
Gaalop 2.0 - A Geometric Algebra Algorithm Compiler

Christian Schwinn
TU Darmstadt, Germany

Department of Computer Science
schwinn@rbg.informatik.tu-darmstadt.de

Dietmar Hildenbrand
TU Darmstadt, Germany

Department of Computer Science
Interactive Graphics Systems Group

dhilden@gris.informatik.tu-darmstadt.de

Florian Stock
TU Darmstadt, Germany

Department of Computer Science
Embedded Systems and Applications Group

stock@esa.informatik.tu-darmstadt.de

Andreas Koch
TU Darmstadt, Germany

Department of Computer Science
Embedded Systems and Applications Group

koch@esa.informatik.tu-darmstadt.de

ABSTRACT

In recent years, Geometric Algebra (GA) has become more and more popular in fields of science and engineering
due to its potential for compact algorithms. However, the execution of GA algorithms and the related need for
high computational power is still the limiting factor for these algorithms to be used in practice. Multivectors in
5D Conformal Geometric Algebra consist of 32 elements, each of which have to be calculated per basic operation.
A nice property of Geometric Algebra is that elements of a multivector can usually be calculated independently.
Therefore, it would be desirable to automatically detect parts that can be calculated in parallel by a software tool. In
this paper, we present Gaalop 2.0, a Geometric Algebra Algorithm Compiler, which takes as input the description
of a GA algorithm, symbolically optimizes the output multivectors and compiles the optimized code into a target
language source file like C++, for instance. For each output multivector the code for non-zero coefficients is
generated, which is finally adjusted to contain only basic arithmetic operations instead. This allows the optimized
output to be compiled for different parallel computing platforms like FPGAs, for instance.

Keywords: Geometric Algebra, Geometric Computing, Compiler, Optimization, FPGA, Parallel Computing.

1 INTRODUCTION
Geometric Algebra is a mathematical framework that
facilitates the development of algorithms in different
fields of engineering and research. Algorithms in GA
are geometrically intuitive and very compact compared
to conventional approaches. Though, a major drawback
is the increased runtime, which is an implication of high
dimensions in multivectors of geometric algebras (2n

for dimension n). In order to make GA algorithms com-
parable to standard implementations, it is necessary to
find optimizations that lead to a better runtime perfor-
mance. Fortunately, the components of a multivector
can be calculated independently of each other. Imple-
menting multivectors as a set of coefficients with as-
sociated blades1 makes it possible to find algebraic ex-
pressions for each coefficient separately. These coef-
ficients can actually be calculated simultaneously, e.g.
using parallel computing devices such as FPGAs. In
this paper, we present Gaalop (Geometric Algebra Al-
gorithm Optimizer), a compiler that calculates the very
expressions for multivector components.

Gaalop optimizes Geometric Algebra algorithms
written with the help of the CLUCalc software by
Christian Perwass [7], using symbolic simplification

1 Blades are the basic geometric entities in geometric algebras. Multi-
vectors consist of a linear combination of blades of different grades.

backed by a Computer Algebra System (CAS), and
compiles the output to different target languages.
The optimized code has no more Geometric Algebra
operations and is ready to be run efficiently on various
platforms, particularly on parallel computing architec-
tures. This software is based on [4], a proof-of-concept
implementation for high performance computing based
on Conformal Geometric Algebra with a preliminary
version Gaalop.

This paper introduces Gaalop 2.0, a new version
which has been completely rewritten in order to sup-
port multiple operating systems2. Gaalop 2.0 incorpo-
rates multiple new features, primarily the support for
control flow instructions and code generation for paral-
lel computing platforms. We describe the optimization
and compilation process performed by Gaalop.

This document is organized as follows: Section 2
shows related work to the field of GA implementations,
Section 3 describes the input format based on CLUCalc.
Section 4 gives an overview of the intermediate repre-
sentation that is used between the compilation steps. In
Section 5 we show the optimization process. Section
6 concludes this paper and gives an outlook to future
work.

2 Note that the first version of Gaalop has been Windows-only.

2 RELATED WORK
Gaigen [3] is a Geometric Algebra implementation gen-
erator that focuses on the generation of C++ code for
specified algebra definitions. Given a signature and
metric of a Geometric Algebra, Gaigen generates code
that can be embedded into C++ applications directly.
Generating code is quite a simple operation that does
not require too much knowledge about Geometric Alge-
bra features. However, implementations do not contain
optimizations by default and thereby suffer from per-
formance lacks that can only be eliminated by applying
optimizations manually. This requires to identify spe-
cial cases in which multivectors can be reduced in size
(called specializations), for instance geometric enti-
ties like spheres which have only 1-dimensional blades
(rather than bivectors, trivectors, etc.). Therefore, de-
tailed knowledge is required by the use, since special-
izations cannot be deduced automatically. Gaalop does
not require the step of manual optimization because
multivectors are decomposed into their coefficients of
basis blades and only non-zero coefficients are relevant
to the generated output.

3 INPUT FORMAT
Gaalop 2.0 supports a subset of CLUScript, a script lan-
guage for the 3D visualization and scientific calculation
software CLUCalc/CLUViz [7]. Previous versions of
Gaalop supported only sequential algorithms without
conditional branches, loop statements or user-defined
function calls. These are new features introduced in
Gaalop 2.0. Table 1 shows the supported features.

CLUScript feature supported
algebra definition yes
pre-defined algebra functions yes
macros yes
null-space definition yes
inner / outer / geometric products yes
if-statements yes
loops not yet
variable lists / scopes / references no
point operators no
drawing / plotting functionality no
LATEX rendering no

Table 1: CLUScript support in Gaalop 2.0

Restrictions to the full set of CLUScript features
mainly concern visualization features or syntactic sugar
like variable references or scopes.3

3 Note that the ? operator is interpreted in a slightly different way than
in CLUScript. In terms of Gaalop, this operator is used as a marker
for lines of the input code for which the optimized output code should
be generated. Variables or lines that are not marked accordingly will
be processed by Gaalop to find simplified expressions for multivector
coefficients but not generated as output code explicitly.

Figure 1: Screenshot of the CLUViz visualization window. Slid-
ers can be used to modify input parameters. The check box on the
bottom right allows to switch between original code and Gaalop opti-
mized code. Errors in the optimized code would immediately become
visible when switching modes.

Example

P = VecN3(px,py,pz); // view point
M = VecN3(mx,my,mz); // center point of earth
S = M-0.5*r*r*einf; // sphere representing earth
K = P+(P.S)*einf; // sphere around P
?C=S^K; // intersection circle

Listing 1: Sample input code showing a CLUScript file. Variables
px, py, pz and mx, my, mz are free variables that will be handled
symbolically.

Listing 1 shows a sample input script. To illustrate
the compilation process step by step, this code is taken
as an example throughout this document. The task is
to calculate an algebraic expression of the horizon on
the earth viewed from an arbitrary point P . The earth
is represented by a sphere S with center M and radius
r (line 3). Line 4 defines a sphere K around view point
P . The radius of this sphere is defined by the inner
product of P and S, which corresponds to the squared
distance between P and any point on S that touches a
tangent through P . Thus, K has exactly the radius that
matches the distance of the horizon to P . Finally, line
5 calculates the intersection circle C, which models the
horizon.

Figure 1 shows how the CLUViz visualization win-
dow looks like. The earth sphere S is drawn in blue
color, the view point P in red. The sphere K around
P is indicated in light green. The intersection circle is
finally drawn in red color.

4 INTERMEDIATE REPRESENTA-
TION

Gaalop parses input files and transforms the input into
an intermediate representation, on which different com-

pilation steps operate. For the parser implementation,
we used the ANTLR parser generator tool [6]. Gaalop
2.0 uses two kinds of intermediate representations (IR),
a control flow graph (CFG) and a data flow graph
(DFG) to represent the algorithmic structure of the in-
put program and related arithmetic operations such as
assignments or application of mathematic functions, re-
spectively. In fact, Gaalop builds a control dataflow
graph, representing arithmetic expressions in terms of
a DFG whose nodes themselves are referenced in CFG
nodes. Hence, the DFG is not a graph of its own but
rather implicitly contained in CFG nodes.

4.1 Control Flow Graph
The control flow graph represents the overall structure
of the input program. It distinguishes sequential state-
ments such as assignments or procedure calls and con-
trol flow elements like if-statements or macros. As op-
posed to the data flow graph, the CFG does not repre-
sent details of arithmetic operations (e.g. additions, ge-
ometric products, etc.). Concrete types of CFG nodes
are outlined below.

Assignments represent a variable to which an arbitrary
expression is assigned. Both variable and expression
are represented by an appropriate DFG node.

Optimization markers encapsulate a variable for
which the optimized output code will be generated.

If-statements consist of a condition, a positive branch
and a negative branch. Conditions are modeled via
a DFG expression, branches as an (implicit) list
of other CFG nodes. This type of node is self-
contained, so nested statements are possible.

Macros are represented by a name and associated list
of statements. The name is further used to identify
usages of this macro in the input code. This can be
used to inline the use of macros in order to augment
the range of optimization by replacing the call of a
macro by its actual code.

Some CFG nodes contain references to an arithmetic
expression which is related to the respective code in the
input program. These expressions are modeled by the
data flow graph.

4.2 Data Flow Graph
The data flow graph represents the arithmetic parts of
the input code. Elements of an assignment, such as
variable and value, are modeled via DFG nodes. For
each mathematical operation supported by Gaalop there
exists a corresponding type of nodes, outlined below.
The common basis of DFG nodes is an expression type.
Concrete nodes can be placed on any location where an
expression is expected.

index blade grade
1 1 0
2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1
7 e1 ∧ e2 2
8 e1 ∧ e3 2
9 e1 ∧ e∞ 2
10 e1 ∧ e0 2
11 e2 ∧ e3 2
12 e2 ∧ e∞ 2
13 e2 ∧ e0 2
14 e3 ∧ e∞ 2
15 e3 ∧ e0 2
16 e∞ ∧ e0 2
17 e1 ∧ e2 ∧ e3 3
18 e1 ∧ e2 ∧ e∞ 3
19 e1 ∧ e2 ∧ e0 3
20 e1 ∧ e3 ∧ e∞ 3
21 e1 ∧ e3 ∧ e0 3
22 e1 ∧ e∞ ∧ e0 3
23 e2 ∧ e3 ∧ e∞ 3
24 e2 ∧ e3 ∧ e0 3
25 e2 ∧ e∞ ∧ e0 3
26 e3 ∧ e∞ ∧ e0 3
27 e1 ∧ e2 ∧ e3 ∧ e∞ 4
28 e1 ∧ e2 ∧ e3 ∧ e0 4
29 e1 ∧ e2 ∧ e∞ ∧ e0 4
30 e1 ∧ e3 ∧ e∞ ∧ e0 4
31 e2 ∧ e3 ∧ e∞ ∧ e0 4
32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Table 2: Blades of the 5D conformal geometric algebra and their
ordering.

Unary operations are operations like negation or du-
alization, that take only one expression as argument.

Binary operations are operations like addition, sub-
traction or inner / outer / geometric products, which
take two expressions as argument. Each binary op-
eration has a left and right operand.

Language elements consist of pre-defined function
calls (e.g. VecN3 to define a conformal point) or
mathematic functions like sin, cos or sqrt. These
functions take different numbers and types of
arguments, each of which is another expression.

Identifiers are the actual parameters to functions, op-
erations and relations. This can be variables, integer
or float constants and basis vectors.

Other CLUCalc relevant language elements like null
space definitions or algebra selection are not modeled
as dedicated DFG nodes. These are handled by a sepa-
rate type which will be referenced to as algebra signa-
ture. This signature is directly referenced by the control
flow graph, since contained properties are global to the
input code and not related to single CFG or DFG nodes.

Start

Assignment:
P

Assignment:
M

Assignment:
S

+

*

px e1

+

*

py e2

+

*

pz e3

+

*

0.5 *

+

*

px px

+

*

py py

*

pz pz

einf

e0

Assignment:
K

+

*

mx e1

+

*

my e2

+

*

mz e3

+

*

0.5 *

+

*

mx mx

+

*

my my

*

mz mz

einf

e0

Assignment:
C

-

M *

*

*

0.5 r

r

einf

Output:
C

+

P*

.

P S

einf

End

^

S K

Figure 2: Control and data flow graph corresponding to the input file
from section 3. The algebra definition from the input code is handled
separately. Start and end node are special marker nodes. Control flow
nodes are connected by colored arrows, other nodes correspond to the
data flow graph.

CLUScript supports multiple algebra types, where
the Conformal Geometric Algebra is the most impor-
tant one, defined by the DefVarsN3 function. Each
type has an associated signature and blade list, which
define the elementary basis blades of the underlying al-
gebra. Table 2 lists the 32 basis blades of the Confor-
mal Geometric Algebra in the canonical ordering. This
table can also be seen as a lookup table for the asso-
ciation between multivector coefficient and the related
blade, as it is used by the code generators (Section 5.3).

Example

Figure 2 shows the entire control dataflow graph which
corresponds to the input file from Listing 1. The CFG
part consists of only eight nodes which are connected
by colored arrows. The rest of the graph corresponds
to the DFG parts of the five assignments to variables
P,M, S,K and C.

5 OPTIMIZATION
The compilation process from input file to the opti-
mized output code consists of three major passes. Start-
ing with the input file, Gaalop parses this file to pro-
duce the intermediate representation (CFG / DFG), op-
timizes the input by symbolic manipulation and gener-
ates the output code depending on the selected target
language. These passes are illustrated below.

5.1 Parser
The code parser is responsible for parsing the CLU-
Calc input code and transforming it into an IR. Sup-
ported by the ANTLR parser generator [6], the input
file is lexically analyzed, syntax checked and finally
transformed into a control dataflow graph, as outlined
in section 4. A lexer grammar defines lexical rules for
keywords, identifiers, procedure calls and mathemati-
cal operations. The resulting token stream is processed
by a parser grammar that actually checks the syntax
of the input code and builds an abstract syntax tree
(AST), which can be processed to build the control and
data flow graphs. This transformation process is imple-
mented by a transformer grammar, which traverses the
AST and builds CFG / DFG nodes that are appended to
the control dataflow graph. As Gaalop is implemented
in Java, this grammar is the interface that connects the
parsing process from the automatically generated parser
code to the optimizer module in Gaalop.

5.2 Optimizer
The optimizer is responsible for symbolic simplifica-
tion and calculation of optimized multivector coeffi-
cients for expressions marked in the input code. This
compilation pass is implemented using the OpenMaple
interface of the Maple CAS [5] with the CLIFFORD
library by Rafal Ablamowicz [1] for Geometric Alge-
bra calculations. This allows to use Maple for symbolic
calculations from Java directly. The Maple optimizer
traverses the input control dataflow graph as it has been
set up by the parser in the previous compilation pass
(cf. Figure 2).

Macro Inlining

Before the actual optimization pass is executed, an-
other traversal is necessary to inline macros that have
been defined in the input script. Therefore, the CFG
is traversed in order to find references to self-defined
macros. On each occurrence, the call to the macro along
with its parameters is replaced by the actual code from
the macro. This step is performed to increase the po-
tential for symbolic optimization. Without macro in-
lining, only the code from the macro itself could be
optimized, since no assumptions about input variables
can be made. By inlining the macro code and implic-
itly gaining access to the actual input parameters it is

possible to find situations where the macro code can be
reduced to a small number of instructions, for instance
when one of the parameter happens to be zero.

Special treatment is necessary for local variables and
formal parameters in macros. In order not to override
variables in the scope of the caller by simply copying
the macro code to the place of the macro call, “macro-
local” variables must be renamed in the case a variable
with same name exists on the caller side. Consider a
macro with local variable a and a code snippet calling
the macro where another local variable a is defined.
Replacing the macro call by its code would override
the definition of a in the calling code. Therefore, the
macro’s local variable has to be renamed to another un-
used name.

Formal parameters in CLUCalc macros are repre-
sented as variable lists, referenced by _P(i), where
i specifes the i-th parameter. Thus, it is necessary to
replace occurrences of _P(i) by the actual parameters
from the macro call.

Optimization

Actual optimization of the input code is performed in
this step. Gaalop 2.0 optimizes the input trying to
achieve two objectives:

• Symbolic simplification. Each assignment of the in-
put script is translated to Maple syntax and sent to
the Maple engine. Maple keeps track of commands
executed by the engine and symbolically simplifies
assignments where appropriate.

• Preparation for parellel computing platforms.
Multivector components, i.e. coefficients of a mul-
tivector’s linear combination of basis blades, can
be calculated independently. This holds potential
for parallel execution of instructions calculating the
non-zero coefficients. For an overview of the basis
blades of the Conformal Geometric Algebra, please
refer to Table 2.

To reach these goals, CFG nodes are processed to be
sent to the Maple engine. The concrete representation
is a string value describing the command to be executed
by Maple. Therefore, control flow nodes are processed
in the following way.

Assignments are translated to have the same variable
name and value as specified in the CFG node. The
assignment operator is translated to its Maple pen-
dant (:=). The right-hand side of an assignment
is handled according to the syntax rules defined by
Maple. Standard arithmetics can be translated 1:1,
whereas GA related operators have to be matched to
the syntax specified in the CLIFFORDLIB package
for Maple. The geometric product, for instance, has
to be translated to use the &c operator, surrounded

by a substitution of the clifford library symbol Id
to 1. Consequently, an input line a=b*c; would be
translated to a:=subs(Id=1,b &c c);.

Optimization markers trigger the calculation of sim-
plified multivector coefficients for the selected vari-
able. Therefore, a self-defined Maple procedure de-
composes the multivector to its 2n components. For
each component, the relevant part of the linear com-
bination of basis blades is selected. Finally, the re-
lated coefficient is evaluated and symbolically sim-
plified. The result multivector is put into an array
of multivector components which is used to get the
outcome back into the control flow graph. Before re-
turning control to Gaalop, another procedure tries to
replace variable references that have previously been
optimized, so results that have already been calcu-
lated can be reused in further calculations. After-
wards, Gaalop removes assignments to the old mul-
tivector and inserts new assignments for each non-
zero multivector component. Each of these assign-
ments represents the simplified expression that cal-
culates the coefficient of the respective basis blade
(Table 2).

If-statements are processed recursively by traversing
the instructions of their positive and negative
branches.

Macros have been removed in the previous pass and
do not have to be considered anymore.

After this transformation, assignment nodes are re-
placed by the simplified expressions that have been cal-
culated by Maple and inserted into the CFG. Hence, the
CFG has been modified to contain the optimized code
instead.

Example

The modified control dataflow graph corresponding to
the example from Listing 1 is too large to be illustrated
here. Nevertheless, it is easy to imagine the qualita-
tive structure of the graph after the optimization pass.
Remember that only one variable has been marked to
be printed in the optimized output (the intersection cir-
cle C). Hence, the assignments to other variables have
been removed without replacement (their contribution
to the result is implicitly contained in the value of C).
As the assignment to C has been replaced by the assign-
ments to its multivector components, there are 10 new
nodes now, representing the assignments to the bivector
parts of the multivector (indices 7-16, see Table 2). At
the end of the new graph there is an output (optimiza-
tion) node representing the overall multivector C.

5.3 Code Generator
After the optimization pass, the intermediate represen-
tation contains the simplified expressions calculating
the result multivectors that were marked in the input
file. The IR is now ready to be processed by code gener-
ators, also called backends of the compiler. Each back-
end is implemented as a plugin to Gaalop which can be
selected before the compilation process starts.

Code generators traverse the IR to translate the op-
timized code to the syntax rules of the target platform.
For backends that do not support parallel computing, no
modifications to the IR have to be performed. This is
the case for most backends implemented in Gaalop 2.0
like CLUCalc, C++, DOT or LaTeX. Advanced back-
ends supporting parallel computing platforms perform
additional manipulations to the IR in order to prepare
the output for parallel architectures like FPGAs. This is
the case for the Verilog backend, for instance.

A common property of all backends is that no Geo-
metric Algebra module has to be included. Since mul-
tivector descriptions have been optimized to expres-
sions containing only standard arithmetics, no time-
consuming operations, such as the geometric product,
have to be executed. Generated output always operates
on lists or arrays of coefficients, which are directly re-
lated to the blade indices in the canonical ordering of
Table 2, rather than on the geometric entities (blades)
themselves.

CLUCalc

Even if CLUCalc is the input language, it is also sensi-
ble to offer this as backend, too. Thereby, the correct-

C=List(32);
C(7)= -(my*px)+mx*py; // e1^e2
C(8)= mx*pz-mz*px; // e1^e3
C(9)= ((-(0.5*mx*mz^^2.0)-0.5*mx*my^^2.0+0.5*mx*r

^^2.0+0.5*mx^^2.0*px)-0.5*px*my^^2.0-0.5*px*mz
^^2.0+0.5*px*r^^2.0)-0.5*mx^^3.0+mx*py*my+mx*pz

*mz; // e1^einf
C(10)= -(1.0*px)+mx; // e1^e0
C(11)= -(mz*py)+my*pz; // e2^e3
C(12)= ((0.5*my^^2.0*py-0.5*my*mz^^2.0-0.5*my*mx

^^2.0+0.5*my*r^^2.0)-0.5*py*mz^^2.0-0.5*py*mx
^^2.0+0.5*py*r^^2.0)-0.5*my^^3.0+my*pz*mz+my*px

*mx; // e2^einf
C(13)= -(1.0*py)+my; // e2^e0
C(14)= ((0.5*mz^^2.0*pz-0.5*mz*mx^^2.0-0.5*mz*my

^^2.0+0.5*mz*r^^2.0)-0.5*pz*my^^2.0-0.5*pz*mx
^^2.0+0.5*pz*r^^2.0)-0.5*mz^^3.0+mz*py*my+mz*px

*mx; // e3^einf
C(15)= -(1.0*pz)+mz; // e3^e0
C(16)= (-(1.0*pz*mz)-1.0*px*mx-1.0*py*my+mz^^2.0)

-1.0*r^^2.0+mx^^2.0+my^^2.0; // einf^e0
?C=C(7)*e1^e2+C(8)*e1^e3+C(9)*e1^einf+C(10)*e1^e0+C

(11)*e2^e3+C(12)*e2^einf+C(13)*e2^e0+C(14)*e3^
einf+C(15)*e3^e0+C(16)*einf^e0;

Listing 2: Optimized CLUCalc output for the input file from Listing
1 in section 1. Multivector components and associated blades are
numbered according to Table 2, since counting of list elements in
CLUCalc starts with 1.

ness of the Gaalop compiler can be verified by com-
paring the original and optimized code visually in the
CLUViz software (cf. Figure 1).

As a concrete example, listing 2 shows the resulting
CLUCalc output code for the input file from section 1.
C is defined as a list of 32 entries with coefficients 7 to
16 set to the optimized expressions as calculated from
the optimizer, while other coefficients are zero. The
associated blade indices correspond directly to the ones
defined in Table 2. In the last line, C is reassembled
using the coefficients and their associated basis blades.

C/C++

The C/C++ backend wraps the generated code into
a calculate method that takes the unknown input
variables and a reference to the output multivector as
parameters. Multivectors are handled as float arrays
whose indices correspond to the ones from Table 2 mi-
nus one, since counting in C++ starts with 0. Code
generated from this backend can directly be copied into
an existing C++ program without further modification.
Passing the correct parameters to the calculate function,
the result can be calculated without knowledge of GA
operations.

Listing 3 shows the resulting C/C++ output code for
the input file from section 1. C is defined as an array of
float with 32 entries.

void calculate(float mx, float my, float mz, float
px, float py, float pz, float r, float **C_out)

{
float C[32];
C[6]=mx*py-my*px;
C[7]=mx*pz-mz*px;
C[8]=-(0.5f*mx*mz*mz)-0.5f*mx*my*my += 0.5f*mx*r*

r*0.5f*mx*mx*px-0.5f*px*my*my-0.5f*px*mz*mz

*0.5f*px*r*r-0.5f*pow(mx,3.0f)*mx*py*my*mx*
pz*mz;

C[9]=-(1.0f*px)*mx;
C[10]=-(mz*py)*my*pz;
C[11]=0.5f*my*my*py-0.5f*my*mz*mz-0.5f*my*mx*mx

*0.5f*my*r*r-0.5f*py*mz*mz-0.5f*py*mx*mx*0.5
f*py*r*r-0.5f*pow(my,3.0f)*my*pz*mz*my*px*mx
;

C[12]=-(1.0f*py)*my;
C[13]=0.5f*mz*mz*pz-0.5f*mz*mx*mx-0.5f*mz*my*my

*0.5f*mz*r*r-0.5f*pz*my*my-0.5f*pz*mx*mx*0.5
f*pz*r*r-0.5f*pow(mz,3.0f)*mz*py*my*mz*px*mx
;

C[14]=-(1.0f*pz)*mz;
C[15]=-(1.0f*py*my)-1.0f*pz*mz*my*my*mz*mz-1.0f*r

*r*mx*mx-1.0f*px*mx;
memcpy(C_out, C, sizeof(C));

}

Listing 3: Optimized C/C++ output for the input file from Listing
1 in section 1. Multivector components and associated blades are
numbered according to Table 2 with indices decreased by 1 in order
to match counting of array elements in C/C++.

DOT

The DOT backend generates a .dot file for visualiza-
tion with the Graphviz Graph Vizalization Software [2].
This is helpful to inspect the intermediate representa-
tion as it has been modified by the optimizer. For ex-
ample, Figure 2 shows the IR visualization of the input
file without optimizations.

LaTeX

For scientific reports about algorithms optimized with
Gaalop, it has been necessary to manually transform the
output code to a human-readable text. The LaTeX back-
end automates this step by generating a description of
the output code in form of math formulae that can be
embedded in a .tex document. The following equations
have been generated by Gaalop 2.0 according to the ex-
ample from Listing 1 (excerpt):

C6 = mx ∗ py −my ∗ px
C7 = −mz ∗ px+mx ∗ pz

C8 = −
1

2
mx ∗mz2 −

1

2
mx ∗my2 +

1

2
mx ∗ r2 + ...

C9 = −1 ∗ px+mx

C10 = −mz ∗ py +my ∗ pz

C11 =
1

2
my2 ∗ py −

1

2
my ∗mz2 −

1

2
my ∗mx2 + ...

C12 = −1 ∗ py +my

C13 =
1

2
mz2 ∗ pz −

1

2
mz ∗mx2 −

1

2
mz ∗my2 + ...

C14 = −1 ∗ pz +mz

C15 = −1 ∗ py ∗my − 1 ∗ pz ∗mz +my2 + ...

Verilog

TODO: somebody should describe this, as it is a very
advanced backend with lots of further optimization.
Maybe reference recent publications on this backend.

6 CONCLUSION & FUTURE WORK

We presented Gaalop 2.0, an advanced version of the
Gaalop compiler. Written in Java, Gaalop 2.0 can be
used on any platform where Maple is installed. We have
introduced CLUScript as the input language for algo-
rithms to be optimized with Gaalop, giving an overview
of supported language features. After introducing the
intermediate representation for the internal handling of
the input code, we focused on the optimization process,
giving details about the input parser, Maple simplifier
and different code generators. We showed how Gaalop

2.0 transforms the input code to an optimized represen-
tation that goes without explicit Geometric Algebra op-
erations. Exploiting the fact that multivector compo-
nents can be calculated simultaneously, we have imple-
mented a Verilog code generator which produces code
that compiles the input algorithm to an FPGA hardware
description.

For future releases of Gaalop we plan several exten-
sions. Currently, we are working on an extended sup-
port for control flow instructions in input algorithms,
particularly loops. Loops are another source of poten-
tial for parallelism: Unrolling loops of an input pro-
gram where possible can lead to stronger optimizations
through symbolic simplification while identifying parts
of loops that operate on disjoint data makes it possible
to execute these parts on different cores of a parallel
computing platform.

Furthermore, we plan to extend the set of code gener-
ators by backends for general-purpose computing plat-
forms. Different standards for multicore architectures
like OpenMP or OpenCL offer the opportunity to make
use of the huge processing power of modern comput-
ers. This is where two worlds come together: High-
dimensional Geometric Algebras offering an elegant
and intuitive way of describing algorithms, requiring
considerable compute performance, and multicore ar-
chitectures taking advantage of the increasing paral-
lelism in integrated circuits as compensation of lack-
ing performance of GA algorithms. The combination
of these approaches advances to the vision of a “Geo-
metric Algebra Computer” that accelerates standard im-
plementations while keeping algorithms compact and
intuitive.

REFERENCES
[1] Rafal Ablamowicz and Bertfried Fauser. CLIFFORD

- A Maple Package for Clifford Algebra Computations.
http://math.tntech.edu/rafal/.

[2] AT&T and Bell-Labs. Graphviz - Graph Visualization Software.
http://www.graphviz.org/.

[3] Daniel Fontijne. Gaigen 2: A Geometric Algebra Implementa-
tion Generator. In GPCE’06. ACM, 2006.

[4] Dietmar Hildenbrand and Andreas Koch. Gaalop -
High Performance Computing based on Conformal Geo-
metric Algebra. http://www.gaalop.de/download.php?f=
fe223b8c9c01b866293e9622e21f0307, 2008.

[5] Maplesoft. OpenMaple - an API into Maple.
http://www.maplesoft.com/applications/view.aspx?SID=4383.

[6] Terence Parr. ANTLR Parser Generator. http://www.antlr.org.

[7] Christian Perwass. CLUCalc / CLUViz Interactive Visualization.
http://www.clucalc.info, 2010.

