
C-based Synthesis of Area-Efficient Accelerators for
OpenMP Worksharing Loops

Lukas Sommer Julian Oppermann Andreas Koch
Embedded Systems and Applications Group (ESA)

Technische Universität Darmstadt
{sommer, oppermann, koch}@esa.tu-darmstadt.de

Keywords
Heterogeneous computing; High-level synthesis; OpenMP;
FPGA

1. INTRODUCTION
Heterogeneous computing is a promising approach to fill

the gap between CPU performance and the increasing de-
mand for computer performance. Next to GPUs, FPGA-
based application-specific hardware accelerators have been
established as an energy-efficient alternative.

To make FPGA-based accelerators available to a broad
range of application developers, high-level synthesis tools
are used to map software algorithm descriptions to hardware
designs. Recently, many high-level synthesis tools started to
exploit thread-level parallelism to further speedup computa-
tion on the accelerator, and to better utilize the increasing
amount of hardware resources available on today’s FPGAs.

For this work we have extended the Nymble hardware/
software co-compilation framework [1] to automatically gen-
erate highly area-efficient FPGA-based multi-threaded hard-
ware accelerators from OpenMP worksharing loops.

2. APPROACH
Starting from an OpenMP-annotated ANSI C input file,

our tool Nymble-OMP maps the body of a worksharing loop
to a hardware accelerator. At the top level, the generated
accelerator consists of multiple instances of each hardware
computing unit (analogous to a“core” in a CPU). Each com-
puting unit comprises a datapath and the associated hard-
ware controller.

In contrast to our prior work, the datapaths generated
by Nymble-OMP provide access to external memories us-
ing a cache- and memory-architecture which is fully compli-
ant with the OpenMP relaxed-consistency, shared memory
model. Unlike our previous work, execution on the com-
puting units is subject to a novel, multithreaded execution
model, featuring dynamic thread interleaving.

The interfacing between the software running on the CPU
and the hardware accelerator is automatically created by
Nymble-OMP.

3. EXECUTION MODEL
Key to a high area-efficiency is a high utilization of hard-

ware resources employed in the datapath, and an efficient
handling of stalls encountered during the execution of vari-
able latency operations (VLO), e.g., cached memory ac-
cesses.

In order to hide the latencies of these VLOs, our execution
model temporally interleaves the execution of multiple inde-
pendent threads on the same hardware, similar to a classic
barrel processor. In case of a stall, a computing unit switches
to execute another available hardware thread, while the pro-
cessing of the VLO for the stalled thread continues in the
background. Instead of idling, as in a single-threaded sce-
nario, the datapath is now kept busy.

After the stall has been resolved, the stalled thread be-
comes available again and resumes execution at the next
thread switch. The thread scheduler and context switching
mechanisms themselves do not cause any additional latency
for the executed thread.

4. RESULTS
We evaluate our approach using a benchmark comprising

a set of OpenMP-parallelized matrix algorithms. The re-
sulting hardware accelerators contain operators from a cus-
tom module library to perform memory accesses and typical
arithmetic operations on integer and floating-point values.

Synthesis results show that the area overhead incurred
for the generation of 4-way multithreaded compute units
(e.g., for thread context storage in the datapath and thread
switching logic in the controller), is as low as 5% per com-
puting unit compared to single-threaded accelerators. This
is much less than prior work, which often instantiates n sep-
arate compute units for n-threaded execution, requiring (at
least) n-times the hardware area.

Comparing our implementation to single-threaded exe-
cution on a single computing unit, our experiments have
at least doubled the efficiency (as throughput-per-hardware
area). The best case we have observed with the current pro-
totype increases throughput by a factor of 6 when interleav-
ing the execution of 4 threads each on two computing units
(“2C/8T”, in CPU terms), with a total throughput-per-area
efficiency of 2.8.

As the multithreading area overhead is only dependent
on the number of operations in a datapath, but not on their
individual size, we expect area efficiency to improve even
further for datapaths with larger operators (e.g., floating-
point).

5. REFERENCES
[1] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch.

Hardware/software co-compilation with the Nymble
system. In 2013 8th International Workshop on
Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), pages 1–8, July 2013.


