-the-art Modulo SDC approach,
Moovac not only computes optimal results, but is also sur-
prisingly competitive with regard to its execution time (which
can be reduced even further, see Section 4).

3.2.2 Moovac vs. Eichenberger’s formulation
A comprehensive evaluation of Moovac necessitates a com-

parison with another optimal approach. EB (also ILP-based)
is such a formulation. While it was not designed for the re-
quirements of HLS modulo scheduling, e.g. handling large
numbers of resource-unlimited operations and operator chain-
ing, our experimental results show that it is actually capable
of finding valid modulo schedules for the majority of loops
of our benchmark programs in a HLS context. In Mach-
Suite/aes, it is even faster than both Moovac and Modulo
SDC. However, overall, the other approaches require less
time for scheduling, indicated by the many timeouts for EB
in the “large loop” category, and the accumulated scheduling
time for the “small loop” category, i.e. 3 minutes for Moovac
compared to 5 minutes for EB.

3.2.3 Extended time budget
The results for the 60 minute time budget show that Mod-

ulo SDC and, even more clearly, EB benefit from the ex-
tra time: Beyond the reduced number of timeouts overall,
Modulo SDC and EB now find shorter IIs than Moovac for
loops in CHStone/adpcm, CHStone/aes and MachSuite/aes.
EB completes the latter in less than half time of the other
approaches. But even with the increased budget, Moovac
schedules the entire benchmark suite in the shortest run
time.

4. CONCLUSION AND FUTURE WORK
This paper proposed Moovac, a novel, overlap-variable

based ILP formulation of the high-level synthesis modulo
scheduling problem.

While Moovac can be used to assess the performance of
modulo scheduling heuristics like Modulo SDC, we showed
in this paper that it can also be used as an approach in it-
self. Moovac was able to find the optimal solutions for most
of the loops in only a matter of minutes, often scheduling



Table 5: Scheduling results

Average
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Time budget: 5 min

CHStone
adpcm 30 94 9 317 30 28 9 ?

?51 256 30 28 9 45 232 28 28 7 81 408 1 28 1 2 28 0
aes 24 177 27 1327 22 19 12 ?16 82 22 19 12 21 106 22 19 12 15 89 0 24 0 0 24 0
blowfish 1 784 107 9600 1 0 1 ?8 41 0 0 0 14 71 0 0 0 14 72 1 0 0 1 0 0
dfdiv 2 60 0 198 2 2 0 0 < 1s 2 2 0 0 < 1s 2 2 0 0 < 1s 0 2 0 0 2 0
dfsin 3 935 23 57465 3 2 1 0 3 3 2 1 5 27 2 2 0 31 156 1 2 0 1 2 0
gsm 15 81 4 329 15 13 6 0 < 1s 15 13 6 1 6 15 13 6 0 2 0 15 0 0 15 0
mips 1 1124 65 40796 1 0 1 ?2 11 1 0 1 2 14 0 0 0 21 109 1 0 0 1 0 0
motion 51 69 5 217 51 51 34 0 < 1s 51 51 34 0 < 1s 51 51 34 0 1 0 51 0 0 51 0
sha 25 87 3 287 25 18 7 0 3 25 18 7 14 71 25 18 7 0 10 1 24 0 0 25 0

MachSuite
aes 16 84 13 342 16 13 15 ?

?19 96 16 13 16 20 101 15 13 15 15 84 0 15 1 1 15 0
bfs bulk 3 77 5 230 3 2 2 0 < 1s 3 2 2 2 11 3 2 2 0 1 0 3 0 0 3 0
bfs queue 2 132 9 520 2 0 1 0 1 2 0 1 7 36 2 0 1 0 1 0 2 0 0 2 0
gemm blocked 5 45 2 115 5 5 2 0 < 1s 5 5 2 0 < 1s 5 5 2 0 < 1s 0 5 0 0 5 0
gemm ncubed 3 49 2 129 3 3 2 0 < 1s 3 3 2 0 < 1s 3 3 2 0 < 1s 0 3 0 0 3 0
kmp 4 76 4 323 4 3 1 0 < 1s 4 3 1 0 < 1s 4 3 1 0 1 0 4 0 0 4 0
md knn 2 124 22 312 2 1 2 0 2 2 1 2 8 41 2 1 2 0 5 1 1 0 0 2 0
nw 6 81 4 372 6 4 3 0 1 6 4 3 5 26 6 4 3 0 1 0 6 0 0 6 0
sort merge 8 57 3 167 8 7 3 0 < 1s 8 7 3 0 < 1s 8 7 3 0 < 1s 0 8 0 0 8 0
sort radix 15 49 3 131 15 14 7 0 < 1s 15 14 7 0 < 1s 15 14 7 0 1 0 15 0 0 15 0
spmv ellpack 2 65 6 167 2 0 2 0 < 1s 2 0 2 2 11 2 0 2 0 1 0 2 0 0 2 0
stencil2d 4 57 2 144 4 4 2 0 < 1s 4 4 2 0 < 1s 4 4 2 0 < 1s 0 4 0 0 4 0
stencil3d 3 67 4 263 3 2 1 0 1 3 2 1 2 11 3 2 1 0 1 0 3 0 0 3 0

Total
all 225 106 9 1356 223 191 114 96 489 222 191 114 148 753 217 191 109 177 932 6 217 2 6 219 0
< 125 ops 203 64 4 196 203 187 96 0 3 203 187 96 26 131 203 187 96 0 5 1 202 0 0 203 0
≥ 125 ops 22 495 54 12058 20 4 18 96 486 19 4 18 122 623 14 4 13 177 927 5 15 2 6 16 0

Time budget: 60 min

CHStone
adpcm 30 94 9 317 30 28 9 ?

?47 2821 30 28 9 43 2608 29 28 8 ?41 2461 1 28 1 1 28 1
aes 24 177 27 1327 22 19 12 ?16 962 24 19 14 10 648 22 19 12 15 915 0 22 2 0 24 0
blowfish 1 784 107 9600 1 0 1 ?8 481 0 0 0 14 841 0 0 0 14 844 1 0 0 1 0 0
dfdiv 2 60 0 198 2 2 0 0 < 1s 2 2 0 0 < 1s 2 2 0 0 < 1s 0 2 0 0 2 0
dfsin 3 935 23 57465 3 2 1 0 4 3 2 1 1 88 2 2 0 31 1861 0 3 0 1 2 0
gsm 15 81 4 329 15 13 6 0 < 1s 15 13 6 1 61 15 13 6 0 2 0 15 0 0 15 0
mips 1 1124 65 40796 1 0 1 ?2 121 1 0 1 2 124 0 0 0 21 1263 1 0 0 1 0 0
motion 51 69 5 217 51 51 34 0 < 1s 51 51 34 0 < 1s 51 51 34 0 1 0 51 0 0 51 0
sha 25 87 3 287 25 18 7 0 3 25 18 7 14 841 25 18 7 0 10 1 24 0 0 25 0

MachSuite
aes 16 84 13 342 16 13 15 ?

?19 1141 16 13 16 20 1201 16 13 16 ?8 529 0 15 1 0 15 1
bfs bulk 3 77 5 230 3 2 2 0 < 1s 3 2 2 2 121 3 2 2 0 1 0 3 0 0 3 0
bfs queue 2 132 9 520 2 0 1 0 1 2 0 1 7 421 2 0 1 0 1 0 2 0 0 2 0
gemm blocked 5 45 2 115 5 5 2 0 < 1s 5 5 2 0 < 1s 5 5 2 0 < 1s 0 5 0 0 5 0
gemm ncubed 3 49 2 129 3 3 2 0 < 1s 3 3 2 0 < 1s 3 3 2 0 < 1s 0 3 0 0 3 0
kmp 4 76 4 323 4 3 1 0 < 1s 4 3 1 0 < 1s 4 3 1 0 1 0 4 0 0 4 0
md knn 2 124 22 312 2 1 2 0 2 2 1 2 8 481 2 1 2 0 5 1 1 0 0 2 0
nw 6 81 4 372 6 4 3 0 1 6 4 3 5 301 6 4 3 0 1 0 6 0 0 6 0
sort merge 8 57 3 167 8 7 3 0 < 1s 8 7 3 0 < 1s 8 7 3 0 < 1s 0 8 0 0 8 0
sort radix 15 49 3 131 15 14 7 0 < 1s 15 14 7 0 < 1s 15 14 7 0 1 0 15 0 0 15 0
spmv ellpack 2 65 6 167 2 0 2 0 < 1s 2 0 2 2 121 2 0 2 0 1 0 2 0 0 2 0
stencil2d 4 57 2 144 4 4 2 0 < 1s 4 4 2 0 < 1s 4 4 2 0 < 1s 0 4 0 0 4 0
stencil3d 3 67 4 263 3 2 1 0 1 3 2 1 2 121 3 2 1 0 1 0 3 0 0 3 0

Total
all 225 106 9 1356 223 191 114 92 5530 224 191 116 131 7969 219 191 111 130 7885 5 216 4 4 219 2
< 125 ops 203 64 4 196 203 187 96 0 3 203 187 96 26 1561 203 187 96 0 5 1 202 0 0 203 0
≥ 125 ops 22 495 54 12058 20 4 18 92 5527 21 4 20 105 6408 16 4 15 130 7881 4 14 4 4 16 2

?/?? = accepted one/two non-optimal schedule(s) after time budget was depleted



faster than both a state-of-the art heuristic and an estab-
lished formulation.

Moreover, our extensive experimental evaluation showed
that typical HLS kernels exhibit opportunities for loop pipe-
lining, and modulo scheduling can reasonably be applied to
a large range of loops. However, our evaluation discovered
that there exist problems of very large sizes that can be a
challenge for Moovac and its underlying ILP solver. For now,
combining Moovac and the Modulo SDC heuristic to oper-
ate synergistically leads to an overall scheduling time faster
than each individual approach. In the future, we will work
on reducing the number of decision variables in the ILP by
only scheduling the resource-limited operations and other es-
sential operations, such as the endpoints of backedges. Sub-
graphs consisting only of resource-unlimited operations will
then be replaced by precedence edges with a latency equal
to the longest-path latency of the subgraph. After a feasible
schedule is found for the reduced problem, all remaining op-
erations can be fit in between the scheduled resource-limited
operations by means of a simple ASAP technique.
We also envision to render the incremental search for the
smallest feasible II unnecessary by minimising the II within
the ILP. Again, we plan to use techniques from the opera-
tions research community to allow for efficient solving of the
enhanced formulation.
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