
AN EXECUTION MODEL FOR HARDWARE/SOFTWARE COMPILATION
AND ITS SYSTEM-LEVEL REALIZATION

Holger Lange and Andreas Koch

Tech. Univ. Darmstadt
Embedded Systems and Applications Group (ESA)

Darmstadt, Germany
{lange,koch}@esa.cs.tu-darmstadt.de

ABSTRACT
We introduce a new execution model for orchestrating the
interaction between the conventional processor and the re-
configurable compute unit in adaptive computer systems.
We then characterize the architectural and OS-level require-
ments of implementing the model, and demonstrate how they
can be achieved on a real hardware platform running un-
der a full scale multi-tasking virtual protected memory op-
erating system. Experimental measurements show the effi-
ciency of our solution, and also prove that reconfigurable
computing can be competitive with processors even for non-
streaming, pointer-chasing applications.

1. INTRODUCTION

Reconfigurable devices (RD) used as compute units (RCU)
have improved the execution speed and/or efficiency (e.g.,
power consumption, integration density) in many applica-
tion areas (a recent survey can be found in [1]). However,
exploiting the potential of the technology usually requires
from the developer experience in both computer architecture
and digital logic design as well as proficiency in hardware
description languages.

For limited application domains (e.g., signal process-
ing) tool flows supporting algorithms description in domain-
specific languages, such as MATLAB or Simulink, are now
becoming sufficiently mature for industrial use [2] [3]. How-
ever, the automatic mapping of programs written in com-
mon high-level programming languages (HLL, such as C
or Java) to an RCU is still the subject of intense research.
Even when tools accept a traditional HLL, they often impose
restrictions on specific language features (e.g., no pointers,
no conditionals in loops [4][5] ) or require additional user-
specified annotations to guide the translation (e.g., the nature
of data streams [6] ). Compilation will fail when a prohib-
ited language construct is used or insufficient annotations
are present.

As an alternative, some flows [7] [8] [9] [10] target com-
binations of a conventional processor (CPU) working in tan-

dem with an RCU. Such architectures are sometimes called
adaptive computers (ACS).

Here, scarce RD logic capacity can be saved by leav-
ing non-critical or RD-unsuitable sections of the application,
such as low-ILP, highly irregular control, floating-point, on
the CPU. Furthermore, the software-programmable CPU can
act as a fallback for the compiler if it is unable to process
some parts of the program for HW acceleration (e.g., due
to area limitations). Instead of just aborting the translation,
these parts can be compiled to software, and the user in-
formed of the specific difficulties. The program always re-
mains executable and can thus be migrated incrementally to
full ACS exploitation, with the user rewriting the problem-
atical program sections as necessary.

In all cases, the compiler requires the interaction be-
tween RCU hardware structures on the RD, the software on
the CPU, and the entire system architecture (encompassing
RD, CPU, memory, etc.) to be orchestrated using a com-
mon set of rules, the execution model. In contrast to man-
ual hardware design, where one can freely mix-and-match
different computing paradigms as well as modify them for
special cases, an automatic compiler only has a limited set
of techniques available to realize the input algorithms. The
execution model thus defines the possible solution space for
compiler-generated implementations.

This work first describes the novel execution model used
by our compiler Comrade [10] and discusses the hardware /
software requirements it imposes on the target environment.
The following sections then describe actual realizations of
these requirements on a real hardware platform, which will
be experimentally evaluated afterwards.

2. EXECUTION MODEL

All of the execution models shown here aim at the compila-
tion of C for the combination of CPU and hardware accel-
erator (HA), the latter either in the form of an RCU [8] [9]
[10], or a dedicated hardware block [7].

The three approaches differ in the granularity of the HW



CPU

Sample code

Hardware
Accelerator

g() {
    ...
    h();

}
    ...

h() {
    ...
}

f() {
    ...
    g();

}
    ...

f() { ... g(); ...}
g() { ... h(); ...}
h() { ... }

4.

2.

3.

1.

Fig. 1. ASH execution model

...
u = (int) sqrt(a + b);
v = c - d;
for (n=0; n<1000; ++n, p=p->next) {

v += u;
if (v > 10000) {

printf("warning: v too large, rescaling");
v *= 0.271844;

}
p->val = v;

}
w = 53 * v;
...

Fig. 2. Sample program with HA-unsuitable statements

/ SW partitioning. ASH [7] strictly adheres to the proce-
dure boundaries present in the original C source code. It can
thus only move entire C functions between CPU and HA.
However, it is able to call SW functions from the HA (see
Figure 1). While procedures are indeed natural partitioning
boundaries, the presence of C constructs implementable on
the HA only with difficulty (system calls, floating point op-
erations) leads to entire procedures being ineligible for ac-
celeration, even if the problematical operations occur only
rarely (if ever) during actual program execution.

GarpCC [8], Nimble [9] and Comrade [10] use a finer-
grained model of interaction that allows HW/SW switches
even within a procedure. In contrast to ASH, the underlying
HW/SW partitioning (not discussed here) is based on actual
dynamic profiling data. Thus, slowdowns due to excessive
HW/SW communication can be avoided despite the finer
partitioning granularity (see experimental results in [10]).

Figure 2 shows a code fragment containing a typical HW
kernel (the loop) surrounded by low-ILP code better left on
the CPU. For this example, we assume that library functions
and floating-point operations are not efficient on the HA (the
printf() and especially the sqrt() computation, which is exe-
cuted just once).

GarpCC, Nimble and Comrade can move just the loop
to the HA, and leave the initial and trailing low-ILP parts on
the CPU. They differ in their handling of the HA-unsuitable
code within the HW kernel. All three recognize the excep-
tional condition v > 10000 (which presumably occurs suffi-

HW/SW Decision at Runtime

SW Exception Handler

if (useRCU())
   startRCU();
else
   // stay in SW;

Low−ILP

if (n >= 1000)
   goto loopexit;
v += u;
if (v > 10000) {
   printf("warning: v too large, rescaling");
   v *= 0.271844;
}

Executed on CPU

HW kernel

Low−ILP

Executed on HA

++n; p=p−>next;
p−>val = v;

v,n,p

u,v,n,p

v

loopexit:

w = 53*v;

u = (int) sqrt( a + b );
v = c − d
n = 0;

if (n >= 1000)
  exitToSW(0)
v += u;
if (v > 10000)
   exitToSW(1);

++n;
p−>val = v;

p = p−>next;

Fig. 3. Example in the Nimble execution model

ciently rarely in the dynamic profiles that moving the loop to
the HA is still profitable) and execute it on the CPU, trans-
fering the live variables (shown as edge labels in Figures 3
and 4) from HA registers to their corresponding SW vari-
ables under control of the CPU (the HA is acting in slave-
mode here). However, GarpCC and Nimble then execute the
entire remainder of the current loop iteration in SW. Only
when the start of the loop is reached again, is the decision
made whether to run the next iteration in HW or continue
executing in SW.

Our new Comrade model of execution, shown in Fig-
ure 4, has even finer interaction granularity. Here, the HA-
unsuitable library call and the floating point multiplication
execute on the CPU as a SW Service. After completion, the
SW Service directly returns to the HW kernel on the HA. As
before, live variables need to be exchanged between CPU
and HA. However, note that in the Comrade model, fewer
variables need to be exchanged due to limiting the scope of
the SW Service to just the HA-unsuitable operations (and
not an entire loop iteration). In this fashion, a single HW

SW Service for Hardware

printf("warning: v too large, rescaling");
v *= 0.271844;

v

Low−ILP

HW kernel

v

v

Low−ILP

Executed on CPU Executed on HA

u,v,n,p

u = (int) sqrt( a + b );
v = c − d;
n = 0;

w = 53*v;

v += u;
if (v > 10000)

if (n >= 1000)
  exitToSW(0)

   exitToSW(1);

++n;
p−>val = v;

p = p−>next;

Fig. 4. Example in the Comrade execution model



kernel can access multiple different SW Services, each with
just enough code for the requested function.

In addition to the CPU/HA interaction, the execution
models need to take the pointer-heavy nature of many C
programs into account. With some parts of the programs
executing on the CPU, and others moved to the HA, it is
crucial that pointer-based data structures (such as the lists
used in the example, trees, etc.) can be freely exchanged
between the cooperative HA and CPU processing. Further-
more, when operating on pointers, the HA must be able to
quickly access memory on its own without intervention of
the CPU (called master-mode).

3. PLATFORM REQUIREMENTS

In the following discussion, we will number all requirements
imposed by the Comrade model as Rn to link them with their
implementation in later sections of this work.

All of these execution models profit from low-latency
communication between the CPU and the HA (R1, but not
necessarily high-throughput, since only few data items need
to be exchanged in a good partitioning). The handling of
pointers as discussed in the previous Section can be achieved
in a number of ways: Ideally, main memory and possibly
parts of the cache hierarchy are shared in a common ad-
dress space (R2, to allow the exchange of pointers) between
CPU and HA, and allow high-throughput master-mode ac-
cess (R3). However, many real ACS platforms lack this ca-
pability, and all data to be processed by the HA has to be al-
located explicitly in dedicated HA-connected memory using
a custom function such as malloc sram(), requiring addi-
tional implementation effort (the programmer has to manu-
ally partition the memory between the different banks). Fur-
thermore, the latter approach is only feasible for dynami-
cally allocated memory. It fails completely for pre-initialized
and stack-allocated data, both of which can occur in C pro-
grams. Each of these variables has to be manually copied
into the HA-accessible memories, making sure that all con-
tained pointers also point within the HA-memories.

Shared memory spaces are easily realized and handled
when using a flat, homogeneous memory without protection
between CPU and HA (common for many embedded real-
time OSs): When the HA has full access to system memory,
it can easily access all C-initialized and stack-allocated data.

This proves more difficult when running the ACS under
an OS with virtual and protected memory such as Linux,
which is becoming more and more popular even in the em-
bedded world [11]. To integrate the HA seamlessly into
such an environment, a number of additional issues needs
to be addressed. For security, the HA should only access the
memory of the process running the SW part of the applica-
tion, other memory spaces may not be compromised (R4).
Furthermore, to maximize the effect of protected memory,

the protections should also be applied within the HA-accel-
erated process (R5), e.g., making the SW machine code in-
accessible to the HA, preserving it from potential corrup-
tion). The performance of the rest of the multi-tasking sys-
tem (including other user processes!) should not be impeded
by the operation of the HA. Specifically, the HA may not
deny them acccess to memory when they are scheduled by
the OS (R6). This also extends to not slowing down the
SW part of a hardware-accelerated application when shar-
ing memory with the HA (R7).

Prior work has considered only a subset of these or other
requirements. For example, [12] focusses on ease-of-use
of CPU/HA communications by automatically mapping the
HA registers to named files in the kernel /proc file system.
While this removes the need for memory-mapping the hard-
ware registers, the added file-system overhead increases la-
tencies significantly and would violate R1 of our model.
The work in [13] has a similar approach, but goes further
by mapping the entire device structure at the configuration
level (CLBs, BRAMs, etc.). While this allows the exchange
of large chunks of data (by allowing the CPU direct access
to the RD on-chip memories), the file-system integration
also leads to latencies inacceptable for our execution model.
None of these approaches considers the other requirements
R2 to R7. [14] proposed a message-passing interface. This
would allow the HA master-mode access to memory (R2),
and the underlying network-on-chip could be extended to
provide R4. . . R6 (none of which is addressed in the paper).
The technique also does not deal with R3 and R7 at all.

The following sections will discuss in detail how these
requirements can be met on currently available hardware,
specifically using as HA an FPGA-based RCU, and experi-
mentally evaluate the impact of various design choices.

4. TARGET PLATFORM

Since the simulation of an entire system comprising one or
more CPUs, HAs, memories, and I/O peripherals is both dif-
ficult and often inaccurate, we employ an actual HW plat-
form to evaluate the practical impact of implementing our
execution model.

The Xilinx ML310 [16] is an embedded system develop-
ment platform which resembles a standard PC main board.
In contrast to a standard PC, the CPU and the usual North-
bridge ASIC have been replaced by a V2P FPGA [18], which
comprises two PowerPC 405 processor cores that may be
clocked at up to 300MHz. They are embedded in an array of
reconfigurable logic. Thus, the “heart” of the compute sys-
tem (CPUs, HAs, buses, memory interface) is now reconfig-
urable and amenable for architectural experimentation. With
sufficient care, this rSoC can implement even complex de-
signs with a clock frequency of 100 MHz (a third of the
frequency of the embedded CPU).



256 MB
DDR DIMM

HW

PPC
405

PLB
Bus

PLB
Wrapper

PLB-DDR
PLB

Slave
DDR
Ctrl

Fig. 5. HA integration via PLB

The ML310 is shipped with a reference design, which
consists of several on-chip peripherals, attached to a single
PowerPC core by CoreConnect [15] buses. These peripher-
als comprise memory controllers (DDR DRAM and Block-
RAM), I/O (PCI-Bridge, UART, the System ACE compact
flash based-boot controller, GPIO, etc.), an interrupt con-
troller, and bridges between the different CoreConnect buses.

Note that our architectural concepts as well as their im-
plementation are not specific to the ML310, but apply to
all platforms with similar characteristics (potentially using
more recent RDs, such as the Virtex 4FX and 5FX chips).

5. HIGH-PERFORMANCE HA MEMORY ACCESS

The Xilinx EDK [17] SoC composition tool flow supports
two standard means for integrating HAs into the reference
design, the faster of which is the PLB attachment (shown in
Figure 5).

PLB has features aiming for high-performance opera-
tion, but is rather complex. Hence, bus wrappers are nearly
always needed when connecting blocks such as HAs to the
bus. PLB operates on 64 bits of data at 100 MHz, with two
bus wrappers necessary between HA and DDR-DRAM con-
troller for the main memory. Note that the controller itself
also requires a wrapper.

As described in [20], the combination of both PLB and
Xilinx implementation restrictions renders the memory sub-
system insufficient for 64 bit, DDR-200 operation (1600
MB/s theoretical peak performance, the maximum supported
by the DDR DRAM used on the ML310). However, since
we are experimenting with a reconfigurable SoC, we can
choose an alternate architecture. To fulfill R3, we designed
and implemented a new approach to interface the CPU, HAs
and the main memory.

The main concept behind the FastLane high performance
memory interface (described in greater detail in [20]) is the
direct connection of the memory-intensive HA cores to the
central memory controller without an intervening PLB. By
also using a specialized, light-weight protocol, we can avoid

256 MB
DDR DIMM

HW Accelerator

F
a

st
L

an
e

PPC
405

PLB
Bus

PLB
Slave

DDR
Ctrl

PLB-DDR

Fig. 6. FastLane: Attaching HA directly to DDR controller

the arbitration as well as the protocol overhead associated
with PLB. This leads to a greatly reduced latency, with no
wrapper left between HA core and RAM controller, as op-
posed to two wrappers in the Xilinx reference design. We
can now also make the full bandwidth of the RAM con-
troller available to the HA, eventually enabling true 64 bit
double data-rate operation. Figure 6 shows the new memory
subsystem layout.

The master-mode side of the HA is connected via Fast-
Lane directly to the interface of the DDR controller, but can
accept data transfers from the CPU (e.g., live variables for
quick HW/SW execution switches, R1) via the shared PLB
slave. Thus, no additional chip area is wasted on wrappers
(which have now become redundant). Both interfaces inter-
nally use a simple double handshake protocol, streamlined
for low latency and fast burst transfers.

System stability issues (e.g., buffer over/underruns on
bus master devices or late IRQ responses, cf. [20]) require
that the CPU and other bus master devices always have pri-
ority over the HA block (which can be explicitly designed
to tolerate access delays). The required arbitration logic is
completely hidden from the HA within the FastLane inter-
face. The CPU (and other bus master devices) may interrupt
master accesses of the HA at any time, while the HA cannot
interrupt the CPU, and has to wait for the completion of a
CPU-initiated transfer. In this fashion, scheduling decisions
by the OS scheduler are enforced at the hardware architec-
ture level, the HA can never let the CPU starve from lack of
memory access (R6).

6. OPERATING SYSTEM INTEGRATION

An adaptive computing system has to consider both HW and
SW architectures, since, in the end, it is software applica-
tions that are to profit from hardware acceleration. Thus,
the HAs must be integrated efficiently and securely with the
operating system, the software environment shared by all
programs running on the ACS.

With the HA capability to independently access main



CPU

HA
DMA
buffer

MMU

0x01004000
virtual

0x12345678
physical

0x12345678
physical

RAM

SW

HW

Fig. 7. HW and SW addressing of memory

memory in master-mode, this is non-trivial in an OS envi-
ronment supporting virtual memory. The memory manage-
ment unit (MMU, see Figure 7) translates the virtual user
space addresses as seen by SW applications into physical
bus addresses, which are sent out from the CPU via the PLB.
Address translations and the resolution of page faults are
transparent for SW. Since the HAs do not have access to the
MMU (integrated in the CPU)with its page address remap-
ping tables, this implies that hard- and software communica-
tion in a virtual memory environment must use both virtual
user space and physical addresses. Furthermore, since the
HA is neither aware of virtual addresses, nor can it handle
page faults, the memory pages accessed by the HA must be
present in RAM before starting the HA.

6.1. Initial Approach: In-Memory DMA Buffer

The straightforward solution to this requirement would be a
so-called Direct Memory Access Buffer (DMA Buffer). In
the Linux virtual memory environment, a DMA Buffer is
guaranteed to consist of contiguous physical memory pages
that are locked down and always present in physical RAM,
they can never be swapped out to disk. As described pre-
viously, there are now two addresses pointing to the Buffer,
the first being the physical bus address as seen by the HA,
the second being the virtual userspace address representing
the same memory area for application SW. In the exam-
ple given in Figure 7, a SW program has allocated a DMA
Buffer and passes its physical address to the HA. The SW
can access this Buffer via userspace address 0x01004000,
which is translated to physical address 0x12345678 by the
MMU. The HA directly uses this physical address to access
the same DMA Buffer.

The fast transfer of live variables between CPU and HA,
listed as R1 of the execution model, is achieved by the CPU
issuing reads and writes to the memory-mapped HA regis-
ters. These are actually handled by the PLB slave shared
with the memory controller, and forwarded to the HA. From
the SW perspective, the memory mapped registers are sim-

ply accessed via a pointer to a suitable data structure. Bulk
data (e.g., image pixmaps, audio stream frames, etc.) is also
prepared by the SW within the previously allocated DMA
Buffer, which can be manipulated by SW as any other dy-
namically allocated memory block (e.g., be used in file or
network I/O). For HA execution, the offsets of individual
data structures within the Buffer are transferred to the HA,
which can then proceed to fetch, process, and modify the
data under its own control (R3). With FastLane (Section 5),
this can be achieved in efficient long bursts, fully exploiting
the physical memory bandwidth.

6.2. Limitations of Initial Approach

While already integrating the HA with the OS, and effi-
ciently sharing main memory between SW and HA, the above
approach of relying on just a dedicated DMA Buffer has
disadvantages. A severe one with regard to R2 is the need
to explicitly use two different addresses for the same mem-
ory location. This renders it impossible to share memory
pointers between HW and SW, precluding a broad range
of applications from execution on HAs. Furthermore, C-
initialized data, typically kept in a program’s static data seg-
ments (.data for non-zero initialized data, .bss for zero-
initialized data), or dynamically allocated on stack or heap,
have to be explicitly copied to and from the DMA Buffer
every time before and after HA execution. These copy op-
erations take a significant amount of time when transfering
larger amounts of bulk data (violating R3).

Another problem is that Linux DMA Buffers are gen-
erally non-cacheable memory areas. This allows the in-
teraction with other master-mode devices (disk or network
controllers): Since the CPU cannot be sure that the DMA
Buffer has not been written to “behind its back” (leading
to stale CPU cache data), it avoids the inconsistency by not
using a cache to access the DMA Buffers at all. With the
normal use of relatively small (≈ 64KB) DMA Buffers em-
ployed for specific purposes (transfering disk blocks or net-
work frames), this strategy is indeed feasible. It fails com-
pletely, however, in our ACS execution model: Here, we
want to share a potentially large block of general-purpose
memory between CPU and HA. If we marked it as non-
cacheable, all accesses by the CPU would be significantly
slowed down (32b single transfers instead of 64b bursts), vi-
olating R7.

6.3. Refined Solution

As a solution to both problems, we propose to generally
keep all data areas (stack, heap and data segments) of a SW
executable inside the DMA Buffer at runtime (eliminating
the time-consuming copy operations). Another benefit of
this approach is, that pointers are now freely interchangeable
between HW and SW (R2): The address of every memory



location as seen by the SW differs only by a constant offset
from the address of the same location seen by the HW. This
offset can be transparently removed within the HA address
compute path, enabling the HW to use the same addresses as
the SW. In contrast to conventional approaches, which rely
on explicit communication between HW and SW to transfer
data, our solution allows implicit communication: The na-
tive data structures of a program are directly shared by both
HW and SW without the need to copy anything, or declare
explicit HW data structures or memory areas.

To achieve this, several modifications have to be applied
to the Linux kernel. The arrangement of the various areas
(instructions, data, heap, stack, etc.) of a new process is es-
tablished when loading the executable file from disk. Nor-
mally, when loading such a program in the common Exe-
cutable and Linking Format (ELF, [19]) into memory (Fig-
ure 8, left), the instructions (in the .text segment and the
data segments are laid out starting from the virtual address
0x10000000. No data is actually transferred from disk at this
time, only a mapping is established from virtual addresses
to the underlying disk file. Only when a virtual address is
actually accessed will data be demand-paged in from disk,
analogously to handling a virtual memory page fault. The
same technique applies to shared library files required by
the program (these are mapped-in below the program itself).
Runtime-managed memory areas such as the heap and the
stack, which have no correspondence in the program file, are
mapped to anonymous memory: The heap growing upward
from the end of the program, the stack growing downward
from virtual address 0x80000000.

For loading hardware-accelerated processes in the new
Comrade execution model, we have devised the Accelerator-
Integrating Shared Layout for Executables (AISLE), shown
on the right side of Figure 8. It combines program load-
ing with the management of a DMA Buffer (here set to
16MB) and deviates from the standard layout in a number
of ways: First, we move the executable code outside of the
DMA Buffer by means of a linker script. This has the ef-
fect of protecting the CPU code from rogue HA accesses
(R5). Also, since we aim to use as small a DMA Buffer as
suitable for the application (thus reducing the required ad-
dress width in the HA), we also conserve Buffer space in this
manner. The kernel ELF loader was then altered to directly
load the data segments of AISLE programs (and only those,
see below) into the DMA Buffer, which is mapped-in from
0x10000000 to 0x10FFFFFF. Specifically, we modified the
function do mmap pgoff to directly load the data from the
file into the Buffer, since the HA cannot use the MMU-
assisted demand paging. Furthermore, do brk, which ex-
tends the address space of a process for dynamically man-
aged heap memory, was changed to hand-out DMA Buffer
instead of anonymous memory (which would be inacces-
sible to the HA). Finally, we altered setup arg pages to

.data

.bss

.heap

D
M

A
 b

uf
fe

r
0x

0f
00

00
00

-
0x

10
00

00
00

AISLE Layout

0x10000000
.text

.stack

.ext
heap

0x11000000

.data

.bss

.heap

Conventional Layout

0x10000000
.text

.stack

.ext
heap

0x11000000

.ext
heap

0x80000000

.ext
heap

virtual virtual physical

Fig. 8. Conventional and HA-compatible program layouts

initialize the user-space stack of the newly created process
within the DMA Buffer, starting at the top and growing down-
wards. Note that all of these modifications become active
only when loading an AISLE executable (marked by a flag
in the ELF header). Conventional programs are loaded nor-
mally, fully profiting from the demand-paging mechanism.

On the hardware side, HA-internal addresses (here: 24b
wide) are extended to the 32b supported by the rest of the
ML310 by prepending the fixed offset of the DMA Buffer
in the 32b memory space (which here requires an 8b prefix).
Thus, even an erroneous HA cannot affect other processes
(R4) or even the code of its own process (R5), accesses can
occur only with the Buffer.

Since many CPUs used in embedded systems (such as
the PPC405 on the VirtexIIpro chip) do not have bus-snooping
logic or cache coherency bus protocols (MESI, MOESI, etc.),
we rely on SW to maintain coherency between the CPU
cache and the (possibly HA-modified) DMA Buffer. Be-
fore starting the HA, the control API invalidates and flushes
all dirty cache lines located in the DMA Buffer out to ac-
tual memory, and invalidates all clean ones also located in
the Buffer. Cache lines outside of the DMA Buffer are not
affected. Once control returns to the SW process, either af-
ter the HA finishes execution or requests a SW Service, all
CPU accesses to the DMA Buffer retrieve fresh data. Thus,
the SW process can operate at full speed with caches enabled
(R7).

In this fashion, our AISLE-enhanced OS lets the ACS
fulfill the requirements of the Comrade execution model.
All of these capabilities are fully transparent to SW develop-
ers: C programs need neither explicit copy nor HA-specific
memory management calls.

However, in some cases, a greater degree of control can



be beneficial. As an example, a HA-accelerated program
might profit from the allocation of large I/O data buffers
that do not need to be HA-accessible themselves. While
such large buffers could, of course, be realized in AISLE
by simply configuring a DMA Buffer of sufficient size, this
would be wasteful from a number of perspectives. First, we
would require more address bits in the HA, even though the
large I/O buffers would never be accessed. Second, since the
DMA Buffer requires actual physical memory, that memory
would be removed from the demand-paging virtual mem-
ory mechanisms, possibly impeding system performance as
a whole. To support even these use-cases efficiently, we do
provide optional API calls that can allow the SW process to
request HA-inaccessible heap memory outside of the DMA
Buffer (the blocks thus allocated are shown as .ext heap in
Figure 8).

7. EVALUATION

To demonstrate the effectiveness of the FastLane approach,
we exercised several system load scenarios. The basic setup
is identical in all cases: We mimic the actions of an actual
HA by a hardware block that simply repeatedly copies a 2
MB buffer from one memory location to another as quickly
as possible, totaling to 4 MB of reads and writes per turn,
and measure the transfer rate in MB/s. In addition to the
HA, we run a suite of different software programs, chosen
for their specific load characteristics, on the CPU. Then, we
measure the HW execution time (the time it takes to copy
memory data at full speed) and the SW execution time (the
time it takes for a given program to execute on the CPU) for
both the original vendor-provided as well as our FastLane
memory interface. The extreme cases (HA and CPU idle)
are also considered.

The first set of measurements shown in Table 1 considers
the memory throughput of the HA under different CPU load
scenarios. We show the time for a single 2 MB block copy
(four mega-transfers) and the resulting memory throughput,
both when using the original vendor-provided PLB interface
as well as our FastLane attachment for the HA. It is obvi-
ous that FastLane significantly increases the HA memory
throughput in all load scenarios (R3), in some cases by a
factor of up to 4.3.

The set of measurements shown in Table 2 quantifies
the influence of the different memory attachments on SW
execution time for programs with different memory access
patterns. The results show that, despite its high through-
put to the HA, FastLane does not significantly impair the
CPU (R6): SW execution times are almost unaffected by
the HA memory transfer, owing to the absolute priority of
the CPU (cf. Section 5) over the HA. In contrast, the orig-
inal vendor-provided reference design exhibits a steep SW
performance decline, increasing execution times by a factor

CPU SW V2P ref design FastLane
Load Exec Time Mem Rate Exec Time Mem Rate

[ms] [MB/s] [ms] [MB/s]
idle sys 18.81 213 5.67 705
scp 55.11 73 12.82 312
netcat 53.07 75 19.27 208
gcc 32.14 124 17.42 230
GSM 19.05 210 6.35 630
imgpipe 44.67 90 19.33 207

Table 1. HA runtimes and available throughput using origi-
nal and FastLane memory subsystem implementations

CPU SW HA inactive V2P ref design FastLane
Load [ms] [ms] [ms]
scp 4831 61052 5828
netcat 3130 55938 3901
gcc 40686 166655 52908
GSM 25981 40045 27767
imgpipe 3545 5109 4018

Table 2. SW run times on idle system and using HA at-
tached by original and FastLane memory subsystem imple-
mentations

of up to 14x over that of SW running with the FastLane-
attached HA. FastLane thus enables the HA to access mem-
ory bandwidth that appears to be completely unused by the
original memory interface. More detailed discussions are
available in [20].

To demonstrate the direct interchangeability of data be-
tween HW and SW (R2) while maintaining the advantages
of the FastLane memory system, we evaluated a pointer chas-
ing application on both HW and SW: The application tra-
verses a randomly linked list of 128 K elements, with each
list element consisting of a 32b integer value and a pointer
to the next element. On each element, the following opera-
tion is performed: If the value is odd, it is increased by one,
otherwise it is kept as is. Note that such a trivial operation
was chosen on purpose: This test is specifically intended
to exercise the capability of the HA to traverse irregular
pointer-based data structures, instead of relying on the data
streaming so common to other ACS applications. Thus, we
actively avoid accelerating computation (which would bias
the results towards the HA).

The results of three implementations for this applica-
tion are shown in Table 3. First, we evaluated a pure SW
implementation. Second, a HA-“accelerated” implemen-
tation using just a DMA Buffer, which required copying
the list from the normal SW-allocated stack memory into
the Buffer. We made sure to use the correct alignment be-
tween the SW-allocated memory and the Buffer, otherwise
the code would also have to relocate every single pointer
within the list (which can be avoided in this manner), and
would be even slower. Finally, we evaluated the combina-



SW HA with DMA/copy HA with DMA/AISLE
68.3 ms 220.6 ms 27.7 ms

Table 3. Runtimes of the pointer-handling application

tion of DMA Buffer with the AISLE program layout.
The results show that the 100 MHz HA under DMA /

AISLE outperforms the 300 MHz CPU by a factor of roughly
2.5, and is even 8 times faster than the HA using the conven-
tional DMA / copy approach. Again, the potential of accel-
erating the algorithm itself has not even been exploited here.

8. CONCLUSION AND FUTURE WORK

We have introduced a novel model of execution, orches-
trating the interaction between a conventional software pro-
grammable processor and hardware accelerators. Next, we
have shown how to efficiently realize this model on actual
hardware.

Furthermore, we have also demonstrated the potential of
ACSs for accelerating non-streaming, pointer-chasing code
over SW versions. One speed advantage of modern CPUs
is often due to the tight integration of fast multi-megabyte
caches within the processor, something generally not possi-
ble with commercially available RDs. However, the moment
the size of irregular data sets exceeds the cache size (such as
for railway routing graphs [21]), CPU performance drops to
the speed of the memory system. Modern RDs are already
reaching these speeds, but beyond that can then exploit in-
creased parallelism, both with regard to number of memory
banks and processing elements.

The techniques presented so far also did not consider the
capability to dynamically reconfigure an RCU, which is now
becoming sufficiently reliable to be supported in industrial
design flows. Work has already started to support it both in
the model as well as the hardware prototype. Other possible
areas of future research include the simultaneous sharing of
the RCU between multiple different SW processes. Also,
a further reduction of CPU-HA communications latency is
achievable by routing even these requests, which are already
optimized by the Comrade execution model, on dedicated
connections separate from the system bus. On our exper-
imental platform, this could be achievable by attaching the
slave-mode HA to the fast DSOCM (data-side on-chip mem-
ory port) port instead of a PLB wrapper.

9. REFERENCES

[1] Gokhale M., Graham P.S., “Reconfigurable Computing”,
Springer, 2005

[2] Synplicity Inc., “Synplify DSP”, http://www.
synplicity.com/products/synplifydsp/index.
html, 2007

[3] Xilinx Inc., “System Generator for DSP”, http:
//www.xilinx.com/ise/optional_prod/system_
generator.htm, 2007

[4] Gupta S., Gupta R., et al., “SPARK”, Kluwer, 2004
[5] Najjar W., Böhm W, et al., “From Algorithms to Hardware”,

IEEE Computer, 08/2005
[6] Gokhale M. B., Stone J. M., et al., “Stream-oriented FPGA

Computing in the Streams-C High-Level Language”, Proc.
IEEE Symp. on FCCM, 2000

[7] Budiu M., Venkatarami G., et al., “Spatial Computation”,
Proc. Intl. ACM Conf. on ASPLOS, 2004

[8] Callahan T., Hauser J., Wawrzynek J., “The Garp Architec-
ture and C Compiler”, IEEE Computer, 04/2000

[9] MacMillen D., “Nimble Compiler Environment for Agile
Hardware”, Storming Media LLC (USA), 2001

[10] Kasprzyk N., Koch A., “High-Level-Language Compilation
for Reconfigurable Computers”, Proc. Intl. Conf. on Recon-
figurable Communication-centric SoCs (ReCoSoC), 2005.

[11] Balacco S., “Linux in the Embedded Systems Market (Vol.
VII)”, Venture Development Corp, 2007

[12] H. So, A. Tkachenko, and R. Brodersen, “A Unified Hard-
ware/Software Runtime Environment for FPGA-Based Re-
configurable Computers using BORPH”, Proc. 16th Int.
Conf. on Field Programmable Logic and Applications (FPL),
Madrid, 2006

[13] A. Donlin, P. Lysaght, B. Blodget, and G. Troeger, “A Virtual
File System for Dynamically Reconfigurable FPGAs”, Proc.
14th Int. Conf. on Field Programmable Logic and Applica-
tions (FPL), Antwerp, 2004

[14] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins, “Designing an Operating System for a Heterogeneous
Reconfigurable SoC”, Proceedings of the International Par-
allel and Distributed Processing Symposium (IPDPS), Nice,
2003

[15] IBM, “The CoreConnect Bus Architecture”, White Paper,
1999

[16] Xilinx, “ML310 User Guide” (UG068), 2005
[17] Xilinx, “Embedded System Tools Reference Manual”

(UG111), 2006
[18] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet” (DS083), 2005
[19] Tool Interface Standard (TIS) Executable and Linking Format

(ELF) Specification Version 1.2, TIS Committee, 1995
[20] H. Lange, A. Koch, “Design and System Level Evaluation

of a High Performance Memory System for reconfigurable
SoC Platforms”, Proc. HiPEAC Workshop on Reconfigurable
Computing, Ghent, 2007

[21] Müller-Hannemann M., Schnee M., “Finding All Attractive
Train Connections by Multi-Criteria Pareto Search”, Proc.
4th Workshop on Algorithmic Methods and Models for Op-
timization of Railways (ATMOS), 11/2004


