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Abstract—Semi-Global Matching (SGM) is a high-performance
method for computing high-quality disparity maps from stereo
camera images in machine vision applications. It is also suitable
for direct hardware execution, e.g., in ASICs or reconfigurable
logic devices. We present a highly parametrized FPGA imple-
mentation, scalable from simple low-resolution low-power use-
cases, up to complex real-time full-HD multi-camera scenarios.
By using a latency-insensitive design style, high-level synthesis
from the Bluespec SystemVerilog next-generation hardware de-
scription language, and an automated design-space exploration
flow, many implementation alternatives could be examined with
high productivity. The use of the ThreadpoolComposer system-
on-chip assembly tool allows the portable mapping of the SGM
accelerator to different hardware platforms. The accelerator
performance exceeds that of prior fixed-architecture approaches.

I. INTRODUCTION

Using two cameras to derive depth information is an
important step in computer vision. In the simplest case, it
consists of performing computations on image streams from two
cameras located at the same height, but separated horizontally.
The captured images from the two cameras are ideally displaced
from each other only in the horizontal direction, by a pixel
offset (called a disparity) limited by the physical distance
of the cameras. Using triangulation, the depth of each pixel
(distance from the camera plane) can then be computed based
on determining the per-pixel disparity values (pixels closer
to the camera plane will have larger disparities). Note that
a real stereovision pipeline would perform additional steps
to compensate for lens distortion and inaccurate positioning.
However, as this work focuses on the disparity computation
(Fig. 1), pre-filtering techniques (as well as the actual camera
interfaces) will not be discussed here.

Our hardware architecture implements a Semi-Global (Block)
Matching (SGM / SGBM) method. SGM/SGBM algorithms
have the advantages of both being fast, but also scoring much
better on accuracy (e.g., on benchmarks such as KITTI [1] and
Middlebury [2]) than the simpler Block Matching approaches.

The key contributions over prior implementations presented
in this paper are 1) improvements in the low-level input
scheduling scheme, which allowed performance gains by up to
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Fig. 1. Typical stereo vision system. This paper focuses on the disparity
calculation step.

66%, and 2) the use of a multi-target design-space exploration
flow using the ThreadPoolComposer (TPC) [3] system. We
will also introduce the concept of design variants, an extended
capability that allows TPC an even finer-grained exploration
of the implementation space.

II. SEMI-GLOBAL MATCHING ALGORITHM

SGM [4] offers not just a good speed vs. accuracy trade-
off, it is also robust with regard to choices for configuration
parameters [5]. This section will give a short overview over
the underlying computations, as these have driven the design
of the hardware architecture.

The function C(p, d) ∈ N0 is used to denote the cost of
matching a pixel p = (x, y) at coordinates (x, y) in the base
image at an assumed disparity (offset) of d at coordinates
(x − d, y) in the matching image. We use a C based on a
parametric rank transform [6], specifically the differences in
the counts of pixels darker than the center pixel (see Eq. (3)).
To determine the disparity resulting in the best match between
the two images, these costs are calculated for all potential
disparities d < Dmax, where Dmax is the upper limit of the
potential disparity (due to the physical mounting distance of the
two cameras). Initially, it is assumed that the match with the
lowest cost indicates the true disparity arg mind<Dmax C(p, d)
between base and match images for an individual pixel p.
However, this will be refined later by imposing additional
constraints.

A key feature of (semi) global approaches is that the costs of
potential matches are computed not just between individual (or
neighborhoods) of pixels, but along multi-pixel paths stretching



Fig. 2. (a) Four, (b) Eight, and (c) 16 directions used in Semi-Global Block
Matching.

across the entire image. Paths are described by the relative
offset vector r = (∆x,∆y) between successive path elements.
Given an assumed (potential) disparity d, we denote the cost
of matching along an entire path as Lr(p, d). For a global
view of the matches, these paths are distributed evenly over the
image (e.g., as in see Fig. 2 ). At least eight evenly distributed
paths are typically used (Fig. 2.b), with 16 being suggested for
optimal coverage. Note that the number and arrangement of
paths has a direct impact not only on the matching accuracy,
but also on the computational effort and, in our case, on the
actual architecture of the SGM hardware accelerator.

As a compromise between speed and accuracy, we will
employ just the four paths 0◦ (r = (1, 0)), 45◦ (r = (1, 1)), 90◦

(r = (0, 1)) and 135◦ (r = (−1, 1)) (Fig. 2.a), which results
in an accuracy loss (an increase in the count of mislabeled
disparities) of just 1.7% in the Middlebury benchmark [7].
However, picking these specific four paths permits an extremely
efficient hardware implementation capable of computing the
Lr for all of these paths in parallel. This is enabled by the
lack of forward data dependencies, as paths mostly include
pixels that have already been read.

We first examine computing the cost L′r(p, d) for matching
the pixels p along a path r for an assumed disparity of d. We
call this the raw cost, which will be refined later to allow a
more efficient hardware implementation.

L′
r(p, d) = C(p, d) + min


L′

r(p− r, d) 1.a

L′
r(p− r, d− 1) + P1 1.b

L′
r(p− r, d+ 1) + P1 1.c

mini L
′
r(p− r, i) + P2 1.d

(1)

Raw path costs are not just calculated for all of the selected
paths, but also for all potential disparity values d up to the limit
Dmax. The calculation includes both the local cost C, as well
as the addition of a semi-global component. The latter is the
minimum of four alternatives: The first, expressed in (Eq. 1.a),
is the cost of the prior pixel along the path, the second and third
components penalize small disparity changes of |∆d| = 1 by P1

(Eq. 1.b and .c), while the final term (Eq. 1.d) penalizes larger
disparity changes (so-called discontinuities) by P2. P1 is usually
determined off-line experimentally by analyzing representative
input images typical for the actual stereo vision use-case. On
the other hand, P2 is adjusted dynamically at run-time: As
disparity discontinuities are often also represented as pixel
intensity changes, computing P2 =

P ′2
|Ip−Ip−r| compensates for

different pixel intensities Ip and Ip−r along the path r. Similar
to P1, P ′2 is a constant determined experimentally based on

representative sample images off-line. More details on the
reasoning behind this approach is given in [4]. For determining
the (semi) global matching cost, an initial approach would
just accumulate the path costs across all paths. However, a
more efficient hardware implementation can be achieved by
proceeding in a different manner.

Accumulating the elements of (potentially long) paths
running across the entire image can result in large values,
which require correspondingly wide words for computation
and storage. We can counter this by subtracting from the raw
path costs for a pixel L′r(p, d) the minimum of the path costs
for all assumed disparities d for the prior pixel p− r along
the path r. This will result in just the differences between
the prior and current pixels being encoded. These will (due
to their smaller magnitude) require correspondingly narrower
data words for storage and computation. The final path cost
computation thus becomes

Lr(p, d) = C(p, d) + min


Lr(p− r, d)

Lr(p− r, d− 1) + P1

Lr(p− r, d+ 1) + P1

mini Lr(p− r, i) + P2

−min
j

Lr(p− r, j). (2)

Accordingly, The upper limit of the word width is given as
dlog2 R(Cmax + P2)e [4] with R being the number of paths
used.

We sum up the paths costs Lr along all paths r as S(p, d) =∑
r Lr(p, d). From these, the most likely (winning) disparity d

for the pixel p is computed based on the minimal matching cost
as arg mind S(p, d). The winning disparity for each pixel in
the input images form the output stream of the accelerator. The
can be used later to derive the actual depth (Z-axis position,
not discussed here).

In practice additional constraints need to be imposed to clean-
up the output data. They remove outlier values and discover
pixels for which the disparity could not be reliably determined.
For the latter, the result of arg mind S(p, d) might be a multi-
element set, meaning that the minimal matching cost for a pixel
p occurs for multiple different potential disparities d. Thus,
the algorithm cannot decide on a single winning disparity for
the pixel, and instead registers the disparity for this pixel as
“invalid”.

A second check compares the results of the algorithm when
running it with swapped roles of base and match images. This
so-called left/right check can also be implemented efficiently
(avoiding recalculating all disparities for the former match
image now used as base). This is achieved by re-using
the previously computed S(p, d) along an epipolar line as
arg mind S((x(p)+d, y(p)), d) to select the winning disparity
d for the second image. The left/right check sets the disparity to
“invalid” if the corresponding disparities of the original and role-
swapped passes differ by more than one. This check eliminates
phantom disparities, resulting from occluded surfaces that are
visible in one image, but hidden in the other.

In a final step, a basic 3× 3 median filter is applied to the
disparity map to suppress outliers.



III. RELATED WORK ON HIGH-PERFORMANCE SGM
IMPLEMENTATIONS

With its attractive tradeoffs, SGM has been used in a number
of implementations. However, due to its semi-global nature,
it still remains a compute-intensive algorithm that makes
reaching performance and energy efficiency goals challenging
for implementers.

A recent software implementation [8] achieved just 16
frames-per-second (FPS) for VGA-resolution images and
Dmax = 128. And this implementation already employed a fast
Intel i7-4960HQ processor (rated to draw 47 W under load),
including the use of the AVX2 vector extensions (SIMD).

The SGM algorithm is not well suited for GPU execution. It
achieved just 11.7 FPS for VGA images, even when restricting
the disparity search space to Dmax = 64 [9]. The NVidia
GTX480 GPU used for this implementation is rated to draw
between 250 W and 300 W of power when loaded.

For more power-constrained environments, an implementa-
tion [10] for the P4080 embedded eight-core processor manages
to stay under 30 W, even when clocked at 1.2 GHz. However,
it achieves just 0.5 FPS for VGA images, also at Dmax = 64.

Heterogeneous systems employing FPGAs as compute
elements do significantly better. Combining a mobile Core2Duo-
based system with an embedded OMAP3530 ARM processor
and a Xilinx Spartan 6 FPGA yielded 14.6 FPS [11], but
the inter-processor communication imposed a latency of 250
ms for processing a single image of 1024 × 508 pixels and
Dmax = 128. This latency will be too high for many real-time
use-cases.

More focused implementations with fewer different proces-
sors do better: A solution using an Altera EP4SGX230 device
achieved 31.79 FPS for 1024× 768 resolutions at Dmax = 96
[12]. C-to-hardware compilation (high-level synthesis) to the
Xilinx Zynq Z7020 SoC generated an accelerator reaching 30
FPS at VGA resolution, but only with a very narrow Dmax = 16
[13]. A combination of FPGA and CPU processing is used
in [14] to achieve 60 FPS for images of 752× 480 pixels on
a Xilinx Artix 7 FPGA. While exact power numbers are not
given for these cases, generally FPGAs draw far less than 10
W for computing purposes (when the power-hungry high-speed
serial transceivers are not used).

The approach we employ here is most similar to [7], which
achieved a maximum of 167 FPS at VGA on a Virtex 5 LX220T
FPGA with Dmax = 64, and [15], which yielded 300 FPS at
VGA on a Virtex 7 X690T device at the same Dmax. Compared
to [7], the designs presented here add an extra level of fine-
grained parallelization to improve performance. With regard to
[15], we use an improved data buffering scheme and a refined
design-space exploration flow to increase peak performance
by 25% to more than 400 FPS on the same platform. Our
approach also reduces the LUT counts by 50% compared to
designs of similar FPS in [7].

IV. ARCHITECTURE

Our architecture has not only been enhanced by introducing
an extra level of fine-grained parallelism (e.g., parallel disparity

computation and sorting) relative to [7], it has also been
implemented using a state-of-the-art latency insensitive design
style in Bluespec, a next-generation hardware description
language. As a result, it is significantly more scalable, easier
to extend, yet also faster than the original work (even when
compensating for the differences in FPGA target technologies,
see Section V-F). The algorithm described in Section II is
mapped to the structure shown in Fig. 3.

The SGM accelerator can operate in two modes: It can be
interfaced directly with external cameras to directly stream
image data into the accelerator without host intervention, or
it can employ DMA engines to transfer image data from host
memory. In both cases, DMA is used to transfer the disparity
data back to the host.

As a first step, the rank (see Section IV-A) of pixels from
the input images is computed in parallel for the left and right
images. Also in parallel, P2 is computed for the pixels in the
base image. These operations, which all realize functions of a
subset of neighboring pixels (sometimes also called a kernel
or stencil), exploit the capabilities of Bluespec SystemVerilog
to express higher-order functions: A single generic module
description realizes all of the low-level operations (e.g., pixel
I/O, handshaking), and accepts the actual filter function
as a parameter. This allows for very concise architecture
descriptions, that can still be synthesized to high-performance
hardware. Improvements to the generic module (e.g., the
improvement of queuing schedules performed in this work)
are immediately reflected in all of the operations using it.

The filtered input images are forwarded to the units com-
puting the disparity values, called Row Processors, which are
explained in detail later in this section. Using the same generic
filter module as before, a 3×3 median filter is realized between
the Row Processors and the output FIFO to suppress outliers.

As shown in Fig. 4, the Row Processors implement the actual
SGM computation. Coarse grained parallelism is exploited by
employing multiple Row Processors to process subsequent rows
of the input images in parallel. An arbiter distributes the input
lines to the Row Processors in a round-robin scheme. Each
Row Processor is able to store an entire row of the input image
in its input FIFO. The Row Processors are connected by FIFOs
to realize a systolic array, with a wraparound connection to
allow data to flow across the partition boundaries (horizontal
slices of the images processed in parallel).

Inside the Row Processor the costs for all disparities up to
Dmax are calculated and buffered for usage in the disparity
calculation stage. The disparity calculation stage is responsible
for collecting all necessary data to compute Eq. (2). With the
Row Processors forming a systolic array, this task is as simple
as reading from a FIFO. Based on this semi-global data, and
the costs calculated earlier, the actual disparity is calculated.
In contrast to [7], a second, finer-grained level of parallelism
is introduced by allowing multiple disparities to be processed
in parallel inside a Row Processor (discussed in greater detail
in [15]). In a final step, the winning disparities are checked
for validity. The disparity stream, which was split through the
arbiter, is then merged and filtered before being stored to the
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Fig. 4. Detailed view of the SGM calculation sub-architecture. Each row
processor receives a line of the rank-transformed input image in sequential
order. The row processor calculates all disparities for its specific row. The
semi-global data from other input lines, as shown in Eq. (2), is distributed
in a systolic array-pattern. Two methods of parallelization are employed: 1)
Using multiple row processors, sequential lines of the input image can be
processed in parallel. 2) Finer grained parallelism is employed inside of each
row processor, where multiple disparities are calculated in parallel.

host memory.

A. Implementation Details

For the rank transform discussed in Section II, we use a non-
parametric variant called Census[6]. It consists of counting the
number of pixels in a neighborhood that have a lower intensity

than the center pixel:

R(p) = ‖{p′ ∈ Ns(p)|I(p′) < I(p)}‖ , (3)

Here, R(p) is the rank transform of pixel p, Ns(p) the
neighborhood around pixel p encompassing all pixels with a
distance less or equal to (s− 1)/2 from the center, and I(p)
the intensity of pixel p. The neighborhood, also called a kernel,
is square with a total size of s2 pixels. Each rank-transformed
value is encoded in dlog2

(
s2
)
e bit.

R(p) is computed in parallel for both input images, yielding
streams of Rb(p) and Rm(p) for the base and matching images,
both of which are fed to the cost calculation stage together
with a stream of P2 penalty values. If multiple Row Processors
are available, the inputs will be distributed by an arbiter in
a round-robin fashion at the granularity of single rows. This
leads to the processing proceeding as a downward moving
stripe of rows. To this end, all Row Processors require input
FIFOs which can store a full row to enable operation as a
wavefront array.

Based on the rank transform R, the actual per-pixel matching
cost is computed as

C(p, d) = ‖R(p)−R((x(p)− d, y(p)))‖ . (4)

Note that the wrap-around buffer from the last to the first Row
Processor is larger than the normal inter-Row Processor buffers,
as it has to hold all Dmax intermediate results for every pixel
in the last row.

The maximum value of any Lr (Eq. 2) has been shown to
be always less than Cmax + P2 [4]. This used to narrow the
word widths for data storage and arithmetic operators in our
hardware implementations.

A major bottleneck of the implementation presented in
[15] is the data forwarding between the arbiter stage and
the Row Processors. Larger input FIFOs and improvements in
the arbitration strategy have achieved significantly better Row
Processor in the designs presented here. These advances have
the greatest impact on small (low-power) configurations with



only few Row Processors, as these suffered the most from the
idle periods introduced by non-optimal arbitration.

V. EVALUATION

We evaluate our approach at three levels: First, we consider
the accuracy, than the simulated target-independent perfor-
mance of the hardware architecture in terms of clock cycles,
and finally the wall-clock performance on three actual FPGA
platforms, encompassing embedded system and data center
use.

A. Accuracy

Since we use the same core algorithm as [7], we also achieve
the same disparity computation accuracy. On the Middlebury[2],
[16] benchmark, an average of only 8.4 % disparities has an
error larger than one pixel.

B. Platform-independent performance

Cycle-accurate simulation of the architecture (described in
highly parametrized Bluespec SystemVerilog, BSV) was used
to determine the run-time characteristics of sample implemen-
tations. Comparison to the actual hardware implementations
in Section V-E shows that these simulations are actually
representative of final performance.

The core is evaluated at three image resolutions: 640× 480
pixels (VGA), 1280×720 pixels (720p) and 1920×1080 pixels
(1080p). VGA resolution images are evaluated at Dmax = 64,
the higher resolutions have Dmax = 128. For all resolutions,
the number of clock cycles needed to complete a single frame
are determined through simulation. Note that we examine
a single accelerator core here. Section V-E will extend this
evaluation to multi-core architectures.

We have examined different compositions of coarse- and fine-
grained parallelism. An implementation is described by the pair
(#p, #d), which indicates the use of #p Row Processors, each
computing #d assumed disparities in parallel. For each of the
resolutions, we have used automatic design space exploration
to generate 250 implementation alternatives, shown on the X-
axis in order of increasing area or performance. Due to space
constraints, only a subset of the alternatives could be labeled
here with (#p,#d).

As shown in Fig. 5 for VGA images, the architecture scales
well with increasing the number of Row Processors, down to a
lower bound of 628871 cycles, at which point a single pixel is
calculated in 2.04 cycles and a single disparity requires 0.032
cycles. This design is limited by the speed the input buffers
can be filled, which could be increased even more by also
applying fine-grained parallelization techniques to the Stage 1
computations (see Section VI).

At an assumed clock rate of 200 MHz (which is realistic for
a single core) the architecture would reach up to 306 fps as
shown in Fig. 6. Such large and fast systems could be used
to calculate the disparities over multiple cameras to produce a
surround-view of a scene.

More interesting for low-power applications is the minimal
frequency necessary to achieve 30 frames per second (a typical
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requirement for real-time processing). As shown in Fig. 7, the
architecture is able to fulfill this requirement at a frequency
as low as 18 MHz for VGA images. Note that this is an
improvement of 66% over [15], which required 30 MHz for
the same performance.

C. Building on-chip architectures with ThreadPoolComposer

The true performance of our approach can be measured only
when actually mapping an implementation of the architecture
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by performance.



to a real hardware platform, of which we consider three
cases: ZedBoard (XC7Z020), Xilinx ZC706 (XC7Z045) and
VC709 (XC7VX690T) development boards. While the two
Zynq-based platforms can execute stand-alone, the VC709 is
installed in a host computer having an eight core Intel Xeon
E5-1620v2 CPU running at 3.7 GHz. We used version 2016.04
of the ThreadPoolComposer toolflow to automatically generate
designs for all three platforms, and the Xilinx Vivado Design
Suite 2015.2 to perform hardware synthesis, place and route.

ThreadPoolComposer [3] is an automatic toolflow based on
Scala/SBT and the Xilinx Vivado IP Integrator which yields
a complete bitstream design as well as hardware/software
interfaces to allow access to the accelerators using TPC API,
the thin unified C/C++ programming interface provided by
ThreadPoolComposer.

The key computing abstraction used by ThreadPoolComposer
are Thread Pools. These realize one or more different computa-
tions (called functions) in hardware, with each function being
implemented by one or more underlying Processing Elements
(PEs). A Composition describes how many PEs are present
for each function, and thus defines the possibly heterogeneous
pool of concurrent accelerator units that may be used in multi-
threaded execution. For the stereo vision application, we will
build a homogeneous pool using SGM accelerator instances
as PEs. The ThreadPoolComposer toolflow creates not only
the pool itself, but also the generates the platform-specific
system-on-chip (including host and memory interfaces) around
it.

This approach gives control over the coarse-grained paral-
lelism of the architecture, as well as the dynamic scaling of
the design to different target platforms. TPC API hides the
pool-internal parallelism from the user by providing an efficient
interface to schedule jobs on the pools, regardless of the pool
size or implementation platform.

D. Design Space Exploration with ThreadPoolComposer

Highly parameterized hardware descriptions, which are the
hallmark of hardware description languages such as Bluespec
or Chisel, allow the generation of a wide range of hardware
implementations from a single description. However, this design
space grows exponentially with the number of parameters, and
it quickly becomes unwieldy to explore manually (e.g., due to
the many non-obvious effects of interacting parameters).

Version 2016.04 of ThreadPoolComposer provides a design
space exploration mechanism, which automates most steps
between the definition of the pool Composition and a fully
routed bitstream. Note that an actual pool implementation is
characterized not only by the Composition, but also by the
clock frequency it can operate at.

The design space S of these implementations is ordered by a
heuristic h, shown in Eq. (5), that estimates the job throughput
for the given Configuration and clock frequency.

h(c, f) =
∑

(k,n)∈ c

n

rk · f−1 + tdata + tirq
(5)
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Fig. 8. Novel DSE Algorithm in ThreadPoolComposer: bsf (best-so-far)
denotes the solution with the highest heuristic value for which a bitstream has
been built that achieved timing closure; top denotes the candidate with the
highest heuristic value in the unexplored design space.

In Eq. (5), C is the set of all feasible compositions, a
Composition c ∈ C is a set of tuples (k, n) where k identifies
a PE and n is the number of desired instances, f is the target
design frequency, rk is the average execution time of accelerator
k in clock cycles, tdata is the time required for the data transfers
and tirq is the average interrupt latency. Feasible compositions
are all compositions that would theoretically fit into the target
device; ThreadPoolComposer uses area estimates for each core
obtained by out-of-context synthesis to get a lower bound
on the area utilization. Feasible target frequencies are all f
where 50 MHz ≤ f ≤ 450 Mhz, with the upper bound usually
being tightened (lowered) during exploration based on timing
estimates obtained by out-of-context synthesis. The values tdata
and tirq are characteristics of the target platform and can be
obtained using an automatic benchmarking tool provided by
ThreadPoolComposer. Finally, the average runtime of the core
in clock cycles must be obtained by the user during simulation.
The basic algorithm of ThreadPoolComposer is depicted in
Fig. 8:

In the following, candidate will denote an element of the
design space S, i.e., a pair (c, f) of a Composition c ∈ C
and a target design frequency f . A solution is a bitstream
for a candidate which could be successfully placed, routed
and achieved timing closure. A failure is a bitstream for a
candidate that either could not be placed, did not achieve
timing closure, or failed due to some other error. The best-so-
far solution, i.e., the bitstream with the highest heuristic value
that achieved timing closure, is denoted by bsf and the best
candidate, i.e., the candidate with the highest heuristic value
in the remaining design space, is denoted by top. Initially, S is
enumerated by generating all feasible candidates and ordered
according to h. If S is empty in 1 and bsf does not exist,
the process failed, otherwise it succeeded with bsf as its result.
If S is not empty, top is compared to bsf, if it exists; if bsf
is better than top, the process also succeeded. Otherwise the
bitstream generation of a batch of n candidates is started in



parallel in 2 . In 3 the batch results are evaluated: bsf is
updated (if any succeeded) and all timing failures produce a
feedback candidate. ThreadPoolComposer analyzes the timing
report of the design and extracts the worst negative slack
(WNS), from which a new minimal clock period for this specific
Composition is computed and added as a new candidate. To
improve the convergence rate of the DSE, aggressive pruning
of the design space is applied in 4 : All candidates with the
same Composition as a failure which had a placer error (usually:
being too large for the target device) are removed entirely, since
the area constraints cannot be satisfied for the Composition
regardless of the frequency. If the failure was due to timing
constraints being violated (usually: failing to meet the target
clock frequency), all candidates with the same Composition and
frequency exceeding that of the new upper frequency bound
(lowered by the WNS of the failed attempt) are also removed
in 4 , since they are unlikely to succeed. Finally, if bsf exists,
all lower-quality candidates (having a smaller heuristic value
than bsf) are removed, shrinking S.

Prior versions of ThreadPoolComposer explored the design
space by altering pool compositions and frequency targets.
Version 2016.04, used for this work, adds a more powerful
capability: For a finer-grained approach, the tool can now also
influence the characteristics of each kind of PE in the pool
by altering PE-internal architecture parameters. Each choice
of parameter values (for SGM: the tuple of D and P values)
made by ThreadPoolComposer is called a core variant.

For example, a user could specify {(SGM(P = 1, D =
1), 1)} as the starting Composition. With the core variants
capability enabled, ThreadPoolComposer will consider, e.g.,
{(SGM(P = 2, D = 1), 1)} and {(SGM(P = 4, D = 2), 1)}
as alternative Compositions and also include them in the
design space S, ordered by their heuristic value. This is
orthogonal to the exploration of pool compositions by Thread-
PoolComposer. E.g., the tool can also examine a candidate
with {(SGM(P = 4, D = 2), 4)} (having four PEs instead
of one), if it is promising according to its h-value. In this
manner, excellent solutions that might be overlooked even by
an experienced designer can be achieved (see Section V-E).

E. Results

Using the design space exploration described in the previous
section, we explored the best SGM core for the three image
resolutions (VGA, 720p and 1080p) for each of three target
devices. Table I shows the results for each device and resolution,
i.e., the designs with the highest heuristic score that achieved
timing closure. The column N denotes the number of parallel
instances of the core in the design, the column F the achieved
design frequency in MHz. Using these designs, we then
evaluated the performance on real hardware: A C++ program
using TPC API, which can be compiled for all three platforms
without changes to the source code, uses the accelerator
pool to compute disparity maps for random images. The
actual throughput achieved here (in frames per second) is
shown in the last column FPS and corresponds closely to
the throughput predicted as h-value by the heuristic. While

TABLE I
DSE RESULTS FOR SGM

Platform Resolution P D N F h FPS

zedboard 640×480 5 1 1 110 26.6 26.6
zc706 640×480 21 1 1 205 198.2 197.0
vc709 640×480 12 2 3 131 426.9 410.0

zedboard 1280×720
zc706 1280×720 27 2 1 145 59.4 59.3
vc709 1280×720 20 2 2 121 75.8 74.9

zedboard 1920×1080
zc706 1920×1080 17 4 1 140 23.3 23.3
vc709 1920×1080 13 8 1 122 28.6 28.4
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Fig. 9. Sample DSE run for 720p on VC709: 6398 candidates were initially
in S, DSE succeeded after examining (synthesizing) three batches of 16
candidates each. The first 16 all had timing failures, which generated 16 new
feedback candidates (with reduced target f ), while pruning 39 candidates. S
contained 6359 candidates at the second batch, of which 14 were timing failures
generating feedback candidates, two had placer errors and 42 candidates were
pruned. In the last batch, 6290 candidates were left in S and top succeeded,
yielding the solution. The quality of that solution was so good that all other
candidates (with smaller h-values) were removed from S and DSE terminated.

accelerators operating at HD resolutions could not be placed
on the ZedBoard, even that small platform can handle real-
time (> 25 fps) stereo vision computations at VGA resolution.
The large VC709 board allows live processing of up to three
independent 720p video stream pairs, or live processing of a
single full HD 1080p stream pair.

Some of the optimal solutions found by DSE might easily
have been overlooked in a manual approach: The best design
for the VC709 and 1080p resolution was the result of the
target clock frequency being lowered after a timing failure.
Also, casual experimentation might lead a designer to go for
higher values of P and lower values of D, as that leads to
higher clock frequencies (e.g., 205 MHz for VGA resolution the
ZC706 board). However, the best solutions for 720p and 1080p
actually increase D and (for 1080p) lower P , and achieve the
best throughputs despite running at lower clock rates.

F. Comparison with Original Architecture

By a combination of architectural refinements as well as a
modern latency-insensitive design style, our implementation
exceeds the performance of the original architecture [7] not
only in absolute terms, but also when eliminating the effect
of improvements in FPGA technology (we use 7th generation
devices such as Artix/Kintex/Virtex-7 fabrics, while the original



work by Banz et al. targeted Virtex-5 FPGAs). At the original
clock frequency of 133 MHz, Banz’ core achieves 167 VGA
fps in a (30,1) configuration, while our approach already hits
174 fps in an identical configuration. However, by exploiting
fine-grained parallelism and core variants, the design-space
exploration step is able to discover even better configurations.
Specifically, a smaller (10,4) configuration is able to achieve the
same 174 fps, but requires only 50 % of the LUT area (which
in turn allows the use of smaller devices and a corresponding
reduction in energy consumed).

VI. CONCLUSION AND FUTURE WORK

The proposed architecture to compute semi-global matching
on FPGAs performs well over a wide range of scenarios. Low-
power VGA configurations run at 30 FPS with a clock as low
as 28 MHz on mid-range boards like the ZC706. For higher
performance needs, the architecture offers multiple levels of
parallelization, and can be tuned by TPC using automatic
design space exploration to discover optimal configurations.
Peak performance of the design exceeds 400 FPS (up from 300
FPS in [15]) at VGA resolution, which would enable real-time
multi-camera surround vision using a single FPGA chip for
processing. Using TPC for integrating the SGM accelerator
into a complete system-on-chip, the design is easily portable
between small embedded and high-performance data center-
grade platforms.

Our introduction of fine-grained parallelism into the Row
Processors allows a much better adaptation of the accelerators
to the needs of the individual use-case, as just increasing the
number of Row Processors (as originally done in [7]) does not
always result in the most efficient implementation.

Areas for future work include extending the use of fine-
grained parallelism to the initial processing steps of the
architecture, namely the per-pixel cost computation (including
the rank transform) and the P2 calculation, as well as reducing
the inter-cycle dependencies inside a single Row processor.
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