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Abstract. Complex SoC and platform-based designs require integration of
configurable IP cores from multiple sources. Even automatic compilation flows
from a high-level description to HW/SW systems can benefit from having access
to reusable sophisticated hand-optimized IP blocks. This is especially the case
in the domain of reconfigurable computers, which offer core integration
directly into the custom datapath. This work proposes the Parametric C
Interface For IP Cores (PaCIFIC) to allow the automatic embedding of
complex IP cores in a high-level language such as C. PaCIFIC provides for
formal description of IP behavior and interface characteristics as well as an
idiomatic programming style natural for SW developers.

1 Introduction

In many current design styles such as systems-on-chip (SoCs), embedded systems and
platform-based techniques involving hardware-software (HW-SW) co-design, a gap
appears in the design flow at the interface between HW and SW. The individual HW
and SW sub-flows (from RTL to layout and SW to binary code) themselves are quite
mature with regard to tool support, but the interface between both requires significant
manual effort to establish [1][10]. This applies even more strongly if the HW contains
IP cores, as these often feature complex functionality and interfaces. The challenges
the designer has to cope with include large system-specific parameter sets that span a
huge space of possible combinations, not all of them legal. While configuration
management is already well-explored [7][8][9], this paper concentrates on HW/SW
interface design. With the gate capacity of configurable devices reaching into the
millions by now, these issues are also becoming applicable to target platforms such as
Adaptive Computer Systems (ACS). On the other hand, their configurability allows a
much tighter integration of IP blocks into the system at the datapath level than the
comparatively coarse-grained on-chip buses used in the ASIC world.

Two aspects play key roles in this kind of interface design. First, the interface
functionality itself has to be partitioned between HW and SW realizations. Second,
concrete interface mechanisms and protocols must be determined (e.g., physical
connections, address ranges, transfer modes, device drivers, etc.). Both of these issues
require the designer to explore a large design space, a time consuming and sometimes
tedious task despite initial efforts at tool support [3].

This work focuses on the latter aspect in the context of using an ANSI C language
description to tightly embed, compose and interact with IP cores. This language has
been chosen in context of our work of enabling fully automatic compilation from a
high-level programming language to ACS applications. As a solution, we propose the
Parametric C Interface For IP Cores (PaCIFIC). It establishes an automatic design



flow presenting convenient, simple C interfaces (function prototypes) to a SW
developer. Our approach hides the formal descriptions of IP- or platform behaviors
and interface characteristics by encapsulating them together with other IP
configuration data in a dedicated repository [9].

2 Related Work

Tomiyama et. al. [2] compare several Architecture Description Languages (ADL) and
determine the characterizing properties to be behavior- and structure description. They
demand an explicit behavior description of processors for better compiler generation.
However, they consider synthesis-based ADLs or HW Description Languages (HDL)
neither sufficiently easy-to-use nor flexible enough for this task. Balboa [3] is a
HW/SW co-design framework for system models. It abstracts IP interfaces in a two-
fold intermediate layer consisting of a Component Integration Language (CIL) and the
Balboa Interface Description Language (BIDL) providing automatic data type
matching and interface generation. The IP behavior is implemented as C++ models.
The CoWare N2C suite [10] contains a set of interface behavior descriptions
expressed as prototypes or templates specialized in many detailed descendants.
Despite their great number, the behavior descriptions are not universal and cannot
replace a behavior description language. Handel-C [11] is an extension to the C
language with explicit parallelism, HW data types and inter-thread communication
channels based on the model of Communicating Sequential Processes (CSP) [13].
SystemC and Synopsys Behavioral Compiler both provide abstract interface
modeling, but the HW-oriented constructs in SystemC have not been embraced by the
SW-development community. Traditional HDLs, e.g., as used in the Behavioral
Compiler, have gained even less ground there. Carloni et. al. [17] construct an
interface mechanism based on latency insensitive protocols. Thronicke [7] and Zeller
[8] present configuration management (CM) methods from HW and SW domains. At
present, there seem to be no attempts to combine CM and ADLs, although this would
appear advantageous when building systems of complex IP cores and SW.

3 Problem Description

Consider a scenario with two IP cores which should be arranged forming a pipeline.
Assume that each core has one input and one output interface.

Fig. 1. Hardware pipeline used by software
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As shown in Fig. 1, the data path comprising both cores is supposed to be used from a
SW description that also sources and sinks the data. A natural approach for plain SW
would consider the two IP cores to be C functions, leading to the code in Fig. 2.

int *indata, *outdata, *intermediate;
for (n = 0; n < 64; n++) {
  compress (indata++, intermediate);
  crypt (intermediate++, outdata++);
}

Fig. 2. IP cores as C functions

From such a code description, the HW pipeline shown in Fig. 1 should be
automatically inferred. This requires additional information about the HW “functions”
compress andcrypt. The SW developer should not have to be aware of the actual
mechanisms involved in realizing the structure.

To this end, several issues must be addressed when dealing with HW embedded in
a SW description:

• Recognition of IP cores
Since C cannot distinguish between HW and SW, function calls aiming at IP core
instances have to be detected somehow.

• Low-level interface control
In contrast to HDLs, plain C has no notion of timing- or cycle-accurate execution
schedules. Thus, for each IP core, interface parameters like signal timing,
handshaking and bus arbitration must be provided in an external representation.

• Data transfer
There are several ways to exchange data between SW and HW. IP cores are often
programmed via register files. Thus, a Programmed I/O (PIO) mode is mandatory
in this case. On the other hand, this is highly inefficient for the large data sets
which are commonly processed by complex IP cores (video, networking). In these
cases, Streaming I/O (SIO) mechanisms are generally employed, often assisted by
rate matching and buffering using FIFOs. We will refer to such a setup as astream
engine. For each use of an IP core, the appropriate transfer method used has to be
determined based upon data-traffic statistics and interface descriptions delivered
by the IP provider.

• HW events
Some transactions are initiated not by the SW, but by the IP core, e.g., the
acceptance to process the next data block. Asynchronous events such as interrupts
or error notifications are beyond the semantics of a C function. The functional
synchronization, such as the indication of the current state of a HW function, must
be realized, for example, to determine the end of a C function call (=IP core
execution) and proceed with the rest of the program.

4 Proposed Solution

PaCIFIC consists of rules for an idiomatic programming style which must be used
when embedding IP cores in a C source program, and interface control semantics
which describe the interface behavior of an IP core (see Fig. 3). To this end, PaCIFIC



includes a data model and a human-readable description language for the
characteristics of individual IP blocks as well as entire platforms (not shown here). All
components are realized as compiler passes that perform the necessary analysis and
synthesis steps for both HW and SW. These steps access the PaCIFIC descriptions to
discover idiomatic HW function calls in the C source program. As first practical
realization, the Compiler for Adaptive Systems (COMRADE) [4][5] will act as the
host compiler. PaCIFIC enables COMRADE to access and integrate IP cores too
complex to be generated efficiently just from a SW description. For brevity, the
details of the COMRADE integration will not be discussed here.

Fig. 3. Design flow with PaCIFIC

The data models and representations are based on the study of more than thirty
commercial IP blocks that were classified using the attributes of the PaCIFIC interface
template [12]. The aim was the capability to describe all of the IP cores' interface
semantics with the existing attribute catalog. The majority of the evaluated cores
belongs to the domains of multimedia and networking. The first cores generally
presented a data path oriented interface, with the video or audio stream processing
being the main task. In contrast, the networking IP cores employed a processor-based
register interface. More complex IP blocks even use multiple different interfaces of
both kinds.

5 Hardware Interface Description

The PaCIFIC interface description [12] is used to define the static properties for all IP
interfaces as well as the dynamic flow of the interface protocols based on synchronous
logic operating without a central flow control authority. As usual, properties are
expressed as attributes and values. Some of the many defined attributes are:

• Identification (class, type, version, name).

• Auxiliary information (author, comments).
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• Port definitions (transaction type, direction, width, associated clock, abstract data
type, associated address, handshaking protocol, data traffic statistics, bus
arbitration).

• External resources required by the IP core and their allocation modes (shared,
exclusive, persistent). This might include external memories or special I/O
requirements (e.g., access to multi-Gbps transceivers).

Port transaction types and handshaking protocols will be examined in more detail in
Section 5.1. A fragment of an interface template for thecrypt IP core is shown in
Fig. 4 below:

interface crypt
  type:    custom
  version: 1
  port INDATA
    transaction: data
    direction:   in
    width:       32
    sequence repeat: inf
      bigendian: 32 bit signed
    end sequence
    enableout:   name ACK_OUT offset 0 latency 0
  end port
  port ...
...
end interface

Fig. 4. Part of PaCIFIC Interface for the crypt IP

The abstract data type defined by thesequence block of the example (here just a
single scalar integer), plays a central role in the data exchange between SW and HW.
It arranges the nature, order, and count (repeat) of the data items that are transferred
over the port or bus. Every sequence block corresponds to formal parameter of the
fictitious C function representing the IP core.

Interfacetemplates can be used to group and reuse the same or similar interfaces in
a fashion analogous to the classes and inheritance of object-oriented programming.

5.1 Interface Protocol Description

The fundamental interface flow control mechanism in PaCIFIC is a handshaking
scheme which consists of an incoming and an outgoing signal per port. For an
outgoing signal, the asserted state (selectable as high or low) means that the IP block
is ready to consume data (on an input port) or that data is waiting to be fetched (on an
output port). The incoming signal is the outgoing signal from the connected port at the
other end of the communication. It is not necessary to specify both signals, a one-way
handshake is possible as well as no handshake. A transaction is considered complete
when all specified handshake signals are active at a clock edge. If both signals are
specified, it is illegal to reset the first active signal before the second signal has been
activated. For all handshakes, a time offset or initial latency with regard to another
handshake may be specified. Additionally, an interrupt semantic can be selected for
the handshaking signals. This is useful if no actual data transfer is required during the
transaction, e.g., to indicate that data must be fetched from a mailbox register.



When such static interface properties no longer suffice to describe the
characteristics of an IP core's interface, an enhanced version of the FLAME UCODE
notation is employed [6] to describe dynamic behavior. A UCODE block is a list of
statements most of which are executed sequentially. It represents the state machine of
an interface controller. An excerpt of the UCODE statements is shown below:

• Thelevel statement asynchronously sets ports to the values given as arguments
of the form port=value.

• The posedge statement is similar tolevel, but operates synchronously with a
rising clock edge.

• Thecontinue statement takes three kinds of parameters: an optionaltimeout:
n, optional error: port=value expressions, and normalport=value
expressions which are interpreted as conditions. The first two branch to the
exception block either if all error conditions are true or the timeout in clock
cycles has expired. If no timeout or error occurs, the control flow is halted until all
normal continue conditions are valid. As stated in [6], multiple conditions in the
samecontinue statement are logically ANDed, multiple successivecontinue
statements are ORed. The asynchronouscontinue statement can be synchronized
by a following posedge.

• The exception block, if present, is located at the end of the UCODE block. It
marks the branch target for allerror andtimeout clauses and puts the interface
or IP block into a well defined error state. The normal control flow terminates, if
the exception block or the end of the UCODE block is reached.

• The mandatorytransfer n name block represents the transfer ofn sequences to
port name, with the nature of the sequence being defined in the PaCIFIC interface
description. Without a sequence description on a port,transfer indicatesn
scalar transfers using the full port width. It acts as a loop in the UCODE control
flow. Each iteration is triggered by the handshaking protocol defined for the port.

6 Software Interface Description

The last sections dealt with the HW realization of the interface to the IP cores. In this
section, the corresponding SW mechanisms will be examined.

From the study of multimedia IP cores it is obvious, that a powerful data streaming
service is needed to source and sink the data path interfaces of the IP. The stream
engine fetches and stores data from respectively to shared memory, which is
accessible to the SW running on the CPU. The start address of the memory range to be
streamed can be expressed as a pointer to C structures reflecting the composition of
the sequences defined in a PaCIFIC interface.

In all cases, the IP cores also require programming (e.g., for initialization) using a
register interface. This can be realized by simply mapping the registers into a SW
accessible memory region (but not necessarily the main memory space).

To recognize the actual IP core embedding, and establish both communication
methods, an idiomatic C programming style is required: Only two modes of
instantiating IP cores from C are supported by PaCIFIC, but they are sufficient to
cover all interface types under discussion.



First, there is the fully automatic interface generation, which results in the creation
of read and writeprimitives for access to the ports of the IP core in both direct
(register) and streaming fashions. This method works from the PaCIFIC interface
definition, the IP designer (or more precisely, the author of the PaCIFIC description)
does not have to provide any additional data. However, the SW has to explicitly call
the primitives in the required order to actually get the IP core to perform the desired
function.

Second, there are functions which atomically perform complex operations without
requiring incremental prodding by a SW program. For the realization of these
monoliths, the IP designer has to supply an algorithmic description of the control and
data patterns that must be applied to the interfaces of an IP core for the required
function. The monoliths are then generated automatically and their call resembles
conventional C library functions (all individual control steps have been hidden and
implemented automatically).

Note that threading models such as the POSIX one are compatible with PaCIFIC,
enabling the parallel execution of HW and SW. This can be beneficial when calling
data-intensive IP cores: E.g., while the HW is still running, the SW prefetches the next
data block into memory and writes processed data to disk.

6.1 Primitives

Consider an input portindata without an associated address that is 32 bits wide (cf.
example in Section 5). For this case, the C functionwrite_indata is generated. It
writes 32-bit integers (sequencebigendian: 32 bit signed) and terminates data
dependently (repeat: inf):

void write_indata (int *data);

A best match approach is employed for mapping scalar hardware data to C data types.
The n least significant bits of the next larger C type represent a hardware scalar of
width n. Unrelated to the previous example, an output port with an associated address
that delivers a sequence of composite data items (here mapped to thestruct comp)
results in the following function:

void read (int address, struct comp *data);

If the repeat value in a sequence definition equals one, SW wrapper functions may
be used to eliminate the unwieldy pointer in favor of just passing scalar data.
Primitives are most suitable for use with simple register- or memory-style interfaces.

6.2 Monoliths

Due to the strictly sequential semantics of C, it is not possible to directly describe
pipelined accesses using primitives. However, this is achievable using monoliths. The
example in Fig. 5 below reconsiders the compress-crypt scenario from Section 3 and
describes the underlying control protocol for the behavior “encrypt” in PaCIFIC-
extended UCODE [6] (see also Section 5.1).

behavior encrypt
proc crypt(plaintext, ciphertext)

; load key



posedge LOAD_KEY=1
        KEY=10027821 ; fixed key
posedge LOAD_KEY=0

; process single data item
transfer 1 INDATA
  level    INDATA=plaintext
           ACK_IN=1
  continue timeout: 16
           error: INIT=0 ACK_OUT=1
  posedge  ciphertext=OUTDATA
  level    ACK_IN=0
endtransfer INDATA

; wait for end of pipeline flush
exception
continue INIT=1
; execution terminates here
end behavior

Fig. 5. UCODE for behavior “encrypt”

The function prototype in theproc statement corresponds to the C function, with
variables being passed by reference. Fig. 6 displays the signal timing described by the
transfer block above with INIT := 1.

The following sequence is defined in the PaCIFIC specification for the port
INDATA:

; data
sequence
  bigendian 32 bit signed
endsequence

From this description, thecrypt function in the example of Section 3 can be
generated. The function terminates after encrypting one data word from the memory
pointed to by plaintext and delivering it to *ciphertext:

crypt(int *plaintext, int *ciphertext)

7 Hardware Experimental Results

To evaluate the feasibility and efficiency of the PaCIFIC approach, the Xilinx High-
Performance 16-Point Complex FFT/IFFT [14] of the Core Generator suite was
coupled to an ANSI C program applying the PaCIFIC algorithms manually, since an
automatic tool flow is not yet available. The FFT expects data to be continuously
streamed to its input buses as well as from its outputs. For simplicity, the 16 bit real
and imaginary buses are combined into 32 bit buses carrying complex numbers. The
output data is available after an initial latency of 82 cycles. To efficiently source and
sink data, two stream engines are employed with a FIFO capacity of 256x32 bit each.
The test platform was an ACE-V ACS [16]. The relevant platform HW used here
includes a 100MHz microSPARC IIep CPU with 64 MB of DRAM and a Virtex 1000
-4 FPGA. The CPU accesses the FPGA via PCI and a PLX PCI9080 local bus bridge.
For comparison, the FFT was also exercised on a second test platform, an ADM-XRC
card attached via PCI to a standard PC (AMD Duron 800 MHz, 256 MB SDRAM).
The ADM-XRC is a subset of the ACE-V providing the same Virtex FPGA and PLX
local bus bridge.

Fig. 6. Signal timing for the crypt IP



The C program executed by the processor reads the source data from a file into the
DRAM, calls the FFT HW implemented on the FPGA and finally writes the result
back to disk (Fig. 7).

int main(int argc, char* argv[]) {
  FILE* infile, * outfile;
  int* dram_in, * dram_out;

  infile   = fopen("time.dat", "r");
  outfile  = fopen("freqspec.dat", "w");
  dram_in  = calloc(16384, sizeof(int));
  dram_out = calloc(16384, sizeof(int));
  fread (dram_in, sizeof(int), 16384, infile);
  vfft16(dram_in,  dram_out); /*** HW function call ***/
  fwrite(dram_out, sizeof(int), 16384, outfile);
...
}

Fig. 7. C program calling FFT HW

Data for the FFT logic is sourced and sunk by two stream engines co-located on the
FPGA which access the DRAM in bus master mode. The naive approach without
PaCIFIC would require a manual set-up of the stream engines and the control signals
for the FFT. Instead, all of this is wrapped by PaCIFIC into a single function call.

After application of the PaCIFIC algorithms, the SW part was compiled using gcc,
while the resulting RTL description for the stream engines and interface control logic
was synthesized with Synplify 7.3.3. It was subsequently mapped with ISE 6.2.01i,
embedding the FFT core netlist. The achievable clock speed without optimized
floorplanning for the mapping results in Table 1a is 27 MHz.

Table 1. FFT mapping results (a) and performance results (b) with PaCIFIC

a) Area
Slices

Total
V1000

BSR* Total
V1000

FFT
S/I*

Sum

1386
1385
2771

11%
11%
22%

0
4
4

0%
13%
13%

*S/I: Stream engines and interface
control; BSR: BlockSelectRam

Table 1b shows the performance results for the FFT processing 4096 words on both
ACE-V and ADM-XRC/PC at 27 MHz FPGA clock. The time spent in SW processing
is not considered here since it depends mostly on the host's file I/O capabilities rather
than PaCIFIC interface design assuming that a naive approach would also access
memory in master mode.

8 Conclusions and Future Work

We presented PaCIFIC, a strategy for using complex IP cores from within ANSI C
programs as seamlessly as pure C SW functions. The HW-specifics unfamiliar to a
SW developer are encapsulated in the PaCIFIC framework. Instead, the IP provider

b) Clk cycles
ACE-V

Clk cycles
ADM-XRC/PC

S/I* read startup latency
PCI read startup latency
FFT processing
Memory transfer overh.
PCI processing overh.
PCI write flush overh.
Sum

8
39

4178
4096
8036
199

16556

8
29

4178
4096
6333

58
14702



supplies the details required for core integration as a machine-readable description.
The HW/SW interfaces are then generated automatically, thus raising design
productivity by closing the gap between the vertical HW and SW design flows.

This approach applies not only to COMRADE or the specific domain of adaptive
computing systems, but generally to all HW/SW co-design environments. The unified
notation for IP configuration and interface protocol description enables (semi-)
automatic design composition. Reusable interface descriptions allow the separation of
interfaces and implementation details. Although many of the underlying concepts
have already been explored separately, it is their combination that catalyzes a new and
easy-to-use HW/SW co-design flow. Additionally, reconfigurable platforms such as
ACSs profit from PaCIFIC's ability to generate lightweight native interfaces at the
datapath-level between IP and the rest of the system. This avoids the overhead incur-
red by requiring on-chip bus-compatible wrappers between the generic HW blocks.
Future work will provide the tool support for PaCIFIC within COMRADE.
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