
Optimizations and Performance of a
Robotics Grasping Algorithm

described in Geometric Algebra

Florian Wörsdörfer1, Florian Stock2,
Eduardo Bayro-Corrochano3, and Dietmar Hildenbrand1

1 Technische Universität Darmstadt (Germany),
Graphical Interactive Systems Group

2 Technische Universität Darmstadt (Germany),
Embedded Systems and Applications Group

3 CINVESTAV Guadalajara (Mexico)

Abstract. The usage of Conformal Geometric Algebra leads to algo-
rithms that can be formulated in a very clear and easy to grasp way.
But it can also increase the performance of an implementation because
of its capabilities to be computed in parallel. In this paper we show how
a grasping algorithm for a robotic arm is accelerated using a Conformal
Geometric Algebra formulation. The optimized C code is produced by
the CGA framework Gaalop automatically. We compare this implemen-
tation with a CUDA implementation and an implementation that uses
standard vector algebra.

Key words: Conformal Geometric Algebra, Robot Grasping, CUDA,
Runtime Performance

1 Introduction

While points and vectors are normally used as basic geometric entities, in the
5D conformal geometric algebra we have a wider variety of basic objects. For
example, spheres and circles are simply represented by algebraic objects. To
represent a circle you only have to intersect two spheres, which can be done with
a basic algebraic operation. Alternatively you can simply combine three points
to obtain the circle through these three points. Similarly, transformations like
rotations and translations can be expressed in an easy way. For more details
please refer for instance to the book [3] as well as to the tutorials [6] and [4].

In a nutshell, geometric algebra offers a lot of expressive power to describe
algorithms geometrically intuitive and compact. However, runtime performance
of these algorithms was often a problem. In this paper, we investigate a geo-
metric algebra algorithm of the grasping process of a robot [5] from the runtime
performance point-of-view.

At first we present an alternative solution of the grasping algorithm using
conventional mathematics and use its implementation as a reference for two

2 Performance of a Grasping Algorithm in Geometric Algebra

optimization approaches. These approaches are based on Gaalop [7], a tool for the
automatic optimization of geometric algebra algorithms. We use the optimized
C code of Gaalop in order to compare it with our reference implementation. In
the next step we implement this C code also on the new parallel CUDA platform
[11] and compare the runtime performance with the other two implementations.

2 The Grasping Algorithm with Conventional
Mathematics

In this chapter we give a description of the algorithm described below using
standard vector algebra and matrix calculations. To keep this version comparable
to the one using geometric algebra the same amount of work and time has been
spend for both. We assume that all necessary data has been extracted from the
stereo images as explained in Section 4.1.

The circle zb is the circumscribed circle of the triangle ∆b which is formed by
the three base points. To compute its center two perpendicular bisectors have to
be constructed. The intersection of them is the center point pb of zb. First the
middle points m12 = 1

2 (xb1 +xb2) and m13 = 1
2 (xb1 +xb3) of two sides of ∆b are

computed.
Next the direction vectors d12 = (xb2 − xb1)× nb and d13 = (xb3 − xb1)× nb

are needed to construct the perpendicular bisectors. For this the normal vector
nb = (xb2 − xb1)× (xb3 − xb1) of the plane defined by the base points has to be
constructed.

Now the perpendicular bisectors pb12 and pb13 and their intersection pb can
be computed:

pb = m12 + λ12S
· d12 = m13 + λ13S

· d13 (1)

The circle zb has to be translated in the direction of the normal vector nb
of the plane πb in which zb lies in. The distance zb has to be translated is half
the distance d = nb

|nb| (xa − pb) between the point xa and the plane πb. So the
translation vector is Tb = 1

2d ·
nb

|nb| . The normal vector of the plane in which zt
lies in equals the one of zb, so nt = nb.

To be able to compute the necessary rotation the normal vector of the plane
in which the gripper lies in has to be constructed. The robot is able to extract
the center ph of the gripper circle and two additional points g1 and g2 on it from
the stereo pictures. With that the normal vector nh = (g1 − ph) × (g2 − ph) of
the gripper plane can be computed.

Because the needed rotation axes is perpendicular to the plane that is spanned
by nh and nt its normal vector nth = nh × nt has to be computed. With the
vector nth the rotation axes lR = lR = ph + λ · nth can be described.

The translation vector lT = pt − ph is just the difference of the two circle
centers.

The angle between the two planes in which the circles lie in is equal to the
angle between their normal vectors, so φ = acos

(
nh·nt

|nh||nt|

)
.

Performance of a Grasping Algorithm in Geometric Algebra 3

To perform the final rotation the following steps are necessary: compute the
normalized rotation vector n = nth

|nth| , translate the rotation axes into the origin
using RTorig, compute the rotation using R and finally translate the axes back
with RTback.

RTorig =

1 0 0 0
0 1 0 0
0 0 1 0
−ph1 −ph2 −ph3 1

RTback =

1 0 0 0
0 1 0 0
0 0 1 0
ph1 ph2 ph3 1

 (2)

c = cos(φ), s = sin(φ), m = 1− cos(φ) (3)

R =

n2

1m+ c n1n2m+ n3s n1n3m− n2s 0
n1n2m− n3s n2

2m+ c n2n3m+ n1s 0
n1n3m+ n2s n2n3m− n1s n2

3m+ c 0
0 0 0 1

 (4)

Finally the transformation can be computed by translating and rotating the
points g1 and g2 from which the new position of the gripper circle can be derived.

3 Gaalop

The main goal of Gaalop is the combination of the elegance of algorithms using
geometric algebra with the generation of efficient implementations.

Gaalop uses the symbolic computation functionality of Maple (together with
a library for geometric algebras [1]) in order to optimize the geometric algebra al-
gorithm developed visually with CLUCalc [12]. Gaalop computes the coefficients
of the desired variable symbolically, returning an efficient implementation.

3.1 The Main Data Structure of Gaalop

The main data structure of Gaalop is an array of all the basic algebraic entities.
They are called blades and are the basic computational elements and the basic
geometric entities of geometric algebras. The 5D conformal geometric algebra
consists of blades with grades 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade
(blade of grade 0). The element of grade five is called the pseudoscalar. A linear
combination of blades is called a k-vector. So a bivector is a linear combination
of blades with grade 2. Other k-vectors are vectors (grade 1), trivectors (grade
3) and quadvectors (grade 4). Furthermore, a linear combination of blades of
different grades is called a multivector. Multivectors are the general elements
of a geometric algebra. Table 1 lists all the 32 blades of conformal geometric
algebra with all the indices as used by Gaalop. The indices indicate 1: scalar,
2 . . . 6: vector, 7 . . . 16: bivector, 17 . . . 26: trivector, 27 . . . 31: quadvector, 32:
pseudoscalar.

A point P = x1e1 + x2e2 + x3e3 + 1
2x

2e∞+ e0 for instance can be written in
terms of a multivector as the following linear combination of blades

P = x1 ∗ blade[2] + x2 ∗ blade[3] + x3 ∗ blade[4] +
1
2
x2 ∗ blade[5] + blade[6] (5)

4 Performance of a Grasping Algorithm in Geometric Algebra

For more details please refer for instance to the book [3] as well as to the tuto-
rials [6] and [4].

Table 1. The 32 blades of the 5D conformal geometric algebra with the corresponding
indices used by Gaalop.

index blade grade

1 1 0

2 e1 1

3 e2 1

4 e3 1

5 e∞ 1

6 e0 1

7 e1 ∧ e2 2

8 e1 ∧ e3 2

9 e1 ∧ e∞ 2

10 e1 ∧ e0 2

11 e2 ∧ e3 2

12 e2 ∧ e∞ 2

13 e2 ∧ e0 2

14 e3 ∧ e∞ 2

15 e3 ∧ e0 2

16 e∞ ∧ e0 2

index blade grade

17 e1 ∧ e2 ∧ e3 3

18 e1 ∧ e2 ∧ e∞ 3

19 e1 ∧ e2 ∧ e0 3

20 e1 ∧ e3 ∧ e∞ 3

21 e1 ∧ e3 ∧ e0 3

22 e1 ∧ e∞ ∧ e0 3

23 e2 ∧ e3 ∧ e∞ 3

24 e2 ∧ e3 ∧ e0 3

25 e2 ∧ e∞ ∧ e0 3

26 e3 ∧ e∞ ∧ e0 3

27 e1 ∧ e2 ∧ e3 ∧ e∞ 4

28 e1 ∧ e2 ∧ e3 ∧ e0 4

29 e1 ∧ e2 ∧ e∞ ∧ e0 4

30 e1 ∧ e3 ∧ e∞ ∧ e0 4

31 e2 ∧ e3 ∧ e∞ ∧ e0 4

32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

3.2 Use of Gaalop

For our application Gaalop is used in the following way: At first our algorithm
is described using CLUCalc. One big advantage of CLUCalc is that the algo-
rithm can be developed in an interactive and visual way. Another advantage is
that the algorithm can be already verified and tested within CLUCalc. Gaalop
uses this CLUCalc code in the next step in order to compute optimized mul-
tivectors using its symbolic optimization functionality. Leading question marks
in the CLUCalc code indicate the variables that are to be optimized. Gaalop
automatically generates C code for the computation of all the coefficients of the
resulting multivectors. This C-Code is used as a basis for our CPU as well as
our CUDA implementation.

4 The Algorithm in Geometric Algebra and its
Optimization

The algorithm used here is based on the robotics algorithm described in the
paper [5]. It is used by the robot ”‘Geometer”’ and can be downloaded as a
CLUScript from [8].

Performance of a Grasping Algorithm in Geometric Algebra 5

4.1 Interface and Input Data

The algorithm needs four points that identify the object to be grasped. The
robot acquires these points by taking a calibrated stereo pair of images of the
object and extracting four non-coplanar points from these images.

After the points are gathered the orientation of the object has to be deter-
mined. For this the distance from one point to the plane spanned by the other
three points is calculated. The point with the greatest distance da is called apex
point xa while the others are called base points xb1 , xb2 , xb3 .

We assume that all the steps described above are already performed. So the
starting point for our algorithm is the situation shown in Figure 1. The aim of
the algorithm is now to compute the necessary translation and rotation for the
gripper of the robot arm so that it moves to the middle of the base points and the
apex point. This is done by first computing the grasping circle zt as a translation
of the base circle zb. Then the necessary translator and rotor are computed to
move the gripper circle zh. The position of the gripper is also extracted from the
stereo pictures by tracking its center and two screws on its rim.

Fig. 1. The four points
identifying the object to
be grasped.

Fig. 2. Comparison of performance: The Gaalop code is
up to fourteen times faster than the conventional math.
The CUDA implementation gives a further performance
improvement.

4.2 Short Description in Geometric Algebra

In this section we give a short description of the grasping algorithm using geo-
metric algebra. The code of the listing in Figure 3 can be directly pasted into
a CLUScript to visualize the results. The same code is used with Gaalop to
produce the optimized C code. In our case we noticed that the BasePlane is
needed as an intermediate expression to avoid the construction of extreme large
expressions causing long computation times or sometimes even abnormal pro-
gram termination. For the same reason the products T*R and ~R*~T in the last
line also were generated as intermediate results. Also Gaalop can only optimize

6 Performance of a Grasping Algorithm in Geometric Algebra

zb_d = xb1 ^ xb2 ^ xb3;

?zb = *zb_d;

?BasePlane = *(zb_d ^ einf);

NVector = (BasePlane * einf).e0;

NLength = abs(NVector);

NVector = NVector/NLength;

Plane = BasePlane/NLength;

d_a=(xa.Plane)*NVector;

?T = 1 + 0.25 * d_a * einf;

?z_t = T * zb * ~T;

S_h = VecN3(g1,g2,g3)

- 0.5*(g4*g4)*einf;

Pi_h = -e2;

?z_h = S_h ^ Pi_h;

s_h = -0.5*S_h*einf*S_h;

S_t = *z_t / ((*z_t) ^ einf);

s_t = -0.5*S_t*einf*S_t;

?l_T = s_h ^ s_t ^ einf;

?d = abs(l_T);

?l_T = l_T / d;

l_h = z_h ^ einf;

l_t = z_t ^ einf;

?Pi_th = l_t ^ (l_h*(einf^e0));

l_r_direct = s_h ^ (*Pi_th) ^ einf;

?l_r = *l_r_direct / abs(l_r_direct);

?phi = acos((l_t.l_h)

/ (abs(l_t)*abs(l_h)));

?R = cos(0.5*phi) - l_r*sin(0.5*phi);

?T = 1 + 0.5*d*l_T*einf;

?z_h_new = T*R*z_h*~R*~T;

Fig. 3. This is a CLUScript implementing the complete grasping algorithm. Only con-
crete values for the points of the object and the position of the gripper are missing.

the arguments of function calls like abs or acos. In order to compute the target
circle first the base circle zb = xb1 ∧ xb2 ∧ xb3 (the blue one depicted in Figure
1) has to be compute and translated in the direction and magnitude of da

2 with
the translator Tb = 1 + 1

4dae∞. This gives the grasping circle zt = TbzbT̃b.
Now that the final position the gripper has to reach is known the necessary

translation and rotation can be computed. To get the translator T the translation
axes l∗T = ph ∧ pt ∧ e∞ is needed. It is defined by the center points pt = zte∞zt
and ph = zhe∞zh of the two circles zt and zh. Also the distance between pt
and ph has to be computed. It is given by d = |l∗T |. Finally the translation is
T = 1 + 1

2∆d lT e∞.
To compute the rotor R the axes of the circles zt and zh have to be used.

They are l∗t = zt ∧ e∞ and l∗h = zh ∧ e∞ and are needed to calculate the plane
π∗th = l∗t∧(l∗he0∧e∞). This plane is used to get the rotation axes l∗r = ph∧πth∧e∞.
The angle between the two circles can be computed with the help of the inner
product of their axes which gives cos(φ) = l∗t ·l

∗
h

|l∗t ||l∗h|
. Finally the rotor is R =

e−
1
2∆φ lr = cos(1

2∆φ)− lrsin(1
2∆φ).

4.3 C Code Generated by Gaalop

Because the C code Gaalop generates is quite large only a small portion of it will
be given here. The following listing shows an excerpt of the C code for the first
question mark from the listing above. For brevity zb[8] to zb[16] have been
omitted.

float zb[32] = {0.0};
zb[7]=-xb3[4]*xb1[5]*xb2[6]+xb3[4]*xb1[6]*xb2[5]+xb2[4]*xb1[5]*xb3[6]

-xb2[4]*xb1[6]*xb3[5]+xb1[4]*xb2[6]*xb3[5]-xb1[4]*xb2[5]*xb3[6];

Performance of a Grasping Algorithm in Geometric Algebra 7

zb[8]=xb2[3]*xb1[6]*xb3[5]-xb2[3]*xb1[5]*xb3[6]-xb3[3]*xb1[6]*xb2[5]
-xb1[3]*xb2[6]*xb3[5]+xb1[3]*xb2[5]*xb3[6]+xb3[3]*xb1[5]*xb2[6];

...

5 The CUDA Implementation

General Purpose Graphics Processing Unit (GPGPU) are gaining much attention
as cheap high performance computing platforms. They developed from special-
ized hardware, where general problems could only be computed by mapping the
problem to the graphics domain, to versatile many-core processors. These offer,
depending on the manufacturer, different programming models and interfaces.
As our hardware is a NVIDIA based GTX 280 board, we use CUDA [11]. Other
possibilities would be vendor independent RapidMind [10] or Brook++ [2], or
the new OpenCL standard from the Khronos Group [9].

The GTX 280 consists of 30 multiprocessors, with each containing 8 parallel
floating point data paths operating in a SIMD-like manner, i.e. they basically
execute the same operation with different data. Are more threads scheduled the
hardware automatically uses this to hide memory latencies.

As the computation for the grasping algorithm contains no control flow and
access of the input pure sequential, further architectural particularities (i.e. mem-
ory organisation, control flow in parallel task) can be ignored. For a more detailed
information about the architecture see the documentation [11].

The implementation of the grasping algorithm uses the same code for the
computation as for the CPU. The hundreds of parallel data paths are utilized
by computing in each thread a separate point.

In the following benchmarking, the host system was the benchmarked CPU
system, and the measured times include the time to transfer the input onto the
onboard memory and the time to transfer the result back to the host system.

6 Performance Measurements

Table 2 shows that the Gaalop code without any further manual improvements
is up to fourteen times faster than the code derived from the conventional math
algorithm although it seems to be sensitive to the quality of the input data. The
reason for that is subject to further studies. Two third of the time needed by
the implementation using conventional math is used for the calculation of the
rotation matrices. The CUDA implementation is more than three times faster
than the Gaalop code.

In Figure 2 the time needed to compute one single intermediate step is plotted
against the used number of data sets and the number of computed intermediate
steps. It shows that the time needed to calculate one intermediate result is
independent of the total number of intermediate steps and the number of used
data sets for all implementations. Only the CUDA implementation gains a slight
benefit from a higher number of intermediate steps because of the additional
memory transfers.

8 Performance of a Grasping Algorithm in Geometric Algebra

The performance measurements were conducted on a Pentium Core2Duo
clocked at 3.06 GHz by taking the time to calculate a certain number of inter-
mediate steps with a various number of random data sets. One data set consists
of 3D-Cartesian coordinates for seven points. The algorithm is capable of cal-
culating an arbitrary number of intermediate results to represent the motion of
the gripper.

Table 2. Time needed to compute a single intermediate point using a total of 1000
data sets with 240 intermediate points and the according speedup factor.

Implementation Time [µs] Speedup

conventional math CPU 3.50 1

CGA CPU 0.25 14

CGA CUDA 0.08 44

7 Conclusion

In this paper, we compared three implementations of an algorithm for the grasp-
ing process of a robot from the performance point of view. The basic algorithm
was developed using the geometrically very intuitive mathematical language of
geometric algebra. It turned out that the geometric algebra algorithm when op-
timized with the Gaalop tool can be up to fourteen times faster than the conven-
tional solution based on vector algebra. Another improvement can be achieved
when implementing this optimized code on the parallel CUDA platform.

References

1. R. Ablamowicz and B. Fauser. The homepage of the package Cliffordlib. HTML
document http://math.tntech.edu/rafal/cliff9/, 2005. Last revised: September 17,
2005.

2. Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: Stream computing on graphics hard-
ware. ACM Transactions on Graphics, 23:777–786, 2004.

3. L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science, An
Object-Oriented Approach to Geometry. Morgan Kaufman, 2007.

4. D. Hildenbrand. Geometric computing in computer graphics using conformal geo-
metric algebra. Computers & Graphics, 29(5):802–810, 2005.

5. D. Hildenbrand, E. Bayro-Corrochano, and J. Zamora. Inverse kinematics compu-
tation in computer graphics and robotics using conformal geometric algebra. In
Advances in Applied Clifford Algebras. Birkhuser, 2008.

6. D. Hildenbrand, D. Fontijne, C. Perwass, and L. Dorst. Tutorial geometric algebra
and its application to computer graphics. In Eurographics conference Grenoble,
2004.

Performance of a Grasping Algorithm in Geometric Algebra 9

7. D. Hildenbrand and Joachim Pitt. The Gaalop home page. HTML document
http://www.gaalop.de, 2008.

8. Dietmar Hildenbrand. Home page. HTML document
http://www.gris.informatik.tu-darmstadt.de/ dhilden/, 2009.

9. Khronos Group. OpenCL Specification 1.0, June 2008.
10. Michael D. McCool. Data-Parallel Programming on the Cell BE and the GPU

using the RapidMind Development Platform. Rapidmind, 2006.
11. NVIDIA Corp. NVIDIA CUDA Compute Unified Device Architecture – Program-

ming Guide, June 2007.
12. C. Perwass. The CLU home page. HTML document http://www.clucalc.info,

2008.

