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Abstract—We present SPEXSIM, a software tool for quickly
surveying legacy code bases for kernels that could be accelerated
by FPGA-based compute units. We specifically aim for low
development effort by considering the use of C-based high-level
hardware synthesis, instead of complex manual hardware designs.
SPEXSIM not only exploits the spatially distributed model of
computation commonly used on FPGAs, but can also model the
effect of two different microarchitectures commonly used in C-
to-hardware compilers.

I. INTRODUCTION

With improvements in semiconductor technology no longer
translating into direct gains in compute performance, alterna-
tives to conventional out-of-order superscalar processors are
receiving more attention from users. In recent years, this has
been especially true for computing on Graphics Processing
Units (GPU), which are now in common use for handling
regular (array and vector-based) computations, in scenarios
ranging from embedded to high-performance computing.

However, as not all computations map efficiently to GPUs
(this includes irregular algorithms, dealing, for example, with
sparse or graph-based data structures), further alternatives are
being considered. This includes not only Many-Core proces-
sors such as the Intel Xeon Phi [1] or Kalray Bostan [2]
that have 60–256 cores, but also the use of reconfigurable
computing units.

The latter follow the idea that, instead of using a hard-
wired general-purpose computing structure programmed in
software, it may be more efficient to create an application-
specific computing structure directly in hardware which can
operate autonomously (i.e. no longer needs a software program
for control). One trade-off with this approach is that recon-
figurable logic devices (most commonly Field-Programmable
Gate Arrays) operate only at lower clock frequencies than
hardwired circuits. Typical FPGA clock frequencies practically
achievable today are 150–250 MHz, compared to the 2.1–3.5
GHz of many commercially available CPUs. On the power
side, we observed that FPGAs rarely exceed a power draw of
30–60 W (much of that in high-speed external interfaces for
server use, e.g. PCI Express), while high-performance proces-
sors such as an Intel E7 v3 or IBM POWER8 often draw 160–
190 W [3]. This reduced power draw makes reconfigurable
computing attractive not only in embedded scenarios, but also
for data center use [4].

A key hindrance in successfully using FPGA-based recon-
figurable computing, however, is the difficulty of programming
such systems. The term “programming” here is misleading, as
what actually needs to be done is the hardware design of a
custom processing unit for the specific application. This not
only requires expertise in digital circuit design and computer
architecture, but also the use of specialised languages (e.g.
Verilog or VHDL) and a complex design flow (simulation,
synthesis, place & route, timing analysis, etc.). Very few ap-
plication programmers will be familiar with these techniques.

As an alternative, high-level hardware synthesis tools (HLS)
[5] aim to enable the automatic creation of digital circuits
from high-level descriptions. These most commonly use a
subset of C or C++, or sometimes a domain-specific language
(e.g. MATLAB for signal processing). Despite the many
advances in the field, often significant rewriting of the code
(restructuring or enrichment with specialised #pragmas) is
required to get the code to compile (as different HLS tools
often have different restrictions on the code, e.g. no pointer
operations, only regular control flow etc.). Even when the code
does compile, additional rewriting may be required to improve
performance (e.g. add directives to enable loop unrolling,
request loop pipelining with a specified initiation interval,
localise memories etc.).

When FPGAs were used to accelerate very specific com-
putations of an application, it generally sufficed to invest
the development effort for a conventional hardware design
or for HLS-based programming on a few select application
regions (so-called kernels). With this methodology, excellent
efficiency has been demonstrated, e.g. for cryptographical
operations, low-level signal processing such as filters or FFTs,
or string/sequence pattern matching. But when FPGAs act as
general-purpose accelerators, either in reconfigurable system-
on-chips [6], or in data center computing [7], surveying large
legacy code bases to discover promising areas for “easy” HLS-
based acceleration on the FPGAs now available in the system
quickly becomes difficult.

The traditional approach would be to profile the application
to discover “hot spots” in the code and then optimise these
parts of the program. However, due to the clock speed dif-
ference, not all code is well suited for acceleration on the
FPGA. The FPGA will enable performance in most cases
only if a high degree of finely granular parallelism, called
instruction level parallelism (ILP) in computer architecture, is



present in the code. On a processor, a computation containing
these operations would be executed in a temporally distributed
fashion, re-using a limited number of hardware units (on the
order of eight for current super-scalar processors) to execute
them sequentially. The computing paradigm commonly used
on FPGAs, however, relies on the spatial distribution of the
computation. In the extreme case, each operation in the code
will be mapped to a dedicated hardware unit. In code with
a high degree of ILP, these units will actually be able to
operate in parallel. Some input programs can thus result in
very deep hardware processing pipelines [8] with hundreds
of stages, each containing multiple operators, all executing in
parallel. In such cases, the high degree of compute parallelism
on the FPGA easily outweighs the clock frequency difference
to the hard-wired CPU, allowing an accelerator running at 180
MHz on the FPGA to achieve a speedup of 7.3x over a multi-
threaded quad core CPU clocked at 2.4 GHz (and drawing 5x
the power of the FPGA).

Quickly surveying large code bases for such acceleration
potential thus requires a tool that actually takes the spatial
computing nature of the FPGA into account. This is made
even more complex by the need to consider the flexibility of
realizing arbitrary processing hardware: The same computa-
tion can be realised in many different microarchitectures on
the FPGA. Extreme examples include running the algorithm
actually in software on a soft-core processor implemented
on the FPGA (generally not very efficient), or map them to
very efficient lock-step systolic arrays, or fully dynamically
scheduled compute structures [9] that can potentially deal well
with very complex control flows.

We present SPEXSIM, a software tool that can quickly
analyse large code bases to determine which kernels are inter-
esting for FPGA acceleration using HLS. SPEXSIM not only
estimates the temporally and spatially distributed execution
times for each kernel, it also considers two different micro
architectural models for its analysis. The two models were
chosen since they are representative of the microarchitectures
actually generated by current HLS tools. The Blockwise model
is employed, e.g. by LegUp [10], while the Pipelined model
is used in Nymble [11]. As will be seen in the evaluation
(Section V), different kernels might map better to one or the
other of the execution models.

We do not claim that SPEXSIM can accurately predict actual
speed-ups of FPGA implementations, as attempting this would
have to take too many variables (including e.g. detailed models
of the memory hierarchy) into account. Also, it would require
a full high-level tool flow, which in itself can take minutes to
hours (e.g. when using advanced loop pipelining using modulo
scheduling). Instead, our tool is intended to guide developers
to focus their manual examination on very specific areas of
the code in order to exploit the FPGAs present in their target
compute platforms.

II. RELATED WORK

Sotomayor et al. [12] recently presented AKI, a tool to
detect hotspots in an application and classify their potential

to be parallelised and mapped to a heterogeneous computing
system (consisting of CPUs, GPUs and FPGAs), according to
static souce code metrics. In contrast, SPEXSIM is tailored
specifically to analyse the amount of fine-grained parallelism
in sequential algorithms than can be exploited by high-level
synthesis for FPGAs.

Guo et al. [13] investigated the components, including the
available ILP to benefit a spatially distributed computation,
of the speed-up that FPGA accelerators can achieve over
processors in image processing applications. At the time when
VLIW architectures were popular in CPU design, Jouppi and
Wall [14] simulated several execution schemes employed by
general-purpose processors (e.g. super-scalar, super-pipelined,
VLIW) to measure the available instruction level parallelism
in a set of benchmark programs. A similar study, also in the
context of CPUs, was conducted by Butler et al. [15].

III. SIMULATION OF SPATIAL EXECUTION

The proposed pertinence analysis is based on the compar-
ison of the estimated runtime of kernels when executed with
different execution models. In general, a kernel is a region of
the input code that has a significant influence on the overall
runtime of a given application, and therefore would potentially
benefit from hardware acceleration.

We currently consider all loops to be potential kernels. How-
ever, our approach could be restricted to perform the runtime
estimation only on loops preselected by other analyses, or
could be extended to operate on a broader range of single-
entry regions, e.g. a mix of loop and non-loop code marked
by user specified pragmas.

A. Representation of kernels

Compiler frameworks targeting general purpose processors
traditionally utilise a control flow graph (CFG) [16] as an
intermediate representation (IR) for optimisations and as input
to the code generation subsystem. The CFG is also the
usual starting point for high-level synthesis (HLS) systems,
as these rely heavily on existing compiler frameworks from
the software domain. Being a common element in the two
types of compilation flows we want to compare, the CFG is
the ideal IR to define our pertinence analysis on.

A CFG consists of basic blocks, i.e. sequences of RISC-
like instructions without control-flow changes, and the control
flow transitions between them. In Figure 1e), the CFG for the
example loop in Figure 1d) is shown, consisting of two basic
blocks.

B. Execution models

The simplest way of executing the computation as repre-
sented by a kernel’s CFG is to sequentially execute both the
basic blocks as well as the instructions contained in them,
just as a non-superscalar processor would do. This defines our
CPU model. Figure 1a) shows the execution of two iterations
of the example loop in Subfig. d), according to the CPU
model. We assume that typical compiler optimisations were
run, especially common subexpression elimination to detect
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for (i = 0; i < N; ++i) {
  c[i] = a[i]*a[i]
       + a[i]*b[i]*2
       + b[i]*b[i];
}

d) C source code

ai  = load a[i]

bi  = load b[i]

asq = mul ai, ai

ab  = mul ai, bi

ab2 = shl ab, 1

s1  = add asq, ab2

bsq = mul bi, bi

s2  = add s1, bsq

store c[i], s2

i = phi 0, inc

inc = add i, 1

BB1

if not i<N: exit

e) Control Flow Graph

Fig. 1. Execution of two subsequent iterations of an example loop, according the presented execution models

that the results of the load instructions can be reused.
However, BB2 contains much instruction-level parallelism, as
not all subexpressions depend on each other. This can be
exploited by a blockwise spatial execution on an FPGA: A
dataflow graph (DFG), where each instruction is mapped to
an individual operator module, is constructed for the compu-
tation in each basic block. This defines our Blockwise model,
exemplified in Figure 1b). We assume that enough hardware
resources are availble to perform all independent operations
in parallel. Note that iterations j and j + 1 and blocks BB1
and BB2 are still executed sequentially, but the computation
inside the blocks is much shorter due to the spatial execution,
resulting in an earlier completion time of j + 1 compared to
the CPU model.
Observe that the example loop’s iterations are mostly inde-
pendent - the increment of the loop counter is the only inter-
iteration dependency. This makes the kernel amenable to loop
pipeling, i.e. issuing a new iteration after a fixed amount of
time, resulting in a partial overlapping of iterations, as shown
in Figure 1c). This defines our Pipelined model.

Loop pipelining requires the presence of a dataflow graph
per loop, across the basic block structure. To this end, control-

flow within the loop has to be transformed into dataflow as
well, usually by adding predicates to operations that may not
be executed speculatively (e.g. memory accesses). Note that
in Figure 1c), these predicates are not shown for brevity. As
a secondary effect, the larger one-graph-per-loop scope may
expose more ILP than was available on the basic block level.

C. Estimation

We now present a kernel runtime estimation based on the
execution models introduced in the previous section. The basic
idea is to compute a numerical value (in an abstract time unit)
that shall be interpreted as the execution time of each block
or loop, and then multiply it with a factor representing how
often a given block or loop is executed in a typical run of the
program.

To this end, we define latency(I) to represent the number
of time steps that an instruction I needs to complete, and
determine the execution frequency βB for each basic block
B. We discuss the sources of these parameters in Section IV.

Note that the instructions in a basic block are always
executed together. We therefore do not need to determine how



often each individual instruction is typically executed, but can
use the enclosing block’s execution frequency to the same end.

1) CPU model: For the CPU model, we estimate that the
execution time ECPU(B) of a single basic block B is the sum
of the latencies of the instructions contained in it, and that the
execution time ECPU(K) of the kernel K is the weighted sum
of the execution times of all its basic blocks:

ECPU(B) =
∑
I∈B

latency(I) (1)

ECPU(K) =
∑
B∈K

βB · ECPU(B) (2)

2) Blockwise model: In order to apply the Blockwise model
to a kernel K, we have to construct the dataflow graph for
each of the kernel’s blocks and schedule the operations in this
graph, i.e. a start time tI has to be assigned to each operation
I . The estimated execution time EFPGA bw(B) for a basic block
B is equal to the time when the last operation finishes. We
perform a simple as-soon-as-possible (ASAP) scheduling in
order to minimise that time.

The schedule has to adhere to a number of precedence
constraints:
• An operation can start only after all its operands have

finished. This precedence is ensured by the dataflow
edges.

• The schedule has to preserve the order of memory
accesses in the presence of flow, anti and output de-
pendencies. We use LLVM’s alias analysis framework
to determine whether a given pair of memory accesses
possibly operates on the same memory location, and add
a precedence edge accordingly.

• We conservatively handle calls to other functions like
barriers, and introduce precedence edges for memory
accesses and other calls that come before or after them.

The estimation EFPGA bw(K) for a kernel K is again com-
puted as the weighted sum of its blocks’ execution times.

EFPGA bw(B) = max
I∈B

(tI + latency(I)) (3)

EFPGA bw(K) =
∑
B∈K

βB · EFPGA bw(B) (4)

3) Pipelined model: Before we can construct a mock-up of
the kernel in accordance to the Pipelined model, we transform
its contents to a hierarchical set of control-dataflow graphs
[17]. Each graph represents a loop, containing the operations
in the loop as well as special operations for each nested loop.

Again, we schedule each graph (now representing a whole
loop instead of a single basic block) with the ASAP strategy,
subject to the following precedence constraints:
• An operation can start only after all its operands have

finished. This precedence is ensured by the dataflow
edges.

• The schedule has to handle intra-iteration flow, anti and
output dependencies between all pairs of memory ac-
cesses. We use LLVM’s dependence analysis to determine

whether such dependencies are present, and add the
appropriate precedence edges.

• We conservatively handle calls to other functions and
starts of nested loops like barriers, and introduce prece-
dence edges for memory accesses, other calls and nested
loops that come before or after them.

In addition to the intra-iteration dependencies, due to the
overlapping execution of loop iterations, it is required to
consider inter-iteration dependencies from earlier iterations as
well. These dependencies occur naturally in the computation of
loop-dependent values, like incrementing the iteration variable
of a for-loop. However, memory accesses may contribute such
dependencies as well, for example, when a memory location
is read in one iteration after it was written in the previous
iteration. We query LLVM’s dependence analysis for these
inter-iteration dependencies and record them. Conservatively,
we assume that all dependencies have to hold between im-
mediately neighbouring iterations. Modulo scheduling is a
technique to compute a schedule that adheres to all intra-
and inter-iteration dependencies when new loop iterations are
started after a fixed initiation interval (II) [18], [19]. A small
II results in a greater number of overlapping iterations, and in
consequence, an earlier completion of the whole loop.

In order to estimate how amenable a loop is for pipelining,
we use a simplified lower bound to estimate the II instead of
performing actual modulo scheduling: It has to be greater than
or equal to the length of the longest inter-iteration dependency
edge in the graph. In addition to the already known ASAP
times, we calculate the as-late-as-possible (ALAP) times of
each operation. The length of an inter-iteration dependency
edge J → I is then defined as ASAP(J)− ALAP(I).

Body

Header

Preheader

a

Latch

Latch

aa
Exit

Exit

Fig. 2. Basic blocks of interest in a loop

Let P be L’s preheader block, i.e. a unique predecessor block
to the actual loop header, and let latches(L) denote the loop’s
latch blocks, i.e. the blocks that end with a branch back to L’s
header block, as shown in Figure 2. Then

navg(L) =

 ∑
B∈latches(L)

βB

 /βP (5)

is the average number of iterations for the loop, computed
as the ratio of accumulated latch block execution frequencies
βB over the preheader’s execution frequency βP . This is an
approximate measure of the times the program jumped back
to the loop header over the times the loop was started.



For a single start of L, we know that the last iteration is started
after navg − 1 initiation intervals, and one complete execution
of the datapath is needed before the loop is finished. Thus:

EFPGA pl, single(L) = (navg(L)− 1) · II + (max
I∈L

tI + latency(I))

(6)

To get the estimation EFPGA pl(L) for the loop L, we multiply
the single start estimation EFPGA pl, single(L) by the number
of starts, as expressed by the preheader’s execution frequency
βP :

EFPGA pl(L) = βP · EFPGA pl, single(L) (7)

A kernel might have an acyclic part A that is executed only
once. We account for it with:

EFPGA pl(A) = max
I∈A

(tI + latency(I)) (8)

Putting it all together, the pipelined model’s estimate
EFPGA pl(K) for a kernel K is:

EFPGA pl(K) =

 ∑
L∈loops(K)

EFPGA pl(L)

+ EFPGA pl(A)

(9)

IV. IMPLEMENTATION

LLVM [20] is a state-of-the-art compiler framework on
which both academic and commercial high-level synthesis sys-
tems [21] are based. Its intermediate representation (LLVM-IR
[22]) is thus a viable environment to base our static analysis
on. The level of abstraction in LLVM-IR resembles that of
assembly code for a generic RISC processor. The basic blocks
of a function are organised explicitly in a CFG. All functions
as well as any global variables of a compilation unit, e.g. the
input program, are grouped together in a module, which is
the top-level construct in LLVM-IR. Loops are not modelled
explicitly in the IR, but can be discovered by a built-in analysis
pass.

SPEXSIM consists of 1) a modified version of LLVM’s C
frontend clang that annotates loops with their source file name
and the line number on which the loop statement begins, and
2) a standalone tool linking against the LLVM libraries. Within
this tool, we implemented the simulation of the execution
models as well as the kernel extraction and our proposed
instrumentation/profiling infrastructure (as presented in the
next sections) as custom passes. These passes rely on the
analyses (e.g. loop discovery, alias and dependence analysis)
and transformation utilities available in the LLVM frame-
work. Furthermore, we allow the user to apply all available
optimisation passes to the input program by forwarding the
corresponding command line parameters to LLVM’s built-in
optimisation driver.

A. Kernel extraction

In order to make the full range of LLVM optimisations
applicable to the kernels without diluting their borders, it is
required to extract the kernels into their own functions, and
replace their original occurrence with a call to the extracted
function.

Kernels can be nested directly (e.g. a loop inside another
loop) or indirectly (e.g. a loop inside a function that is called
from within another loop). In both cases, the kernels have to
be estimated in a top-down fashion, e.g. the outermost kernels
are extracted and simulated first (including all computations
belonging to nested kernels). Afterwards, the kernels in the
just extracted functions have to be discovered and extracted.
This is continued until no unextracted kernels remain.

1) Depth: We found it useful to assign a nesting depth
dK to each kernel K, in order to specify the extraction order
before actually extracting the kernels. We perform a top-
down walk of the call graph, i.e. visiting all callers of a
function bar() before visiting bar(), starting at the main()

function. For every function, we determine an initial depth
as the maximum depth of its call sites, or 0 in case of the
main function. Then, we walk the loop tree inside the current
function, increasing the depth for each kernel we encounter.
Alongside the walk, we remember the maximum nesting depth
among all kernels as dmax.

2) Successive extraction: For each nesting depth d ∈
{1, . . . , dmax} we generate a new intermediate version of the
program by extracting the kernels K with dK = d based
upon the previous extraction step. A copy of this intermediate
version can then be arbitrarily optimised, instrumented and
simulated, without influencing the next extraction step.

Figure 3 exemplifies this process. From left to right, the
successive extraction, based on the discovered depth property,
is shown. The example illustrates the advantage of this extrac-
tion order: At the time a kernel K is estimated, no other kernel
inside or transitively called from within K has been extracted,
ensuring that the estimation results will be the same as if K
was the only kernel in the program. Furthermore, the module
stays executable in all intermediate steps, making it possible
to instrument and run it at any time.

B. Latencies

We employ an optimistic and a practical latency model:
In the optimistic latency model, we assume that all instruc-

tions need only one time step to complete, with the exception
of some pseudo instructions (e.g. phi nodes, cast operations)
that are needed for the consistency of the IR, but do not result
in actual code or hardware. Function calls are accounted for
with the estimation for the called function, or are associated
with a fixed cost in case the callee is external or unknown.

The practical latency model is based on instruction laten-
cies measured on an Intel Skylake processor [23] for the
CPU model and operator latencies of pipelined FloPoCo [24]
modules targeting 200 MHz for the FPGA models. Function
calls are handled analogously to the optimistic model. Miss-
ing datapoints have been interpolated based on the authors’
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      …
    }
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}

int main() {
  foo();
  return 0;
}

void bar() {
  … 
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    …
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    …
  }
}
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    …
  }
}
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  … 
  extr.kernel.9(…);
  …
}

void foo() {
  …
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int main() {
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  return 0;
}
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  }
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    …
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    …
  }
}
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  for (…) {
    …
  }
}

a) Depth discovered b) Depth 1 extracted c) Depth 2 extracted d) Depth 3 extracted

Fig. 3. Kernel depth and successive extraction

experience, e.g. that logical bitwise operations usually can be
done combinatorically in 0 time steps on an FPGA.

C. Execution frequencies

The execution models require that an execution frequency
βB is available, estimating how often each basic block B, and
therefore each LLVM-IR instruction, is executed in a typical
run of the input program. The frequencies are always scaled
to represent how often a block is executed on average during a
single activation of its parent function F . For example, a block
B that is part of a conditional branch is usually not executed
every time F is called, resulting in βB < 1. On the other hand,
if B is part of a loop, it will potentially be executed multiple
times during an activation of F , resulting in βB > 1.

We currently support the following two means of acquiring
these frequencies.

1) LLVM BlockFrequency analysis: LLVM includes the
BlockFrequency analysis pass that uses heuristics to esti-
mate how often certain branches are taken, and computes
an execution frequency per basic block that is usable in
our execution models. By using this analysis, the estimation
process remains completely static. In principle, the accuracy
of the BlockFrequency analysis can be improved by activating
an instrumentation mechanism in the frontend. We found,
however, that the resulting profiling information is hard to
keep consistent across the kernel extraction and possible
optimisation steps.

2) Custom instrumentation: To this end, we designed our
own simple instrumentation framework based on inserting
counters in each basic block. Inserting the instrumentation
code at the IR level allows us to account for all transformations
that were applied to a kernel. This mechanism delivers exact

execution frequencies, at the slight disadvantage that these are
tied to a particular set of runtime parameters and the resulting
program execution.

V. RESULTS

Tables II and III show the results of running SPEXSIM,
linked against LLVM 3.7, on the publicly available CHStone
[25] and MachSuite [26] benchmark suites. We used our
custom instrumentation scheme and applied LLVM’s -O3 op-
timisation preset to the kernels prior to the estimation. Kernels
are identified by their filename and starting line number.
The kernels are sorted by the fraction (Column ’%’) of the
total program execution time they take in the software-based
model. We show the top 30 kernels for both latency models.
Column 7 and 9 display the estimated speed-up of Blockwise
(Column 7) and Pipelined (Column 9) microarchitectures over
the processor when FPGA and CPU are running at the same
clock frequency.

A number of aspects must be considered when discussing
these results. First, remember that these potential speedups
are based on C-based HLS, translating the original software
code into a hardware block without actually optimizing the
algorithm for hardware. Thus, the speed-ups are rather low on
a per-clock-cycle basis. For many of the kernels in this listing,
much faster implementations designed as custom hardware
are available. For example, custom FFT implementations ran
more than 10x faster on a single FPGA than on a 6-core
CPU clocked at 2.67 GHz [27]. That performance far exceeds
the best-case speed-up of 3.31x (in terms of clock cycles)
predicted by SPEXSIM for using C-based HLS.

Second, the threshold for interesting speed-ups is largely
dependent on the clock frequency disparity between CPU and



FPGA. This might be a factor of just 3 (e.g. an embedded
Cortex-A9 processor running at 667 MHz vs. an FPGA run-
ning at 220 MHz), but it also could exceed 10 (CPU running
at more than 2.5 GHz) in a high-performance computing use-
case. A number of kernels (e.g. sha, viterbi, nw) are predicted
to have speed-up potential in the embedded use-case. Far fewer
kernels would be competitive in the high-performance use-
case (e.g. gemm, knn) from a pure performance perspective.
But especially in data center use-cases, energy efficiency is
becoming a key performance indicator. Conservatively assum-
ing a 5x difference in power draw between FPGA (30 W) and
CPU (150 W), even a kernel such as merge, which might run
roughly at at third of the CPU performance (estimated 3.13x
clock-cycle speed up, but 10x clock frequency differential),
but would draw only a fifth of the power, still might come out
ahead in terms of energy efficiency when targeting an FPGA.
We compare against a single CPU core because HLS input
programs often are purely sequential. Note that the (coarse-
grained) parallelisation techniques required to make use of
additional CPU cores would also be applicable to an FPGA
design, e.g. by instantiating as many copies of the generated
accelerator as fit on the reconfigurable device.

Third, when it is actually applicable, the Pipelined mi-
croarchitecture on the FPGA is capable of a much higher
performance than the Blockwise architecture. However, it is
efficient for only a few of the benchmarks (e.g. gemm, knn,
viterbi, etc.). But having the flexibility of the FPGA, a high-
level synthesis system can pick the micro architecture best
suited for the specific kernel. As an example, the Nymble
collection of compilers can generate five different microar-
chitectures (blockwise, pipelined, multi-threaded, resource-
shared, and value-speculating), allowing a tight match between
the capabilities of the microarchitecture and the needs of each
kernel.

VI. CONCLUSION

We have introduced SPEXSIM as a tool to quickly survey
large legacy code bases, searching for kernels potentially
profiting from a low development effort mapping to an FPGA
using C-based high-level synthesis. The tool targets a spatially
distributed model of computation and considers two different
hardware microarchitectures for the estimates. The interest-
ing kernels discovered by SPEXSIM can then be manually
examined for additional optimisation potential (e.g. adding
performance-enhancing HLS directives).
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Benchmark File Line ESPP % EFPGA bw
ESPP

EFPGA bw
EFPGA pl

ESPP
EFPGA pl

CHStone/dfsin dfsin.c 173 92870 100 % 59799 1.55 66317 1.40
MachSuite/kmp/kmp kmp.c 31 491995 100 % 426193 1.15 359561 1.37
CHStone/dfadd dfadd.c 215 3641 100 % 2349 1.55 4375 0.83
CHStone/sha sha.c 210 801077 100 % 307241 2.61 214295 3.74
CHStone/mips mips.c 139 17359 99 % 11623 1.49 49418 0.35
CHStone/dfdiv dfdiv.c 144 2122 99 % 1411 1.50 1985 1.07
CHStone/dfmul dfmul.c 137 1465 99 % 903 1.62 1545 0.95
MachSuite/nw/nw nw.c 30 560154 99 % 288526 1.94 164356 3.41
MachSuite/sort/radix sort.c 84 1460642 94 % 1055170 1.38 1680818 0.87
MachSuite/md/grid md.c 16 1076680 92 % 780502 1.38 384121 2.80
MachSuite/viterbi/viterbi viterbi.c 18 8576719 90 % 6263620 1.37 1263375 6.79
MachSuite/backprop/backprop backprop.c 264 34302220 90 % 17592430 1.95 12321660 2.78
CHStone/jpeg decode.c 423 1478800 90 % 829447 1.78 1018783 1.45
MachSuite/sort/merge sort.c 38 563191 86 % 341895 1.65 180184 3.13
MachSuite/gemm/ncubed gemm.c 8 3174722 81 % 1855810 1.71 286916 11.06
MachSuite/gemm/blocked gemm.c 15 2158882 74 % 1245474 1.73 1069404 2.02
CHStone/blowfish bf.c 840 447726 67 % 196824 2.27 1912959 0.23
CHStone/aes aes dec.c 116 17789 62 % 5279 3.37 2758 6.45
MachSuite/aes/aes aes.c 191 7219 62 % 2223 3.25 2693 2.68
CHStone/adpcm adpcm.c 846 34812 53 % 12352 2.82 11356 3.07
CHStone/sha sha.c 164 401295 50 % 154381 2.60 107784 3.72
MachSuite/stencil/stencil3d stencil.c 14 662583 47 % 206223 3.21 119794 5.53
CHStone/gsm lpc.c 134 8531 47 % 7148 1.19 6845 1.25
MachSuite/stencil/stencil2d stencil.c 7 454114 46 % 117813 3.85 86440 5.25
CHStone/motion getbits.c 168 717 46 % 251 2.86 204 3.51
CHStone/adpcm adpcm.c 850 30050 46 % 6602 4.55 8709 3.45
CHStone/motion getbits.c 66 738 43 % 347 2.13 141 5.23
CHStone/blowfish bf skey.c 144 209924 32 % 89603 2.34 85510 2.45
MachSuite/md/knn md.c 24 156930 30 % 104962 1.50 11267 13.93
MachSuite/fft/strided fft.c 8 203874 23 % 114768 1.78 61504 3.31

TABLE I
ESTIMATION RESULTS FOR LOOPS FROM CHSTONE AND MACHSUITE WITH OPTIMISTIC LATENCIES

Benchmark File Line ESPP % EFPGA bw
ESPP

EFPGA bw
EFPGA pl

ESPP
EFPGA pl

CHStone/dfsin dfsin.c 173 127134 100 % 70640 1.80 135484 0.94
MachSuite/kmp/kmp kmp.c 31 623575 100 % 755203 0.83 1012846 0.62
CHStone/sha sha.c 210 1258823 100 % 541503 2.32 330813 3.81
CHStone/dfadd dfadd.c 215 5380 99 % 3780 1.42 10458 0.51
CHStone/mips mips.c 139 25294 99 % 20359 1.24 182408 0.14
CHStone/dfdiv dfdiv.c 144 3847 99 % 2120 1.81 3822 1.01
MachSuite/nw/nw nw.c 30 773786 99 % 534414 1.45 573956 1.35
CHStone/dfmul dfmul.c 137 2242 99 % 1428 1.57 3276 0.68
MachSuite/md/grid md.c 16 2976547 94 % 2181327 1.36 1180726 2.52
MachSuite/backprop/backprop backprop.c 264 77406150 93 % 60706090 1.28 53545340 1.45
MachSuite/sort/radix sort.c 84 2182114 92 % 2866162 0.76 4391218 0.50
MachSuite/viterbi/viterbi viterbi.c 18 16566160 91 % 14857430 1.12 3736464 4.43
CHStone/jpeg decode.c 423 2322856 86 % 1714310 1.35 3044369 0.76
MachSuite/sort/merge sort.c 38 903136 82 % 702156 1.29 376685 2.40
MachSuite/gemm/ncubed gemm.c 8 5804354 81 % 4235522 1.37 1356292 4.28
MachSuite/gemm/blocked gemm.c 15 4849954 78 % 5161250 0.94 4997724 0.97
CHStone/blowfish bf.c 840 732306 66 % 351010 2.09 2318951 0.32
MachSuite/aes/aes aes.c 191 11838 57 % 7405 1.60 10248 1.16
CHStone/adpcm adpcm.c 846 56608 53 % 24502 2.31 26416 2.14
CHStone/gsm lpc.c 134 15236 51 % 22201 0.69 21898 0.70
CHStone/aes aes dec.c 116 29624 50 % 8168 3.63 9522 3.11
CHStone/sha sha.c 164 633874 50 % 272405 2.33 166799 3.80
CHStone/motion getbits.c 168 1514 47 % 645 2.35 358 4.23
CHStone/adpcm adpcm.c 850 49822 46 % 15002 3.32 22227 2.24
MachSuite/stencil/stencil2d stencil.c 7 821286 45 % 203619 4.03 172372 4.76
MachSuite/md/knn md.c 24 467202 41 % 285698 1.64 42755 10.93
CHStone/motion getbits.c 66 1254 38 % 983 1.28 779 1.61
MachSuite/stencil/stencil3d stencil.c 14 939784 37 % 318723 2.95 256594 3.66
CHStone/blowfish bf skey.c 144 359946 33 % 108548 3.32 91675 3.93
MachSuite/fft/strided fft.c 8 420990 29 % 381028 1.10 332894 1.26

TABLE II
ESTIMATION RESULTS FOR LOOPS FROM CHSTONE AND MACHSUITE WITH PRACTICAL LATENCIES


