
A Novel Processor Architecture for McEliece Cryptosystem and FPGA Platforms

Abdulhadi Shoufan∗, Thorsten Wink‡, Gregor Molter†, Sorin Huss† and Falko Strentzke§
∗Center for Advanced Security Research Darmstadt CASED, Germany

Email: shoufan@cased.de
†Intergrated Circuits and Systems Labs, TU-Darmstadt, Germany

Email: {molter,huss}@iss.tu-darmstadt.de
‡Embedded Systems and Applications, TU-Darmstadt, Germany

Email: wink@esa.informatik.tu-darmstadt.de
§FlexSecure GmbH, Germany
Email: strenzke@flexsecure.de

Abstract

McEliece scheme represents a code-based public-key
cryptosystem. So far, this cryptosystem was not employed
because of efficiency questions regarding performance and
communication overhead. This paper presents a novel pro-
cessor architecture as a high-performance platform to exe-
cute key generation, encryption and decryption according to
this cryptosystem. A prototype of this processor is realized on
Virtex-5 FPGA and tested via a software API. A comparison
with a similar software solution highlights the performance
advantage of the proposed hardware solution.

Keywords: Cryptography hardware and implementa-
tion, Cryptoprocessor, McEliece cryptosystem, Goppa code,
FPGA.

1. Introduction

Current public-key cryptosystems rely on the computa-
tional complexity of different mathematical problems such
as the factoring of large primes in RSA [1] or the calculation
of the discrete logarithm in ECC [2]. These algorithms are
assumed to become insecure in the era of quantum com-
puters [3]. Therefore, several solutions for the post-quantum
cryptography have been proposed in literature such as hash-
based, code-based, lattice-based, and multivariate-quadratic-
equation-based cryptosystems, see [4]–[7]. Generally, these
solutions suffer from efficiency problems regarding execu-
tion time and data and key sizes. To tackle the performance
problems in hash-based and multivariate-quadratic-equation
based approaches three hardware architectures have been
proposed recently, see [8] and [9]. Apart from the solution
in [10], which addresses digital signatures, no hardware
solutions for code-based encryption/decryption are known,
so far. This paper closes this gap by presenting a novel
hardware architecture for the McEliece cryptosystem, which
was proposed 1978 by R. McEliece [5] as one of the first
public key cryptography systems. The proposed architecture,

which supports key generation, encryption, and decryption,
is implemented on a Virtex-5 platform and tested through a
dedicated API.

The remainder of the paper is structured as follows.
Section 2 provides an introduction into the McEliece cryp-
tosystem. Section 3 provides the high-level architecture of
the proposed cryptoprocessor. The next three sections detail
the Key Generator, the Encryptor and the Decryptor as the
main components of the cryptoprocessor. Section 7 provides
some implementation aspects and the results. Section 8
concludes the paper.

2. McEliece Cryptosystem (MECS)

MECS is a highly complex system which relies on sophis-
ticated Goppa code and composed finite field arithmetic. A
thorough treatment of this system goes beyond the focus of
this paper. This section provides an algorithmic description
of MECS in a way that facilitates understanding the imple-
mentation aspects illustrated in following sections. Neither
formal notations nor mathematical justifications come to the
fore. Interested readers are referred to special literature on
coding theory, e.g., [11], and cryptography, e.g., [12].

The relation between MECS and Goppa code [13] is illus-
trated as follows. Generally, a coding system includes three
main functions: the generation of the code characteristics
such as the generator and the control matrix, the encoding,
and the decoding. Similarly, a public-key cryptosystem in-
cludes three operations: the generation of a pair of public key
and private key, the encryption and the decryption. MECS
uses the Goppa code characteristics as public and private
keys, the Goppa encoding for encryption, and the Goppa
decoding for decryption.

An essential aspect of code-based cryptography relates to
the selection of the code parameters, as these parameters
directly affect the security of the cryptosystem. In the case
of MECS two parameters are relevant: the dimension of the
code subspace m and the maximal number of correctable

X =

⎡⎢⎢⎣
gt 0 0 ⋅ ⋅ ⋅ 0
gt−1 gt 0 ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
g1 g2 g3 ⋅ ⋅ ⋅ gt

⎤⎥⎥⎦
︸ ︷︷ ︸

t×t matrix

, Y =

⎡⎢⎢⎢⎣
1 1 ⋅ ⋅ ⋅ 1
�0 �1 ⋅ ⋅ ⋅ �n−1

...
...

. . .
...

�t−1
0 �t−1

1 ⋅ ⋅ ⋅ �t−1
n−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

t×n matrix

, Z =

⎡⎢⎢⎢⎣
g(�0)

−1 0 ⋅ ⋅ ⋅ 0
0 g(�1)

−1 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ g(�n−1)

−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

n×n matrix

Figure 1. Auxiliary Matrices for the Control Matrix H

errors t. Bernstein et. al. [14] showed that the selection of
m = 11 and t = 27 ensures a security level of 80-bit under
consideration of the strongest attack against MECS known
today. For the proposed architecture we use m = 11 and
t = 50, which guarantees considerably higher security level.
An overview of all parameters is given in Table 1.

Similarly to other cryptosystems, a plain implementation
of MECS is attackable by adaptive chosen-ciphertext attacks
(CCA2). Therefore, additional steps are required during
encryption and decryption to impede these attacks. A good
overview of CCA2-safe conversions can be found in [15].

2.1. Key Generation

Algorithm 1 depicts the key generation in MECS. Based
on the domain parameters m and t the code length n
and its dimension k are determined and the basic finite
field GF (2m) is constructed. The first step in the key
generation is to generate a monic, irreducible polynomial
g(x) = xt+ gt−1x

t−1+ ⋅ ⋅ ⋅+ g1x+ g0, which is denoted as
Goppa polynomial. All coefficients of g(x) are elements of
GF (2m). This polynomial is part of the private key which
is kept secret.

Based on g(x) and the field GF (2m) the control matrix
H is created. This step is performed using three auxiliary

Algorithm 1 MECS Key Generation
Require: McEliece domain parameters m and t.

Let n = 2m and k = n−mt.
Elements of GF (2m) = {�0, �1, . . . , �n−1}.

Ensure: The public key RT and the private key (P, g(x)).
1: Create a random monic, irreducible polynomial g(x)

with deg (g) = t and x ∈ GF (2m).
2: Create the auxiliary matrices X, Y, and Z.
3: Calculate the t× n control matrix H = XYZ.
4: Create a random n× n permutation matrix P.
5: Calculate the permutated control matrix H̃ = HPT .
6: Transform the t × n matrix H̃ over GF (2m) into a
mt× n matrix H2 over GF (2).

7: Bring H2 into the systematic form G̃ = [Imt∣R].
8: The expanded public key is the k×n matrix over GF (2)

G =
[
RT ∣Ik

]
.

9: return RT and (P, g(x))

matrices X, Y, and Z, as depicted in Fig. 1. Note that
g(�i)

−1 indicates to the inverse of g(�i) in GF (2m), where
g(�i) results from the evaluation of g(x) for the element �i.

Following, the control matrix is permuted using a random
matrix P , which is also kept secret as a part of the private
key. Although the resulting matrix H̃ can now be used as
a public key, this is inefficient because of the huge length
of this key. The next steps, therefore, aim at producing a
shorter public key. First H̃ is expanded to the binary form
H2, which is converted into a systematic form G̃. Lastly,
G̃ is transposed into G and its part RT is returned as the
public key, which has a length of 550 ⋅ 1498 bit instead of
1498 ⋅ 2048 in the case of H̃.

2.2. Encryption

Algorithm 2 depicts the encryption procedure in MECS.
hash (x) describes a hash-function with output length l. Note
that most steps of this algorithm serves the security against
CCA2 based on a conversion similar to the Kobara-Imai
scheme [15]. Without this conversion the ciphertext would
be constructed simply as z = mG⊕ e.

2.3. Decryption

Algorithm 3 presents the decryption process in MECS,
which is clearly more complex than encryption. For efficient
error correction, the Patterson Algorithm [16] is employed,
which is included in Algorithm 3 from step 3 to 8. It

Algorithm 2 MECS Encryption
Require: l-bit plaintext m; public key RT .
Ensure: (n+ 2l)-bit ciphertext z.

1: Generate a random n-bit error vector e with t bits having
the value 1.

2: Expand the public key RT to G =
[
RT ∣Ik

]
.

3: Generate a random (k − l)-bit vector r1 and a random
l-bit vector r2.

4: Create CCA2-safe plaintext m̃ = r1 ∥ hash (m ∥ r2).
5: Encode m̃ into z′ = m̃G.
6: Imprint t errors to z′ and add CCA2-safe data extension
z = (z′ ⊕ e) ∥ (hash (r1)⊕m) ∥ (hash (e)⊕ r2).

7: return z.

Algorithm 3 MECS Decryption
Require: (n+ 2l)-bit ciphertext z; private key (P, g(x)).
Ensure: l-bit plaintext m if CCA2 test successful; otherwise

an error message.
1: Split z to (z1︸︷︷︸

n bits

, z2︸︷︷︸
l bits

, z3︸︷︷︸
l bits

).

2: Permute z1: z′ = z1P.
3: Determine the syndrome polynomial
Sz′(x) = z′HT (xt−1, . . . , x, 1)T .

4: Invert S−1z′ (x).

5: Let �(x) =
√
S−1z′ (x) + x.

6: Find two polynomials a(x) and b(x), so that b(x)�(x) =
a(x) mod (g(x)) and deg (a) ⩽ ⌊ t2⌋ hold.

7: Determine the error locator polynomial
�(x) = a2(x) + xb(x)2.

8: Reconstruct the error vector
e′ = (�(�0), �(�1), . . . , �(�n−1))⊕ (1, . . . , 1).

9: Permute the error vector e = e′PT .
10: Reconstruct the CCA2-safe plaintext m′ = z1 ⊕ e.
11: Split m′ to (r︸︷︷︸

k−l bits

, ℎ︸︷︷︸
l bits

, m′′︸︷︷︸
n−k bits

).

12: Reconstruct plaintext candidate m = z2 ⊕ hash (r).
13: Determine check value ℎ′ = hash (m ∥ hash (e)⊕ z3).
14: if ℎ′ ≡ ℎ then
15: return m
16: end if
17: return “Error”

creates the error locator polynomial �(x). By evaluating this
polynomial for all the elements �i of GF (2m), all errors
are revealed. If an error occurred at the i-th position of z′,
�(�i) is zero. Then, the recreated error vector is reapplied
to the CCA2-safe ciphertext, decrypting it to the CCA2-safe
plaintext. Afterwards, the CCA2-related padding is checked
and removed. If the CCA2-safe padding data is valid, the
plaintext is returned. Otherwise an error is signaled. Note
that the transpose control matrix HT is assumed to be saved
after key generation. Alternatively, HT can be determined
based on g(x), P , and the GF (2m) elements.

Table 1 gives an overview of the most important pa-
rameters and data sizes of MECS as supported by our
cryptoprocessor.

3. High-Level-Architecture

Fig. 2 depicts the overall architecture of the proposed
cryptoprocessor, which consists of three main units: Key
Generator, Encryptor and Decryptor. The cryptoprocessor
operates as a coprocessor in a server environment and com-
municates with the host over a PCI bridge. The host writes a
command into the command register of the cryptoprocessor
and the relating data into the In FIFO. The Master Controller

decodes this command and activates the unit responsible
for its execution. Output data are written into the Out
FIFO. The status register contains auxiliary information for
exception cases such as the reception of erroneous opcode
or a failed CCA2 test. The data path on this level has
a word width of 64 bits which is enforced by the local
bus on the hardware card. While the command and status
registers are accessed as memory-mapped registers, the data
transfer into and from FIFOs is accomplished via DMA for
performance reasons. The cryptoprocessor executes mainly
three commands relating to McEliece cryptosystem. These
commands are summarized in Table 2. The data sizes for
plain and ciphertexts in this table correspond to the CCA2
version implemented in this work. Note that in a public key
cryptosystem for encryption and decryption, the public key
generated by the server is never required by this server for
further cryptographic operations. Thus, the cryptoprocessor
returns the public key RT (S) directly after generation. For
encryption, in addition to the plaintext the server receives
the public key of the client RT (C) and forwards it to the
cryptoprocessor as a parameter. In the case of decryption,
the cryptoprocessor uses the server private key (g(x), P),
which is generated and saved on the FPGA, to decrypt a
ciphertext encrypted by the client using the server public
key.

Note that all data sizes in Table 2 are given in terms of
the word width of 64 bit. Recall that RT is a 550 × 1498
binary matrix, which is not a multiple of 64 bit. To save
memory and execution time, RT is arranged as illustrated
in Fig. 3. RT is transferred column-wise between host and
FPGA. This corresponds to the way this matrix is produced
or consumed by the FPGA, as will be seen later. Note
that in the case of encryption RT (C) is not required to be
transferred completely to start encryption. Thus, transfer and
encryption proceed in parallel.

Besides its mathematical complexity, the McEliece cryp-
tosystem raises implementation difficulties as it operates on
three different fields simultaneously:

1) The Goppa field GF((211)50) with Goppa polynomial
g(x) as the generator polynomial.

Parameter Meaning Size (Bit)
m Degree of the extension field 11
t Number of correctable errors 50
n Code length n = 2m 2048
k Code rank k = n−mt 1498
l Hash value of SHA-512 512
m Plaintext 512
z Ciphertext 3072
RT Public key 1498× 550
P Permutation matrix 2048× 11
g(x) Goppa polynomial 51× 11
H Control matrix (50× 11)× 2048

Table 1. Parameters of McEliece

Instruction Input Output

Generate
Key none Server public key RT (S):

(9⋅64)⋅1498 = 862, 848 bit

Encrypt

Plaintext:
8 ⋅ 64 = 512 bit,

Client public key RT (C):
(9⋅64)⋅1498 = 862, 848 bit

Ciphertext:
48 ⋅ 64 = 3072 bit

Decrypt Ciphertext:
48 ⋅ 64 = 3072 bit

Plaintext:
8 ⋅ 64 = 512 bit

Table 2. Cryptoprocessor Instruction Set

2) GF(211) with the polynomial p(x) = x11 + x2 + 1
specified in IEEE Standard Specification for Public-
Key Cryptography [17].

3) Binary field GF(2).
Because of place reasons, the following sections describe

the cryptoprocessor main modules on a high level of ab-
straction without detailing the underlying implementations
of cryptographic arithmetic. For details on that subject we
refer to [12].

4. Key Generator

Fig. 4 shows the Key Generator (KG) with three types of
blocks: functional units represented as squares, single-port
memories (SBRAM) represented as rectangles, and dual-port
memories (DBRAM) represented as rectangles with splitting
neck in the middle. Regardless of the 64-bit words of the
PRNG and OUT memory, the data path of the KG is of width
11 bit. Obviously, that does not mean that all functional units
of KG work on GF(211).

Another important point relates to memory sharing be-
tween the Key Generator and the Decryptor. Remember that
all the control matrix H, the permutation matrix P and
Goppa polynomial g(x) are required during decryption. Thus
the corresponding memories in Fig. 4 have all interfaces with

Figure 2. Overall Architecture of Proposed McEliece
Cryptoprocessor

Figure 3. Transfer Format of the Public Key RT

Figure 4. Key Generator

the Decryptor. These interfaces, however, are not depicted
in Fig. 4, for simplicity.

4.1. Pseudo Random Number Generator

For all random numbers in the key generation, encryption
and decryption a PRNG is used which is based on the hash
function SHA-512. Thus the generated random numbers are
all of 512-bit width. These numbers, however, are deliv-
ered to invoking modules in 64-bit words to avoid timing
problems. Initiated by a start seed S0 a random number
Ri = hash (Si) and a next seed Si+1 = Si + Ri + 1 are
determined.

4.2. g Generator and g Memory

This module generates a monic, irreducible polynomial
g(x) of order 50 in two steps. First, 50 11-bit random
numbers are generated, i.e. a total of 550 bits are required.
For this purpose, the PRNG is utilized to provide two
512-bit random numbers. Following, an irreducibility test
is started based on the IEEE Standard Specification for
Public-Key Cryptography [17]. The time needed to generate
g(x) depends on the generated random numbers and is
random, therefore. Extensive measurements have shown that
32 iterations are required at an average in order to obtain an

Figure 5. H Generator

irreducible polynomial. Irreducibility test operates on Goppa
field. This operation includes both polynomial squaring
and the determination of the greatest common divisor gcd.
While squaring in Goppa field is relatively straightforward,
determining the gcd is highly complex. For this purpose the
Extended Euclidean Algorithm (XGCD) is used. To save
g(x) a dedicated Block RAM on the Virtex-5 device is used,
whereas this selection is not mandatory and justified by the
availability of free BRAMs.

4.3. H Generator and H Memory

Generating the control matrix H is the most time-
consuming step in the key generation because of the huge
number of operations in Goppa field and in GF(2n). This
is detailed as follows:

1) Constructing the matrix Y: all the 2048 elements
�i, i ∈ {0, . . . , 2047} of the field GF(211) must be
generated. Furthermore, for each element �i all the
powers from �2

i to �49
i must be calculated.

2) Constructing the matrix Z: 2048 evaluations of the
Goppa polynomial and 2048 polynomial inversions in
GF(211) are required.

3) Calculating XY: 25 ⋅ 2048 ⋅ 50 = 2, 560, 000 modular
multiplications in GF(211) are required.

4) Calculating (XY)Z: 50 ⋅ 2048 = 102, 400 modular
multiplications in GF(211) are required.

Fig. 5 illustrates the general architecture of the H Gen-
erator, which operates as follows: To determine the product
XY we observe that this multiplication amounts to a partial
evaluation of Goppa polynomial. This point is illustrated
in Fig. 6.The element g1 + g2�0 + g3�

2
0, for instance, can

be seen as the evaluation of the polynomial g1+g2x+g3x2

for the value �0. Polynomial evaluation can be performed
efficiently using the Horner schemes which can be written
as follows for our example: g1 + g2�0 + g3�

2
0 = g1 +

�0(g2 + �0g3). XY is determined row-wise using a new
element of GF(211) for each row element of XY. The
GF(211) Generator, see Fig. 5, produces the field elements
sequentially one each clock cycle. Therefore, no storage of

these elements is required. Instead they are generated at
runtime when needed. The product (XY)Z is determined
column-wise starting from the lowest row of XY. Consider
the example shown in Fig. 7. At the beginning, the third row
of XY is multiplied by the first column of Z. That includes
the following steps:

1) g(�0) is calculated by multiplying g1 + g2�0 + g3�
2
0,

which is already available in H, by �0 and the
result is added to g0. The multiplication is performed
in GF(211) Mult(1) and the addition by the xor,
see Fig. 5.

2) g(�0) is inverted using GF(211) Inverse.
3) 1

g(�0)
is multiplied by g1+g2a0+g3a20 using GF(211)

Mult(2).
The memory H has a word width of 11 bit and a depth of
t ⋅ n = 50 ⋅ 2048. Thus, a 17-bit address bus is required. A
total of 32 Block RAMs in Virtex-5 are used to save H.

4.4. P Generator and P Memory

The private permutation matrix P has a size of 2048 ×
2048 bit. To save memory we don’t save entire rows or
columns. Instead, the position of the 1 in each row is saved.
By this means, P is established as a 2048 11-bit memory,
which is realized by one BRAM on Virtex-5. For an efficient
generation of P dual-port BRAM is used. First the BRAM is
initialized by the identity matrix through port A. Following,
the address of port A is incremented from 0 to 2047. For
each of these address values a random value for the address
of port B is generated and the content of the cells addressed
by A and B are exchanged.

4.5. H̃ Generator and H̃ Memory

H̃ results from H through permuting the elements of
each row according to the permutation matrix P, see Al-
gorithm 1. Thus, H̃ Generator mainly performs memory
access and control tasks. Understandably, H̃ Memory has
the same size and organization as H Memory. In contrast to
H Memory, which keeps the control matrix for decryption
purposes, H̃ Memory represents a temporary data container
for H̃, H2, G̃, and G, see Algorithm 1. The public key
RT is transferred to the host after generation and need not
to be saved permanently on hardware.

4.6. Gauss Systemizer

In order to reduce the size of the public key, Gauss
Systemizer (GS) applies the Gauss-Jordan algorithm to
convert H2 into the systematic form [Imt∣R], see step 7
in Algorithm 1. Note that step 6 in Algorithm 1 does not
cause any expense in our implementation since hardware
can interpret any element of H̃ as a binary vector, i.e. as

XY =

⎛⎝g3 0 0
g2 g3 0
g1 g2 g3

⎞⎠⎛⎝ 1 1 1
�0 �1 �2

�2
0 �2

1 �2
2

⎞⎠ =

⎛⎝ g3 g3 g3
g2 + g3�0 g2 + g3�1 g2 + g3�2

g1 + g2�0 + g3�
2
0 g1 + g2�1 + g3�

2
1 g1 + g2�2 + g3�

2
2

⎞⎠
Figure 6. Generation of the matrix H (Part 1)

H = (XY)Z

⎛⎝ g3 g3 g3
g2 + g3�0 g2 + g3�1 g2 + g3�2

g1 + g2�0 + g3�
2
0 g1 + g2�1 + g3�

2
1 g1 + g2�2 + g3�

2
2

⎞⎠
⎛⎜⎝

1
g(�0)

0 0

0 1
g(�1)

0

0 0 1
g(�2)

⎞⎟⎠
Figure 7. Generation of the matrix H (Part 2)

an element of H2. Therefore, operations performed by GS
amount to simple row permutation and XOR addition of two
rows. The Gauss Systemizer proceeds in two phases: First,
the front part of the matrix is converted into a triangular
matrix with 1’s on the diagonal. Then, this triangular matrix
is transformed into the identity matrix. To perform this task
efficiently, we used an approach based on systolic arrays
which is similar to the proposal in [18].

Systemizing the public key is the second most time-
consuming operation in the Key Generator. A special prob-
lem of this operation relates to its infeasibility, when the
first 550 columns of H̃ are linearly dependent. In this case,
a new permutation matrix P must be generated and H̃
must be regenerated. Our measurements showed that four
iterations are needed in average in order to complete the
matrix systemization successfully.

5. Encryptor

Fig. 8 depicts the architecture of the Encryptor schemat-
ically. While the continuous lines relates to the original
encryption algorithm, the dotted lines highlight the aug-
mented paths needed in the CCA2 variant as described in
Algorithm 2. The following description of the Encryptor
relates to the CCA2 variant. Note that only one SHA-512
module is used in the Encryptor. This module is replicated
in Fig. 8 for clarity. The PRNG was described in Section

Figure 8. Encoder Architecture

4.1. The e-Generator provides a random 2048-bit vector of
weight 50. For this purpose the vector is first initialized with
50 logical 1’s at predefined positions and then 2048 permu-
tations are executed in a similar way to the generation of
the P matrix. The dual-port temporary block RAM enables
executing different tasks in parallel. The most important
part of the Encryptor is the Encoder which performs the
actual coding: z′ = m̃G. This operation, however, is highly
efficient as it is realized using 64 2-AND gates and an XOR
tree. Two main processes control the Encryptor. The first
process is responsible for generating the random numbers r1,
r2 and e and for the interaction with the hash module. The
second process is responsible for the main functionalities.
This includes the read of the 512-bit plaintext m and its
storage in TEMP BRAM. Additionally, this process reads
the public key RT column-wise from the In FIFO and uses
it directly in the encoder without buffering.

6. Decryptor

Fig. 9 depicts the architecture of the Decryptor schemat-
ically. First the ciphertext z is read from the In FIFO
and buffered into the temporary memory TEMP BRAM.

Figure 9. Decryptor Architecture

Next z1 is permutated using the permutation matrix P. The
resulting vector z

′
is sent to the Decoder which determines

the e
′

by applying the Patterson Algorithm. This begins
with multiplying z

′
by the transposed control matrix HT to

determine the syndrome Sz′ . This multiplication is realized
by AND and XOR functions, as the z

′
is a binary vector.

Note that Sz′ is a polynomial of order 49 over GF(211).
Following, the syndrome is inverted by extended Euclidean
Algorithm XGCD. In a next step the square root of the
polynomial S−1

z′
(x) + x is determined. For this purpose

this polynomial is multiplied by a pre-constructed squar-
ing matrix Q−1 [12]. This matrix is established during
key generation for performance reasons. The root square
polynomial �(x) is then decomposed into two polynomials
a(x) and b(x), where b(x)�(x) = a(x) mod g(x), where
a(x) and b(x) have a degree of at most 25. a(x) and b(x)
are determined using the XGCD which proceeds until the
desired degree of a(x) and b(x) is reached. Then, the error
locator polynomial �(x) = a2(x) + xb2(x) is determined.
This operation is highly efficient in hardware as it amounts
mainly to squaring coefficients from GF(211) which is
realized by shift operations. The error vector e

′
is, then,

constructed by evaluating the locator polynomial �(x) for
all elements of GF(211). A bit in e

′
is set to 1, when

the evaluation of �(x) for the corresponding element of
GF(211) resulted in 0. For the evaluation of �(x) the Horner
scheme addressed previously is used. After getting e

′
the

Decryptor permutes it. Remember that the Encryptor uses a
permuted key, see step 5 of Algorithm 1. Upon obtaining e,
some simple calculations and hash operations are perfomed
to determine m and check its correctness against adaptive
chosen-ciphertext attacks. Only if this check succeeds, m is
written into the Out FIFO.

7. Implementation and Results

The presented cryptoprocessor was implemented on the
FPGA platform ADM-XRC-5T1 from Alpha Data Inc. [19].
This PCI card is equipped by the device LX110T of the
Virtex-5 family from Xilinx Inc. [20]. Table 3 depicts the
resource usage on the FPGA for the entire cryptoprocessor
in terms of utilized slices and block RAMs. Despite the high
usage of FPGA slices, which shows the complexity of the
McEliece cryptosystem, this table illustrates the feasibility
of the implementation of this system on today’s FPGAs.
For performance measurement we developed a software
API based on the software development kit (SDK) from

Available Utilized %
Slices 17,280 14,537 84
36 Kbit BRAMs 148 75 50

Table 3. Device Utilisation

FPGA Software Acceleration
Factor

Key Generation 143 ms 5,500 ms 38
Encryption 0.5 ms 10 ms 20
Decryption 1.4 ms 54 ms 39

Table 4. Performance FPGA Compared to Software

Alpha Data and tested the FPGA implementation thoroughly.
Table 4 shows the performance figures for key generation,
encryption, and decryption. Note that the timing figures
in Table 4 are overal values, which include, besides the
actual processing on hardware, the communication with
the FPGA card and the data management on the host.
For accuracy, each operation is executed 10,000 times and
the avarage timing value is determined. This procedure is
especially important for the key generation as its execution
time depends on a random number of iterations to generate
g(x) and to apply Gauss-Jordan systemization successfully.
Note, furthermore, that the encryption time of ca. 0.5 ms
is restricted by the host system (32 Bit) and the PCI bus
(66 MHz) capability to transfer the 1498 × 550-bit public
key. The encryption itself takes on hardware about 0.1 ms.
The FPGA was clocked with 163 MHz which was enforced
by complexity of the design and the large resource usage
on the FPGA. To have an overview of the advantage of
this implementation we developed a C++ realization of the
McEliece cryptosystem with the same security parameters
t = 50 and m = 11, compiled it for Linux using gcc-4.2.4
and run it on an Intel Core Duo T7300, 2 GHz with 2GB
RAM. The performance figures of this implementation are
also depicted in Table 4. In despite of its first prototypical
architecture, the proposed cryptoprocessor enables consider-
ably faster key generation, encryption and decryption than
a comparable software implementation. In this regard, not
only the feasibility of hardware solutions for sophisticated
code-based cryptography is shown, but also their high-
performance which is indispensable for their acceptance.

8. Conclusion

A novel hardware architecture for McEliece cryptosys-
tem was presented, which shows the advantage of modern
FPGAs to answer performance questions regarding post
quantum computer cryptography. In despite of its acceptable
features our prototypical cryptoprocessor will undergo an
optimization process regarding both resource usage and
performance. For instance, in the current version two hash
modules are used, one in the PRNG and the other for
CCA2. In future, these will be reduced to only one with
corresponding rescheduling to avoid performance overhead.

Acknowledgement

This project was funded by the German Federal Office for
Information Security (BSI).

References

[1] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining Digital Signatures and Public-Key Cryptosystems,”
Communications of the ACM, vol. 21, 1978.

[2] N. Koblitz, “Elleptic Curve Cryptosystems,” Mathematics of
Computation, vol. 48, pp. 203–209, 1987.

[3] Peter W. Shor, “Algorithms for quantum computation: dis-
crete logarithms and factoring,” Proceedings, 35-th Annual
Symposium on Foundation of Computer Science, 1994.

[4] R. Merkle, “A certified digital signature,” CRYPTO 89: Pro-
ceedings on Advances in Cryptology, 1989.

[5] R. J. McEliece, “A Public Key Cryptosystem Based on
Algebraic Coding Theory,” DSN Progress Report, vol. 42–
44, pp. 114–116, 1978.

[6] J. L. A.K. Lenstra and L. Lovasz, “Factoring polynomials
with rational coefficients,” Math, pp. 515–534, 1982.

[7] H. Fell and W. Diffie, “Analysis of apublic key approach
based on polynomial substitution,” LNCS on Advances in
Cryptology-CRYPTO’85, 1986.

[8] A. Shoufan, S. A. Huss, O. Kelm, and S. Schipp, “A
Novel Rekeying Message Authentication Procedure based on
Winternitz OTS and Reconfigurable Hardware Architectures,”
ReConFig 2008, 2008.

[9] S. Balasubramanian et. al., “Fast Multivariate Signature Gen-
eration in Hardware: The Case of Rainbow,” 19th IEEE
Int. Conf. on Application-specific Systems, Architectures and
Processors ASAP 2008, 2008.

[10] J.-C. Beuchat, N. Sendrier, A. Tisserand, and G. Villard,
“FPGA Implementation of a recently published signature
scheme,” Rapport de recherche RR LIP 2004-14, 2004.

[11] S. Lin, Error Control Coding: Fundamentals and Applica-
tions. Prentice-Hall, 1983.

[12] F. Rodriguez-Henriques, N. Saqib, A. Perez, and C. Koc,
Cryptographic Algorithms on Reconfigurable Hardware.
Springer, 2006.

[13] V. D. Goppa, “A new class of linear correcting codes,”
Problems of Information Transmission, vol. 6, pp. 207–212,
1970.

[14] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and
defending the McEliece cryptosystem,” Post-Quantum Cryp-
tography, LNCS, vol. 5299, pp. 31–46, 2008.

[15] K. Kobara and H. Imai, “Semantically Secure McEliece
Public-Key Cryptosystems-Conversions for McEliece PKC,”
Lecture Notes in Computer Science, pp. 19–35, 2001.

[16] N. Patterson, “Algebraic decoding of Goppa Codes,” IEEE
Transactions Information Theory, vol. 21, pp. 203–207, 1975.

[17] The Institute of Electrical and Electronics Engineers, IEEE
Standard Specifications for Public-Key Cryptography, 2000.

[18] B. Hochet, P. Quinton, and Y. Robert, “Systolic Gaussian
Elimination over GF(p) with Partial Pivoting,” IEEE Trans-
action on Computers, Vol 39, 1989.

[19] “Alpha-Data,” http://www.alpha-data.com.

[20] “Xilinx,” http://www.xilinx.com.

