
High-Level-Language Compilation for
Reconfigurable Computers

Andreas Koch
Tech. Univ. Darmstadt

Embedded Systems and Applications Group (ESA), FB20
Darmstadt, Germany

Email: koch@esa.informatik.tu-darmstadt.de

Nico Kasprzyk
Tech. Univ. Braunschweig

Dept. for Integrated Circuit Design (E.I.S.)
Braunschweig, Germany

Email: kasprzyk@eis.cs.tu-bs.de

Abstract— The compiler COMRADE accepts full ANSI C and
compiles it into hybrid hardware/software applications for execu-
tion on a reconfigurable adaptive computer system. After defining
the model-of-computation underlying the flow, we describe the
general compilation process as well as some specific techniques.
These include path-based partitioning, module-generator based
datapath and controller synthesis, as well as reconfiguration
scheduling.

I. I NTRODUCTION

The tremendous progress in microelectronics no longer
linearly translates into increased computer performance. While
we can build chips with billions of transistors, most of
the processor architectures implemented on them still follow
patterns developed in the mid-1940s for vacuum-tube based
systems.

Fig. 1. Temporal (a) and spatial (b) distribution of computation

y

x

A

B

C

y

t1 := x
t2 := A * t1
t2 := t2 + B
t2 := t2 * t1
y := t2 + C

A

t1

t2

B

C

x

(a) (b)

R0

R1

R2

R3

R4

ALU

* *

*

+

+

As an alternative, reconfigurable/programmable logic de-
vices (PLD) allow the implementation of compute units (CU)
following a different paradigm: Instead oftemporallydistribut-
ing a computation across shared compute resources under
control of a software program (Figure 1.a), it is distributed
spatially across dedicated compute resources, increasing the
parallelism of the computation (Figure 1.b).

Conventional CPUs and CUs complement each other well:
The computation-intense kernels of an application can be
spatially mapped to CUs, while the less critical or unsuitable
parts remain temporally mapped on the CPU. Together, both
kinds of processors form anadaptive computing system(ACS).

The CUs themselves are realized by mapping them onto a
reconfigurable fabric (RF), which may be implemented, e.g.,
by an FPGA or a coarse-grained device, sometimes called
a field-programmable node array (FPNA). Such ACSs can
accelerate a broad variety of applications [3] [4] [5].

Lacking, however, are abstractions and software tools to
make the potential of adaptive computers accessible to the
majority of applications programmers, who are unfamiliar with
the digital circuit design methods currently used to “program”
an ACS.

The complexity involved in developing automatic compilers
targeting adaptive computers is significant: In addition to con-
ventional compiler technologies, issues of automatic hardware
synthesis both at the architectural and logic level also have to
be considered. Further intricacy is involved in partitioning the
application between the conventional and the reconfigurable
processor, and generating communications interfaces between
them in hardware (HW) and software (SW). A completely
novel topic, even in HW design, is the full exploitation of
reconfigurability, which in itself can occur in various forms.

In this work, we present an overview over our research
on COMRADE, a third-generation tool flow for automating
the mapping from a conventional high-level language (HLL)
to a program running on an adaptive computer. We describe
specific areas of progress, ranging from abstract models of
computation down to the efficient composition of datapaths
from HW operators.

II. SAMPLE APPLICATIONS

In the following discussion, we will present the effect
of various translation phases when processing a number of
real applications. These areversatility a Wavelet-based image
compression [6], theadpcm andg.721 audio compressors, the
capacity Huffman-table generator [7], and the elliptic-curve
cryptography toolpegwit [8].

III. F UNDAMENTALS

In contrast to a human designer, who can creatively choose
the best abstraction from a wide spectrum for solving the
current problem, an automatic tool flow is constrained by the
paradigms and schemes statically encoded in its algorithms.

...
u = a + b;
v = c - d;
for (n=0; n<10; ++n) {

v += u;
if (v > 1000)

printf("error v=%d", v);
}
w = 53 * v;
...

Fig. 2. Input program with CU-infeasible statement

Thus, they have to formulated carefully to yield the best
quality of results across a broad range of applications.

A. Programming Abstraction

Since our primary aim is to make ACS technology acces-
sible to a large user base, we have chosen C as the input
language for the compiler. Specifically, we aim to support the
full ANSI C language. This includes pointers, function calls,
and control flow in loops. Furthermore, the user is not required
to give the compiler translation hints using pragmas or similar
annotations. We are aware that C is not the most suitable
language for describing HW designs in. However, it still is
the most widely used language in the embedded computing
area. In our project, this dominance takes precedence over
the possibly improved quality of results achievable using a
specialized, but more exotic, programming language as input
format.

During compilation, computation-intensekernels(generally
loops) are extracted from the C source code and mapped
to dedicated CUs implemented on the RF. Since ANSI C
does not contain constructs for explicitly modeling parallelism
(e.g., on the thread-level, TLP), we are limited to exploiting
instruction-level parallelism (ILP). However, this is augmented
with speculative execution of conditional branches and re-
structurings (profile-based inlining, loop transformations) that
increase parallelism.

The parts of the input program that cannot be efficiently
mapped to a CU, such as calls to the C standard library or
floating point computation (due to excessive area requirements
of current RFs), remain in SW.

B. Model of Computation

Our underlying model of computation orchestrates this
interaction between SW executing on the CPU and CUs
executing on the RF. The fundamental idea is, that both kinds
of processors assist each other in the fast and efficient (e.g.,
in terms of RF area and CPU power consumption) execution
of the program:
• The RF assists the CPU, which is possibly of a slower,

low-power variety, by efficiently accelerating the compu-
tation intense parts of the program.

• The CPU assists the RF by executing the rarely executed
(e.g., error handling) or CU-unsuitable parts of the pro-
gram, which would require massive area on the RF.

To demonstrate this approach, Figure 2 shows a fragment
of C code that contains rarely executed parts (the assignments

Application Variables transfered
statically at run-time

versatility 0 0
adpcm 0 0
g.721 0 0
capacity 12 1600
pegwit 0 0

TABLE I

COMMUNICATIONS OVERHEAD FORCU-CPUEXECUTION SWITCHES

to u, v, n, w) and a kernel consisting of afor-loop. However,
the kernel contains aprintf() function call to the standard C
library, which can neither be avoided by inlining nor efficiently
realized as part of the CU. Thus, the relevant data (onlyv in
the example) is transferred to a SWhandler providing this
functionality as aserviceto the CU (Figure 3).

Fig. 3. CPU-CU interaction for CU-infeasible code

SW exception handler

Executed as CU

u,v,n

v

v
printf("error v=%d", v);

Executed on CPU

Kernel on CU

v += u;
if (v > 1000)

++n;

if (n >= 10)
 exitToSW(0)

 exitToSW(1);

u = a + b;
v = c − d;
n = 0;

w = 53*v;

After executing the SW handler, the execution of the CU is
resumed. If the handler had changed the values of variables
‘live’ in the CU (not required in this example), they would be
transferred back to CU analogously.

Obviously, the degree of interaction between the CPU and
CU is limited by the communications overhead of this HW/SW
execution mode switch. If it is too high, any performance
gain by the CU is lost in data transfer time. To this end,
communications are considered both in the architecture of the
target system (Section III-C) as well as during the HW/SW
partitioning step itself (Section V). In practice, the majority of
kernels isolated by HW/SW partitioning of real applications
have only negligible communications overhead (Table I).

Note that the CPU and the CU donot execute in parallel
in this model. As described previously, C does not allow the
modeling of thread-level parallelism. Thus, the assignment
of operations to CPU and CUs is an exclusive one. Ideally,
however, this will not be a disadvantage: If the HW/SW
partitioning performs its task well, it will have moved all

relevant kernels from the CPU onto the CU. From a practical
perspective, this should allow a reduction in the peak-power
consumption of the system, since the now-idle CPU can be
set into a sleep-state. However, our current prototyping HW
platform [1] does not allow measurements confirming this
hypothesis.

C. Target System Architecture

The choice of C as input language and the associated model
of computation significantly influence the architecture of our
target system.

1) SW-CU Communications:The need for quick SW-
CU communication requires alow-latency communications
channel. Since a good partitioning can often avoid excessive
communications, our model relies on the quick interchange of
relatively small quantities of data. In our experiments, the only
12 variables of 32b each need to be transferred between all
CUs and CPU. Thus, the bandwidth requirements are rather
low.

2) Memory System:Since we fully support pointer accesses
as well as the interchange of pointer values (addresses) be-
tween CUs and SW, the RF must have independent (master-
mode) access to a memory space shared with the CPU (Figure
4).

Fig. 4. Shared memory and address space between CU and CPU

CU−CPU Interface

Shared Memory

HW
Register

SW
Variable

0x00000000

0xFFFFFFFF

RF CPU

Address Data

While this requirement is not problematical from a band-
width perspective (RF and CPU do not execute concurrently),
caches have to be organized carefully. Ideally, the RF and
CPU would share a common cache hierarchy to avoid in-
consistencies. This can be realized in an SoC context by
integrating the RF with a configurable processor core [9]
[10], or using the tightly-coupled memory approach of some
embedded processor core (as in certain ARM7 and ARM9
types) [11]. If the sharing of cache hierarchies is not possible,
more heavyweight coherency solutions such as bus-snooping
or mutual cache invalidation (used on our current platform)
could be employed.

3) RF Processing Element Granularity:The native widths
of data types in C are 8b, 16b, 32b, and 64b words. Of
these, 32b operations are still the most common (default

size of the standard integer type). Thus, the most efficient
target RF architecture would have relatively coarse-grained
processing elements (PE) and multi-bit bus interconnects.
Examples would include composable 4b or 8b logic blocks
or ALU slices. However, since such PLDs are still rather
uncommon, we are currently mapping to FPGA-based RFs
and compose the wider operations from the 4-LUT PEs
(Section VI). The inefficiency of the too-narrow PEs can to
some degree be ameliorated by specialized optimizations. For
example, bit-wise constant propagation can recognize variable,
unused, and constant values within a variable or expression
at the granularity of single bits. This can then be used to
specialize the HW operators at the bit-level, exploiting the
fine granularity of FPGA PEs.

4) Reconfigurability: In our model of computation, each
CU encompassesall of the parallelism extractable from a
kernel sequentially described in C. With no TLP in ANSI C,
only a single CU will thus execute at a time on the RF. Thus,
for our purposes, a RF holding just a single CU, but capable
of rapid reconfiguration (possibly assisted by a configuration
cache) would be ideal. But again, most commercially available
PLDs do not have this ability. It can be emulated, however,
using mechanisms actually available in current chips:

• By using partial reconfigurability, we could combine
background-loading techniques (such as double or triple-
buffering) with a logical partitioning of the RF. This
would allow to pre-configure the next CUs to be executed
(possibly speculatively) into currently unused logical par-
titions, without affecting the currently executing RF. Such
systems have already been demonstrated [12] [13].

• With a sufficiently large RF, we can useconfiguration
merging to efficiently fuse multiple CUs into a smaller
number of larger configurations. These can then be con-
figured without requiring partial configuration capabilities
from the RF.Softreconfigurations can then occur just by
switching multiplexers on the RF between different CUs,
hard reconfigurations actually load a new bitstream. This
approach does not require partial reconfigurability from
the underlying PLD.

Due to the immaturity of software tools dealing with par-
tial reconfiguration of commercial PLDs, our current system
supports the second approach (see Section VII).

IV. A NATOMY OF AN ACS COMPILER

Figure 5 gives an overview over the general anatomy of an
ACS compiler. Up to the HW-SW partitioning step, the phases
are not ACS-specific. Two general support facilities aid many
of the later translation phases:

First, a number ofdynamic profilinganalyses observes the
behavior of the input program during run-time when process-
ing a given data set. Many optimization decisions, e.g., dealing
with the fraction of execution time spent in a certain function
or the communication patterns between blocks, are based
on this data. Dynamic profiling is generally more accurate
than static estimation methods, but requires a representative

Fig. 5. Simplified anatomy of an HLL-to-ACS compiler
Input C Source Code

Execution on ACS

H
ar

d
w

ar
e

L
ib

ra
ry

D
yn

am
ic

 P
ro

fi
lin

g

Software
Interface Generation

Export to Conventional Compiler
Compilation

HW/SW Partitioning
Kernel Candidate Creation

Area & Performance Estimation
Hardware Kernel Selection
Exception Handler Creation

Front−End
Lexing
Parsing

Context−Sensitive Analysis

Machine−Independent Optimization

Strength Reduction
Dead Code Elimination

Sparse Conditional Constant Propagation
Common Subexpression Elimination

Machine−Dependent Optimization
Procedure Inlining

Loop Transformations
Bit−wise Optimization

Integration
Linking

Binary Image Creation

Hardware
Interface Generation
Controller Synthesis
Datapath Synthesis

Bitstream Generation
Final Place & Route

Architecture Integration
Datapath Layout

Configuration Merging

input data set when the program is being monitored during
execution.

Second, when estimating the effect of moving operations
to the CU, the same module library used for the actual
HW generation can be queried by the main flow for HW
operator characteristics. This occurs via a target technology-
independent interface. It gives each step in the flow a dedicated
view into the data. Examples for different views include
operator behavior and interface, timing, area requirements,
circuit topology etc., down to actual placed netlists of the
operator hardware.

The next Sections will examine some of the phases in
greater detail.

V. HW/SW-PARTITIONING

Currently, the HW/SW partitioning step attempts to move as
much of the kernels in the input program to CUs as possible.
For each kernel, this is not an all-or-nothing operation. Instead,
an incremental method is used [16]:

Fig. 6. Generating possible CUs from all-SW version

Node 2

Node 3 Node 4

Node 5

Node 6

loop 2

loop 1

(a)
Node 1 Node 1

(b)

Node 2

Node 3

Node 4

Node 5

Node 6

loop 2

loop 1 Node 4’’

Node 5’’

loop 2’’

Node 10

Node 9

Node 7

Node 2’

Node 3’ Node 4’

Node 5’

Node 6’

loop 2’

loop 1’

Node 8

CU−CPU Switch

Candidate for
Execution on CU

Executable on CPU
as Software

• For each loop nest forming the kernel currently under
consideration, allcombinationsof assigning all loop
levels to SW to moving all loop levels into the CU are
generated ascandidates. For example, in Figure 6.a, the
variations of executing the nestedloop1 and loop2 all
on the CPU, executing the outerloop1 on the CPU and
the innerloop2 as a CU, to executing both loops as CU,
are created (shown in Figure 6.b).

• Inside each of these candidates, a graph of all execution
paths through all of the C basic blocks is built. This
graph also marks the nodes that are infeasible in a CU
(non-inlineable function call, floating-point arithmetic). In
Figure 7, such paths are shown in dashed lines.

Fig. 7. Execution frequency-based path selection

CU−infeasibleCU−feasible

Software
CU

CU−CPU Mode Switch

CU−CPU Mode Switch

From these two data structures, the CU for the kernel is
then assembled at the granularity of C basic blocks. Initially,

Application # Kernels # Candidates # CUs % Instructions
executed on CUs

versatility 20 11 9 80
adpcm 1 1 1 80
g.721 10 7 2 33
capacity 22 20 5 40
pegwit 83 47 11 50

TABLE II

EFFECT OF PATH-BASED PARTITIONING

a path is selected leading from the entry into the kernel to the
exit. This path will encompass the most frequently executed
basic blocks (thicker lines in Figure 7). As long as there is still
area available on the PLD, secondary paths are grown along
this primary path, also favoring the more frequently executed
blocks.

In this fashion, the partitioning algorithm tries to greedily
move the largest possible part of the kernel onto the CU. Basic
blocks that have been marked infeasible beforehand or that do
not fit on the RF remain in SW.

At this stage, the final decision whether to actually imple-
ment the candidate on the RF has not been made. This occurs
only after the communication costs have been considered (fre-
quency of HW/SW switches and amount of data transferred),
and the CU speedup over the CPU has been estimated. For
simplicity, the latter is currently calculated by just summing
the flat execution times of SW instructions and HW operators
in cycles, taking into account the CPU and RF clock speeds.

Table II shows the effect of first picking candidates from all
the kernels in the input program and then only realizing the
most promising ones as actual CUs. In this fashion, between
33. . . 80% of the instructions executed by the programs can be
accelerated by implementation in a CU.

VI. H ARDWARE SYNTHESIS

After the CUs destined for actual HW implementation have
been selected from the candidates, the underlying logic is
synthesized.

First, this step creates separate control and data flow graphs
(CFG and DFG) in the static single-assignment form (SSA)
[18] [17] from the intermediate representation of the C
program. In this form, each variable is assigned to exactly
once. When the C source program would require multiple
assignments, these all occur to separate pseudo-variables that
are then resolved into a single assignment by a so-calledΦ
function. This SSA form is not only useful for HW synthesis,
but also allows the efficient realization of other optimization
passes (e.g., constant propagation, strength reduction, etc.
[18])

The operator nodes in the DFG are mapped to actual
HW operators, composed from RF PEs, by accessing the
GLACE [14] module library using the FLAME [15] interface.
GLACE contains a wide variety of parametrizable module
generators covering all C operators (arithmetic, logic, memory
accesses) as well as system interfaces (dedicated I/O registers

Fig. 8. Access to GLACE module generator library via FLAME API

Synthesis

Floorplanning

Place&Route

FLAME

Manager

FLAME

Interface

FLAME

Interface

Design Data

Module Generator Library

Replies

Main Design Flow

add

mult

logic

abs

Queries

for communication with the CPU). TheΦ nodes are mapped
to multiplexers, also supplied by GLACE. In this fashion, the
datapath portion of the CU is assembled. Figure 9 shows an
example of such a datapath.

Fig. 9. Sample datapath with CPU and memory interfaces

IO_DATAOUT

R0 R1 R2 R3

inregirqreg inreg outreg

Op1 Op2 Op3 Op5Op4

IO_SEL

IO_ADDRESS

IO_DATAIN

M
em

o
ry

 In
te

rf
ac

e
(o

n
ly

 C
ac

h
e−

P
ar

t
sh

o
w

n
)

C
U

−C
P

U
−I

n
te

rf
ac

e

+ − reg

CACHE_ADDR

CACHE_WRITE

reg

CACHE_READ

reg

Select from controller

Select from controller

CACHE_STALL

CACHE_WIDTH_32BIT

CACHE_WECACHE_OE

CACHE_WIDTH_16BIT
to controller

CU_DONE

CU_START

Fig. 10. Controller model used by COMRADE

Conditional
control
expression

Computation Cancel

Dataflow

5cl 7cl 9cl 11cl6cl

1 2 3 4

Op Op Op Op Op

Op

Speculatively executed conditional alternatives

Analogously, the CFG is converted into the controller part
of the CU. Since it has a more irregular structure, the compiler

creates it by using the encapsulated UCB SIS logic synthesis
package [19].

Compared to many other efforts, the Petri net-based con-
troller architecture used in COMRADE is significantly more
powerful. It supports dynamic scheduling for variable-latency
operators (e.g., cached memory accesses) as well as spec-
ulative execution. The latter means that all branches of a
conditional are executed simultaneously. The final result is
committed as soon as the control expression and the value of
the corresponding branch is stable. Additionally, still executing
computations on untaken branches can be canceled, discarding
their data and immediately freeing their pipelines for a new
set of input values.

In the example of Figure 10, the value of the conditional
control expression is known after 6 clock cycles. Assuming the
value of 2 for the control expression, the output of the entire
conditional block is known after 7 clock cycles, the slower
operators on inputs 3 and 4 no longer delay the calculation.
These shortcut evaluations are fully exploited by the dynamic
scheduling in the controller.

A potential disadvantage of this controller realization is that
the number of HW registers (flip-flops) grows in the square of
number of dependencies (both data and control) between HW
operators. However, since the maximum number of operands
of a C operator is three (for the ternary ‘?:’), the degree of
the operator nodes is bounded.

Table III presents some characteristics of individual kernels
in our benchmark suite. Specifically, it shows that both the
size of the datapaths as well as that of the controller (despite
the theoretical quadratic growth) are well manageable on the
capacities of current PLDs.

VII. R ECONFIGURATIONSCHEDULING

With the long reconfiguration times of current PLD (com-
pared to the system clock rate), proper scheduling of recon-
figurations is crucial. In earlier systems such as Nimble [20],
only a single CU was loaded onto the RF (realized by a
Xilinx Virtex 1000 FPGA) at a time, using full reconfiguration.
In most cases, the glacial reconfiguration speed of the PLD
allowed only a single kernel to be executed as CU. Even a
single switch between different CUs would have obliterated
any possible speed-up.

Given the relatively small area requirements of our CUs
(see previous Section) compared to modern PLD capacities,
we can gainfully employ the configuration merging approach
to put multiple CUs into a single configuration. Often, this is
all that is required to completely hold the CUs of an entire
application. However, for more complex applications, the set
of CUs has to be partitioned into individual configurations. To
further reduce configuration times, the same CU may occur in
multiple different configurations (overlap).

We have developed two methods for actually merging CUs
into configurations [21]. The first one relies on the CU exe-
cution order, described as a trace collected during a program
run. This trace is then evaluated using a dynamic programming

Application / CU #Datapath Ops. # Controller FFs
versatility

readimage.11 12 29
block quantize.32 26 59
block RLE encode.46 31 79
block RLE encode.34 78 184
entropyencode.14 7 23
hufenc.12 24 54
fcdf22.28 27 57
fcdf22.21 40 89
fcdf22.14 28 60

adpcm
main.70 109 278

G.721
update.126 12 39
update.119 42 126

capacity
get freq.16 10 34
printbin16.8 6 17
printVHDL.29 4 13
printVHDL.22 6 24
createinput file.14 8 21
createoutput file.32 6 17
createoutput file.25 6 24

pegwit
gfInit.52 11 37
gfInit.44 18 53
gfAdd.51 20 4
gfReduce.23 30 95
gfMultiply.86 4 81
gfMultiply.59 3 52
gfSmallDiv.38 29 84
gfAddMul.64 19 62
gfAddMul.52 29 86
gfAddMul.39 16 52

TABLE III

CU DATAPATH AND CONTROLLER AREA REQUIREMENTS

Appl. RF Area Unmerged Optimal Heuristic
[Cells] #Reconf. #Rc. Time [s] #Rc. Time [s]

versatility 1920 4304 4 2.59 5 < 0.01
5120 11171 2689 0.01 3586 0.01

capacity 1920 2016 2 < 0.01 2 < 0.01
5120 1473 1 < 0.01 1 0.03

pegwit 1920 4056 1285 7.69 1286 < 0.01s
5120 8706 1919 8.15s 4733 0.01

TABLE IV

OPTIMAL AND HEURISTICAL CONFIGURATION MERGING

algorithm that computes the optimal packing for the minimal
number of reconfigurations (shown in Table IV).

While the savings in reconfigurations are already significant
(e.g., reducing the number from 4304 of a single-CU version
down to 4 for merged CUs), it becomes apparent that our
approach of greedily building the largest possible CUs in the
partitioning step (Section V) leads to inefficiencies when the
the reconfiguration behavior is factored in. This occurs, e.g., in
the versatility application when targeting a larger RF, having
5120 instead 1920 PEs. With the larger size, more paths could
be moved to the CUs. However, the larger CUs allow less
merging and require more reconfigurations to switch between
them (2689 instead of 4).

Thus, it would be more efficient to actually consider re-
configuration behavior in the partitioning step. To this end,
we have also developed a heuristic that can estimate con-
figuration schedules from the static program structure and
flat execution counts, without the need to consult a possibly
very long execution trace. This heuristic can also reduce the
number of reconfigurations significantly (in some cases closely
approaching the optimal solution), but generally requires only
a fraction of the execution time (in extreme cases three orders
of magnitude less). It is thus suitable for inclusion in the cost
function of the path construction partitioning algorithm. This
refinement is planned for the next revision of our partitioning
phase.

VIII. CU A RCHITECTURE

After assigning CUs to configurations, the complete HW
is generated for the RF. Shown in Figure 9, this not only
includes the datapath and controllers for each CU, but also the
multiplexer network for quickly switching between different
CUs. This multiplexer network connects to the central CPU-
RF interface (calledwrapper) that is shared between the CUs
in the configuration.

This interface consists of two main components. First, the
control part is used for system management functions (e.g.,
selecting the active CU, starting CU execution, indicating
HW-SW switch to CPU) as well as CPU-CU data transfer.
The latter is currently realized by mapping the dedicated I/O
registers that were earlier synthesized as part of the DFG
into the CPU address space. In a more tightly integrated
system, this might be realized differently, e.g., by treating the
I/O registers as shared CPU registers. Second, the wrapper
also holds the memory interface. It allows the CUs access
to the shared memory in master-mode, supported by caches
for irregular access patterns and buffered streams for regular
accesses. This infrastructure is realized using the Memory
Architecture for Reconfigurable Computers (MARC) [22],
which provides them in a technology-independent and con-
figurable fashion. The latter means, that the number and kind
of logical and physical ports realized can be matched to the
needs of the application. The configuration shown in Figure
9, connecting two cached ports and one stream port to four
RF-local memories and the shared memory (via a BIU bus
interface unit) is just one example and could be varied by
different parameters.

Currently under development is an automatic floorplanning
tool that can automatically integrate the various components
and layout them in a regular manner, attempting to keep
corner turns of the wide databusses to a minimum. For access
to operator topology and timing data, it also relies on the
GLACE/FLAME system.

IX. IP EMBEDDING

We realize, that despite our best efforts, the CUs generated
by the compiler will not be able to match the efficiency of
those manually implemented by expert designers. Thus, we
are currently extending COMRADE to automatically embed

such externally created IP blocks into the compiled CUs. For
the programmer, this will occur as transparently as the calling
of an optimized assembler subroutine from C.

The interfaces between the IP block and CU, including
access to MARC, will be generated automatically from a
parametrized meta-data description of the IP block. We have
already defined a parameter catalog and methodology for
this approach, and demonstrated its feasibility by manually
integrating a Xilinx CoreGen-created FFT core with the CU
wrapper [2].

X. CONCLUSION AND DISCUSSION

While the COMRADE flow is not fully functional yet, with
the back-end step of the floorplanner still under development,
the earlier phases and subsystems are already operational and
capable of generating simulatable models of the CUs.

Even in this early stage, the flow has already advanced
the state of the art over predecessors such as GarpCC [23]
and Nimble [20]. These improvements include the generalized
model of computation, the use of the same parametrized
module library at all stages of the compilation process, and
the merging-based configuration scheduling.

The flow is also ripe with opportunity for further optimiza-
tion. Currently, work is actively proceeding in the following
areas:

• Improving the bit-wise optimization by better analysis
methods, recognizing even more constant and discarded
bits.

• Extending the GLACE module generators to exploit con-
stant and discarded bits in an operator-dependent manner.
E.g., breaking the carry chains of adders and subtractors
in the presence of successive zero bits in operands.

• Adding more loop transformations, leading to more par-
allelism in the DFG. An appropriate analysis frame-
work based on OMEGA [24] has already been added to
COMRADE and the first transformation (scalarization) is
already functional.

• Replacement of the current discrete ACS target platform
with a chip-level solution (VirtexIIpro-based).

When the COMRADE flow is operational down to actual
bitstream generation, it will be very interesting to observe
the effect of these transformations on the system-level per-
formance.

REFERENCES

[1] Koch A. Golze, U., “A Comprehensive Prototyping Platform for
Hardware-Software Codesign”,Proc. Workshop on Rapid Systems Pro-
totyping, Paris (F), 2000

[2] Lange H., Koch A., “Hardware/Software-Codesign by Automatic Em-
bedding of Complex IP Cores”,Proc. Intl. Conf. on Field-Programmable
Logic (FPL), Antwerp (BE), 2004

[3] Yu C.W. et al., “A Smith-Waterman Systolic Cell”,Proc. Intl. Conf. on
Field-Programmable Logic (FPL), Lisbon (PT), 2003

[4] Jarvinen K.U. et al., “A Fully Pipelined Memoryless 17.8 Gbps AES-128
Encryptor”, Intl. Symp. on Field-Programmable Gate Arrays (FPGA),
Monterey (CA, USA), February 2003

Fig. 11. Architecture of CUs and interfaces on RF

BIU
Addr

Data

From/To CPU

Interrupt

Complete RF Configuration

Memory Bus

I/O Bus

I/O Bus

I/O Bus

Memory Bus

Memory Bus

Controller 3

Controller 2

Controller 1

Datapath 2

Datapath 1

Datapath 3

Cache 2

Stream 1

Cache 1

I/O Bus

ExitToSW

MARC
(master)

Control
(slave)

External SRAM Bank 1

External SRAM Bank 2

External SRAM Bank 3

External SRAM Bank 4

SelectCU

C
U

 B
u

s
M

u
x

[5] Rabaey J., “Pleiades: Ultra Low Power Hybrid and Reconfigurable
Computing”,Presentation at Berkeley Wireless Research Center Retreat,
June 1999

[6] Gädke H., Koch A., “Wavelet-based Image Compression on the Recon-
figurable Computer ACE-V”,Proc. Intl. Conf. on Field-Programmable
Logic (FPL), Antwerp (BE), September 2004

[7] Kumar S., Pires L., Ponnuswamy S. et al., “A Benchmark Suite for
Evaluating Configurable Computing Systems - Status, Reflections, and
Future Directions”,Proc. Eighth International Symposium on Field-
Programmable Gate Arrays (FPGA), Monterey (USA), 2000

[8] Barwood G.,http://groups.yahoo.com/group/pegwit/

[9] www.tensilica.com

[10] www.arc.com

[11] www.arm.com

[12] Blodget B., Bobda C., Huebner M., Niyonkuru A. “Partial and Dynam-
ically Reconfiguration of Xilinx Virtex-II FPGAs”,Proc. Intl. Conf. on
Field-Programmable Logic (FPL), Antwerp (BE), 2004

[13] Bobda C., “ESM: The Erlangen Slot Machine - Architecture and
Development Tools”,Proc. Design Automation and Test in Europe
(DATE) Conference, Munich (DE), 2004

[14] Neumann T., Koch A., “A Generic Library for Adaptive Computing
Environments”Proc. Workshop on Field-Programmable Logic (FPL),
Belfast (UK), 2001

[15] Koch A., “On Tool Integration in High-Performance FPGA Design
Flows”, Proc. Intl. Workshop on Field-Programmable Logic (FPL),
Glasgow (UK), 1999

[16] Kasprzyk N., Koch A., “Verbesserte Hardware-Software-Partitionierung
für Adaptive Computer”,Proc. Conf. on Architecture of Computing
Systems (ARCS), Augsburg (DE), 2004

[17] Kasprzyk N., Koch A., Golze U., Rock M., “An Improved Intermediate
Representation for Datapath Generation”,Proc. Intl. Conf. on Engi-
neering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas
(USA), 2003

[18] Muchnik S. S., “Advanced Compiler Design and Implementation”,
Morgan Kaufmann Publishers, San Francisco (USA), 1997

[19] Sentovich, E.M. et al., “SIS: A System for Sequential Circuit Synthesis”,
Electr. Res. Lab. Memo No. UCB/ERL M92/41, Dept. of EE and CS,
UC Berkeley (USA), 1992

[20] MacMillen D., “Nimble Compiler Environment for Agile Hardware, Vol.
1+2”, Report AFRL-IF-WP-TR-2002-1536, Information Directorate, Air
Force Research Laboratory, USA, 2001

[21] Kasprzyk N., van der Veen J. C., Koch A., “Configuration Merging
for Adaptive Computer Applications”,Proc. Intl. Workshop on Field-
Programmable Logic (FPL), Tampere (FI), 2005

[22] Lange H., Koch A. “Memory Access Schemes for Configurable Proces-
sors”,Proc. Intl. Workshop on Field-Programmable Logic and Applica-
tions (FPL), Villach (AT), 2000

[23] Callahan T., Hauser J., Wawrzynek J., “The Garp Architecture and C
Compiler”, IEEE Computer, Vol. 33, No. 4, April 2000

[24] Pugh W., “Uniform techniques for loop optimization”,Proc. Intl. Conf.
on Supercomputing, 1992

