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Abstract

Perceiving distance from two camera images, a task

called stereo vision, is fundamental for many applications

in robotics or automation. However, algorithms that com-

pute this information at high accuracy have a high com-

putational complexity. One such algorithm, Semi Global

Matching (SGM), performs well in many stereo vision

benchmarks, while maintaining a manageable computa-

tional complexity. Nevertheless, CPU and GPU implemen-

tations of this algorithm often fail to achieve real-time pro-

cessing of camera images, especially in power-constrained

embedded environments. This work presents a novel ar-

chitecture to calculate disparities through SGM. The pro-

posed architecture is highly scalable and applicable for

low-power embedded as well as high-performance multi-

camera high-resolution applications.

1. Introduction

Allowing computers to perceive their environment is still

one of the most challenging tasks in computer vision. Es-

pecially stereo vision, the perception of depth using two

cameras, is important for many areas such as robotics and

autonomous driving. Stereo vision uses two cameras that

are located some distance apart horizontally, but are on the

same level vertically. Pixels in the images captured by the

two cameras are thus displaced only in the horizontal di-

rection, with the maximum pixel offset (traditionally called

disparity) limited by the distance of the two cameras. The

computed disparity for the pixel can then be used to derive

depth information from the stereo images using triangula-

tion (pixels closer to the cameras have larger disparities).

The algorithm at the center of this work is called Semi-

Global Matching (SGM), which is one of the fastest algo-

rithms also scoring well on accuracy in stereo vision bench-
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Figure 1: Typical stereo vision system. This paper focuses

on the disparity calculation step.

marks such as KITTI [1] and Middlebury [2]. This has led

to its widespread use in many practical applications.

This work proposes a novel hardware architecture to

compute the SGM algorithm on FPGAs. The parametrized

architecture is highly scalable, easily allowing implemen-

tations on small low-power devices (e.g., in autonomous

robots) as well as for large high-performance chips (e.g., in

stationary use-cases for processing multiple high-resolution

video streams). As shown in Fig. 1, we focus on the dis-

parity computation, rectification and the actual camera in-

terfaces will not be discussed

2. Semi-Global Matching

The SGM algorithm was introduced by Hirschmüller in

2005 [3]. It provides good accuracy at manageable compu-

tational effort and is robust with regard to choices for con-

figuration parameters [4].

We will use the function C(p, d) ∈ N0 to denote the

cost of matching a pixel p = (x, y) at coordinates (x, y)
in the base image at an assumed disparity (offset) of d at

coordinates (x− d, y) in the matching image. As suggested

by [5], the differences in the counts of pixels darker than

the center pixel (a parametric rank transform) can be used to

realize C (see Eq. 4). Section 4 discusses these equations in

more detail. To determine the actual best match, these costs

are calculated for all potential disparities d < Dmax, where
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Dmax is the upper limit of the potential disparity (due to

the physical mounting distance of the two cameras). At first

approximation, the match with the lowest cost is assumed to

indicate the true disparity argmind<Dmax
C(p, d) between

base and match images for an individual pixel p (but see

below for further constraints).

To achieve better matching accuracy, (semi) global ap-

proaches such as SGM compute these costs of potential

matches not just between individual (or neighborhoods)

of pixels, but along multi-pixel paths stretching across

the entire image. The cost of matching along an en-

tire path, described by the relative offset of path elements

r = (∆x,∆y), for an assumed disparity d is denoted as

Lr(p, d). These paths are distributed evenly over the image

(see Fig. 2 for examples) for a global view of the matches.

Typically, at least eight evenly distributed paths are used

(Fig. 2.b), but 16 are suggested for optimal coverage. The

number and arrangement of paths has a direct impact not

only on the matching accuracy, but also on the computa-

tional effort and, in our case, on the actual architecture of

the SGM hardware accelerator.

We will aim for a compromise between performance and

accuracy. As shown in [6], a reduction from eight down

to the four paths 0◦ (r = (1, 0)), 45◦ (r = (1, 1)), 90◦

(r = (0, 1)) and 135◦ (r = (−1, 1)) (Fig. 2.a) results in

an accuracy loss of only 1.7% (increase in count of misla-

beled disparities) in the Middlebury benchmark, but allows

a highly efficient hardware architecture computing the Lr

for all of these paths in parallel.

Figure 2: (a) Four, (b) Eight, and (c) 16 directions used in

Semi-Global Block Matching.

The raw cost L′
r
(p, d) for matching the pixels p along a

path r for an assumed disparity of d is calculated using the

formula
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These raw path costs are calculated for all of the selected

paths, for all potential disparities d up to the limit Dmax.

For each pixel, both the local cost C as well as a semi-global

component is evaluated. The latter considers four character-

istics observed in real-world images, of which the minimum

is added to the local cost: The first characteristic is the cost

of the prior pixel along the path (1.a), the second and third

components penalize small disparity changes of |∆d| = 1
by P1 (1.b and .c), while the final term (1.d) penalizes larger

disparity changes (so-called discontinuities) by P2. P1 is

usually determined off-line experimentally by analyzing in-

put images typical for the actual stereo vision use-case. P2,

on the other hand, is adjusted dynamically at run-time: As

disparity discontinuities are often also represented as pixel

intensity changes, computing P2 =
P

′

2

|Ip−Ip−r|
compensates

for different pixel intensities Ip and Ip−r along the path

r. As for P1, P ′
2

is a constant determined experimentally

based on representative sample images off-line. For further

discussion of the path cost calculation, please refer to the

original work by Hirschmüller [3]. To determine the (semi)

global matching cost, the path costs are summed up across

all paths. However, for a hardware implementation, it is

worthwhile to consider a slightly changed formulation.

In hardware, a key characteristic from both the perfor-

mance as well as area usage perspectives is the word width

(in bits) of arithmetic operators and data types. Since the

paths will run across the entire image, they can be quite

long (depending on the camera resolution), and summing

their costs can result in large values that need wide words

for computation and storage. We can counteract this by sub-

tracting from the raw path costs for a pixel L′
r
(p, d) the min-

imum of the path costs for all assumed disparities d for the

prior pixel p − r along the path r. The effect of encoding

only the differences between prior and current pixels leads

to a reduction of the magnitude of the values, which require

correspondingly narrower data words for storage and com-

putation. Thus, the hardware-optimized path cost computa-

tion becomes

Lr(p, d) = C(p, d) + min



















Lr(p− r, d)

Lr(p− r, d− 1) + P1

Lr(p− r, d+ 1) + P1

mini Lr(p− r, i) + P2

−min
j

Lr(p− r, j). (2)

The paths costs Lr along all paths r are summed up as

S(p, d) =
∑

r
Lr(p, d). The disparity d with the mini-

mal matching cost argmind S(p, d) is considered the win-

ning disparity for the pixel p. These winning disparities are

output by the accelerator for each pixel, as input for later

computing the actual depth (Z-axis position, not discussed

here).
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As indicated above, in practice additional constraints

need to be imposed to clean-up outliers and mark invalid

disparities: The result of argmind S(p, d) might be multi-

element set, meaning that the minimal matching cost for

a pixel p occurs for different potential disparities d. With

such a non-unique cost, the algorithm cannot decide on a

single winning disparity, and instead registers the disparity

for this pixel as “invalid”.

Additionally, a so-called left/right check is performed,

which compares the results of the algorithm when running

it with swapped roles of base and match images. This check

can also be implemented efficiently (avoiding recalculat-

ing all disparities for the former match image now used as

base) by re-using the previously computed S(p, d) along an

epipolar line as argmind S((x(p) + d, y(p)), d) to select

the winning disparity d for the second image. The left/right

check sets the disparity to “invalid” if the corresponding dis-

parities of the original and role-swapped passes differ by

more than one. This step eliminates phantom disparities re-

sulting from occluded surfaces that are visible in one image,

but hidden in the other.

Finally, the disparity map is post-processed using a basic

3× 3 median filter to suppress outliers.

3. Related Work on High-Performance SGM

Implementations

Several implementations of SGM exist for a wide vari-

ety of use-cases. However, they often have unsatisfactory

performance or high power requirements.

Even when exploiting current vector extensions (SIMD)

such as Intel AVX2 on a fast i7-4960HQ processor, a recent

software implementation [7] achieved only 16 frames-per-

second (fps) for VGA image pairs and Dmax = 128. This

processor is rated to draw 47 W under load.

The less power-hungry software solution described in [8]

targets the P4080 embedded eight-core processor. Clocked

at 1.2GHz, the implementation achieves 0.5 fps on VGA

images, but limits the search space to Dmax = 64. The

P4080 is rated to draw less than 30 W even when fully

loaded.

A different trade-off was used for a heterogeneous em-

bedded system in [9]: By combining a small Core2Duo sys-

tem with an embedded OMAP3530 ARM processor and a

Xilinx Spartan 6 FPGA, it achieved 14.6 fps, but has a la-

tency of 250 ms for processing a single image of 1024×508
pixels and Dmax = 128. This latency might be too high for

certain real-time use-cases.

The use of GPUs leads to results similar to that of CPUs.

[10] describes an implementation achieving 11.7 fps on an

NVidia GTX480 GPU for VGA images with Dmax = 64.

However, this GPU is rated to draw 250. . . 300 W of power

when loaded.

FPGA implementations do significantly better, both with

regard to performance as well as power efficiency: In [11]

an architecture is proposed that is capable of processing

1024× 768 pixels with Dmax = 96 at 31.79 fps on a Altera

EP4SGX230 device. Another approach is followed in [12],

where high-level synthesis from C to hardware is used to ex-

plore different strategies targeting the Xilinx Zynq Z7020

system-on-chip on a ZedBoard. They achieve 30 fps at

VGA resolution, but have a tight search limit of Dmax = 16.

A combination of FPGA and CPU processing is used in [13]

to achieve 60 fps for images of 752×480 pixels on a Xilinx

Artix 7 FPGA. While exact power numbers are not given, in

many cases FPGAs draw less than 10 W for computing pur-

poses when the high-speed serial transceivers are not used.

4. Architecture
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Figure 3: Base architecture for SGM. Stage 1 produces the

per-pixel costs and P2 penalty values. Stage 2 calculates the

path costs, using the outputs of the previous stage as well as

prior paths costs stored in a stage-internal buffer. Stage 3

computes the disparities from the path costs.

The architecture proposed here is inspired by prior work

by Banz et al., presented in [6]. However, not only has our

architecture been enhanced by introducing an extra level

of fine-grained parallelism (e.g., parallel disparity compu-

tation and sorting), it has also been implemented using a

state-of-the-art latency insensitive design style in a next-
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generation hardware description language. As a result, it is

significantly more scalable, easier to extend, yet also much

faster than the original work (even when compensating for

the differences in FPGA target technologies).

The algorithm described in Section 2 is mapped to the

structure shown in Fig. 3. The modules in Stage 1 have the

base and/or matching image as inputs. The cost module im-

plements the computation of the per-pixel (neighborhood)

cost (e.g., using Census or Mutual Information) from both

input images. This module outputs the cost C(p, d) for all

pixels and all disparities up to Dmax as a stream starting

from d = 0 up to d = Dmax − 1. Secondly, Stage 1 com-

putes the P2 values (intensity-based penalty for discontinu-

ities), which are generated from the base image for every

pixel and the four path directions used. Thus, it outputs a

stream of four P2 values per pixel. Only Stage 1 actually

reads image data, the next stage operates operates only on

streams of per-pixel costs and P2 values.

From these streams, Stage 2 computes the disparities

along the four paths in parallel, using a separate module

for each path r. Since this computation requires not just the

current per-pixel cost C(p, d), but also prior costs Lr(p, d)
from earlier locations along the paths, the stage needs in-

ternal feedback, using buffers to delay the earlier values

appropriately (storing them as three-element vectors). In

summary, the Stage 2 modules require C(p, d), which is

constant for all paths, P2 which is constant for each pixel,

mini Lr(p−r, i) (for the P2-penalized L term and the mag-

nitude reduction), which is constant for all disparities of a

pixel, and finally Lr(p, d − 1), Lr(p, d) and Lr(p, d + 1)
(for the L terms penalized by P1), all of which are unique

for all disparities and all pixels and all paths. The stage pro-

duces streams of four-element vectors containing the costs

for the four paths for each pixel, with the path costs for the

different potential disparities 0 ≤ d < Dmax − 1 just being

streamed-out in order.

Stage 3 operates on these streams to compute S(p, d) for

each potential disparity and determine mind S(p, d). The

latter is then checked for uniqueness and also undergoes the

left/right check re-using the previously computed costs (see

Section 2 for details). The output of the module is a stream

of the final winning disparities, cleaned-up by a 3 × 3 me-

dian filter, or the “invalid” markers for pixels for which no

winning disparity could be determined.

This base architecture can already perform the complete

SGM computation, and, with some care in the implementa-

tion, can be fully pipelined. However, it performs only the

computation of the path costs Lr in parallel. This can be

improved both at the fined-grained as well as at the coarse-

grained levels.

Fine-grained parallelization One key contribution of

our work beyond [6] is the computation of per-pixel and per-
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Figure 4: Extending the base architecture with fine-grained

parallelism: Parallel cost computations (per-pixel, per-path)

for multiple potential disparity values

path costs for n potential disparity values in parallel (see

Fig. 4). Thus, Stage 1 now needs to compute n per-pixel

costs, which are then streamed to Stage 2 as n-element vec-

tors. Note that the P2 computation is unaffected, it is still

performed only once per path for each pixel. Considerable

extension is required in Stage 2, which will now be repli-

cated n-times to accept the n-element vectors from Stage

1 and process them in parallel. Two areas require special

care: The intra-stage buffers are becoming larger (now hav-

ing to hold n + 2-element vectors) with a more complex

forwarding network, also the calculation of the minimal Lr

values has to happen in parallel (achieved by a fast com-

parator tree). Stage 3 is similarly sped-up, replacing the se-

quential summing of paths for each potential disparity value

with parallel adder trees. The critical path determining the

performance of this solution is the parallel computation of

mini L0
◦(p − r, i) across all potential disparity values i,

as its results are immediately needed to compute the costs

for extending the path to the next pixel. Note that the other

Lr units’ outputs are buffered and required only in the next

row, but L0
◦ has a self-loop.

Coarse-grained parallelization The base architecture

can also be parallelized on a coarse-grained level (Fig. 5).

This requires m multiple instances of the entire base archi-

tecture (called a Row Processor in this context). Each Row

Processor is responsible for processing one line of the input

images, leading to an image stripe m rows in height being
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Figure 5: Coarse-grained parallelization: Processing multiple rows in parallel

processed in parallel. Buffers between the Row Processors

forward the intermediate data from the Lr computations in

Stage 2 to Stage 2 in the next Row Processor, where they

will be consumed by the corresponding Lr units. Note that

this forwarding occurs only for paths at 45◦, 135◦, 90◦ an-

gles, as the path at 0◦ does not require data from the prior

row (see Fig. 2.a). These forwarding buffers also provide

the wrap-around to the first Row Processor, as there will be

fewer Row Processors than image rows, and the first Row

Processor (which will be processing the first line of the next

stripe down) depends on the last Row Processor (which was

processing the final line of the previous stripe up). The

performance of this approach depends on how quickly the

inter-row buffers can be filled with data, as Row Processors

waiting for data from their predecessors will remain idle.

Similarly, a Row Processor will stall if it cannot deposit its

output due to the corresponding buffer to next row being

full. This coarse-grained approach was already suggested

in [6]. By treating it as a wavefront array (systolic array

with handshake instead of lock-step data propagation), it

lends itself ideally to an implementation in the new latency-

insensitive hardware design style we apply.

Both parallelization techniques can be combined to mit-

igate their respective weaknesses (critical path length in

the fine-grained approach, Row Processors stalling in the

coarse-grained one). In Section 5, automatic design space

exploration will be used to derive the optimal composition

of the two approaches.

Selected architectural details As discussed in Section 2,

we will be using the non-parametric rank transform vari-

ant of Census. The rank transform consists of counting the

number of pixels in a neighborhood that are of lower inten-

sity than the center pixel:

R(p) = ‖p′ ∈ Ns(p)|I(p
′) < I(p)‖ , (3)

Here, R(p) is the rank transform of pixel p, Ns(p) the

neighborhood around pixel p encompassing all pixels with

a distance less or equal to (s − 1)/2 from the center, and

I(p) the intensity of pixel p. The neighborhood, also called

a kernel, is square with a total size of s2 pixels. Each rank

transformed value is encoded in ⌈log
2

(

s2
)

⌉ bit.
The calculation of R(p), which serves as input to the

cost calculation stage, is done in parallel for both images.

The Row Processors are fed with streams of Rb(p) for the
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base image and Rm(p) of the matching image, as well as

a stream for the P2 penalty values. If more than one Row

Processor is present in the system, round-robin is used to

distribute the inputs one row at a time (leading to process-

ing occurring in the downward moving stripe). All Row

Processors require input FIFOs which can store a full row

to enable operation as a wavefront array.

The actual per-pixel matching cost computation based on

the rank transform R is thus

C(p, d) = ‖R(p)−R((x(p)− d, y(p)))‖ . (4)

The wrap-around buffer from the last to the first Row

Processor (shown in Fig. 5) is larger than the normal inter-

Row Processor buffers, as it has to hold all Dmax intermedi-

ate results for every pixel in the last row.

In a design with multiple Row Processors, the calculated

disparities are buffered in FIFOs until they are retrieved by

the output module. The output module then merges the

outputs of the Row Processors using the same round-robin

scheme as the input module. The 3× 3 median filter is then

applied to the merged stream remove outliers in the calcu-

lated disparities.

As shown by Hirschmüller in [3] the maximum value of

any L is always less than Cmax + P2. This limits the word

widths required for data storage and arithmetic operators in

the hardware implementation.

5. Evaluation

We evaluate our approach at three levels: First, we con-

sider the accuracy, then the simulated target-independent

performance of the hardware architecture in terms of clock

cycles, and finally the wall-clock performance on three ac-

tual FPGA platforms, encompassing embedded system and

data center use.

5.1. Accuracy

Since our core algorithm is the same as that of [6], we

achieve the same disparity computation accuracy. Using the

Middlebury[2], [14] benchmark, the algorithm produces on

average 8.4% disparities exceeding an error threshold of

one pixel.

5.2. Platformindependent performance

Cycle-accurate simulation of the architecture (described

in highly parametrized Bluespec SystemVerilog, BSV) was

used to determine the run-time characteristics of sample im-

plementations. Comparison to the actual hardware imple-

mentations (Section 5.3) shows, that these simulations are

actually representative of final performance.

The core is evaluated at three image resolutions: 640 ×
480 pixels (VGA), 1280 × 720 pixels (720p) and 1920 ×
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Figure 6: Cycles needed to process a single disparity map

for varying degrees of parallelism.

1080 pixels (1080p). VGA resolution images are evaluated

at Dmax = 64, the higher resolutions have Dmax = 128.

For all resolutions, the number of clock cycles needed to

complete a single frame are determined through simulation.

We have examined different compositions of coarse- and

fine-grained parallelism. An implementation is described

by the pair (#p, #d), which indicates the use of #p Row Pro-

cessors, each computing #d assumed disparities in parallel.

For each of the resolutions, we have used automatic design

space exploration to generate 250 implementation alterna-

tives, shown on the X-axis in order of increasing area or

performance. Due to space constraints, only a subset of the

alternatives could be labeled here with (#p,#d).

As shown in Fig. 6 for VGA images, the architecture

scales well with increasing the number of Row Processors,

down to a lower bound of 654644 cycles, at which point

a single pixel is calculated in 2.11 cycles and a single dis-

parity requires 0.033 cycles. This design is limited by the

speed the input buffers can be filled, which could be in-

creased even more by also applying fine-grained paralleliza-

tion techniques to the Stage 1 computations (see Section 6).

At an assumed clock rate of 200MHz (which is realistic,

see Section 5.3) the architecture would reach up to 306 fps

as shown in Fig. 7. Such large and fast systems could be

used to calculate the disparities over multiple cameras to

produce a surround-view of a scene.

More interesting for low-power applications is the mini-

mal frequency necessary to achieve 30 frames per second (a

typical requirement for real-time processing). As shown in

Fig. 8, the architecture is able to fulfill this requirement at a

frequency as low as 30MHz for VGA images.

5.3. Performance on real FPGA platforms

The true performance of our approach can be mea-

sured only when actually mapping an implementation of

the architecture to a real hardware platform, of which
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Figure 7: Frames per second achieved by the proposed ar-

chitecture at a clock frequency of 200MHz.
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Figure 8: Frequency needed to achieve 30 frames per sec-

ond on the proposed architecture for varying degrees of par-

allelism.

we consider three cases: ZedBoard (ZC7Z020T), Xilinx

ZC706 (ZC7Z045) and VC709 (ZC7VX690T) develop-

ment boards. The first two use Zynq-7000 reconfigurable

system-on-chip devices, the last a large Virtex-7 FPGA.

On the tools side, Bluespec 2015.09 beta2 was use to

compile the BSV descriptions into synthesizable RTL-style

Verilog. Threadpool Composer (TPC) 2016.03 [15] was

used to assemble the hardware accelerators into full system-

on-chips (e.g., adding memory and control interfaces), and

perform automatic design space exploration. The entire

hardware system was then mapped to the FPGA devices,

using Xilinx Vivado 2015.2 for logic synthesis, placement

and routing.

Fig. 9 shows the resource requirements of the core at

VGA resolution for different degrees of parallelism. Only

the smaller two platforms are considered here, as the large

VC709 is severely underutilized at VGA resolution (it

easily holds even the largest sensible VGA accelerator).
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Figure 9: Hardware synthesis results for accelerators at

VGA resolution for Zedboard and ZC706 platforms
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Figure 10: Hardware synthesis results for accelerators at

720p resolution for ZC706 and VC709 platforms

The smaller Zedboard is capable of running a core with

#p=8 row processors and #d=1 parallel disparities as the

largest core, achieving 33 VGA fps. However, design

space exploration by TPC has discovered that an SGM core

parametrized as (#p=5,#d=2) actually performs better (40

fps) at the 100MHz clock frequency used on the Zedboard,

and is also smaller. The ZC706 is capable of housing much

larger cores: TPC exploration suggests core configurations

of (21,1), achieving 140 VGA fps at 210 MHz, and (13,4)

achieving 134 fps at 150 MHz.

The increase in image resolution and disparity range to

720p resolution and Dmax = 128 grows the search space

by six times. However, our implementations still manage

to process images in real time. on the two larger platforms

(the Zedboard is too limited for the higher resolutions). The

ZC706, running at 140MHz, is capable of supporting a

(16,4) configuration which yields 32 fps. The larger VC709

handles up to 45 fps at 130MHz using a (34,4) configura-

tion.
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Figure 11: Hardware synthesis results for accelerators at

1080p resolution for ZC706 and VC709 platforms
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Figure 12: Energy consumed by different configurations of

VGA-resolution SGM accelerators at maximum fps

The largest images we tested are in 1080p resolution

with Dmax = 128, requiring yet another 2.25x increase in

search space over 720p. Despite this large search space,

the VC709 is again capable of real-time performance at 30

frames per second in a (20,4) configuration at 130MHz.

The smaller ZC706 tops out with a (12,4) configuration run-

ning at 140MHz, yielding 12 fps.

In addition to performance and area, the energy con-

sumption is an important characteristic when evaluating

hardware accelerators targeting low-power use-cases. As

can be seen in Fig. 12, the architecture requires as low as

8.404mJ to process a single frame. Slowing the clock fre-

quency to reach a target of 30 fps results in similar energy

requirements per frame as shown in Fig. 13. The lower

clock frequencies are counteracted by the longer active time

per frame.
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Figure 13: Energy consumed by different configurations of

VGA-resolution accelerators when achieving 30 fps

6. Conclusion and Future Work

The proposed architecture to compute semi-global

matching on FPGAs performs well over a wide range of sce-

narios. Low-power VGA configurations run at 30 fps with

a clock as low as 74MHz even on small FPGAs such as

that used on the Xilinx ZedBoard. For higher performance

needs, the architecture offers multiple levels of paralleliza-

tion, and can be tuned by TPC in an automatic design space

exploration to discover optimal configurations.

Our introduction of fine-grained parallelism into Stage 2

allows a much better adaptation of the accelerators to the

needs of the individual use-case, as just increasing the num-

ber of Row Processors (as done in [6]) does not always re-

sult in the most efficient implementation.

Areas for future work include extending the use of fine-

grained parallelism to Stage 1 of the architecture, namely

the per-pixel cost computation (including the rank trans-

form) and the P2 calculation, as well as reducing the num-

ber of stalls in the Row Processor wavefront array by im-

provements in the buffering scheme.
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