
FPGA Applications in Education and Research

Andreas Koch, Ulrich Golze

Technical University Braunschweig

Abteilung Entwurf integrierter Schaltungen (E.I.S.)

Gaußstr. 11, D-38106 Braunschweig, Germany

e-mail: koch@eis.cs.tu-bs.de

Abstract

This paper reports on the application of FPGAs in our education and research. It describes

the organization of FPGA-specific lectures and the accompanying labs. Experiences with

the hard- and software environment are summarized. A general purpose FPGA-based co-

processor expansion card for standard workstations is presented and an overview over its

architecture and software interfaces is given. Some possible applications for this expansion

card for further research and as a platform for teaching hardware-software co-design are

pointed out.

1 Introduction

FPGAs are gaining importance both in commercial

as well as research settings. The former appreciate

the short turn-around times, the lack of NRE costs

for small volume production and the easy prototyp-

ing. Since the technology is far more affordable

than custom-manufactured ASICs, even smaller

companies can take advantage of the capabilities of

large-scale integration. Thus, the probability of a

student after graduation working on FPGA-based

circuits is higher than that of him developing a

“real” full- or semi-custom chip.

While researchers also enjoy the aforemen-

tioned benefits, they tend to place more emphasis

on how to apply FPGAs in novel ways, such as the

creation of problem-specific computing architec-

tures.

In order to do this development justice, the

theory and practice of working with FPGAs have

become a major part of the curriculum as well as

the research at the department E.I.S. of the TU

Braunschweig. This paper will present some of the

experiences gained during the courses and labs.

Furthermore, we report on the progress of a hard-

ware project which should have interesting applica-

tions both for educational and research purposes.

2 Lectures on FPGAs

In addition to the standard lectures on digital logic

and VLSI design, students are offered two week

lectures presenting a general introduction to FPGA

design and an overview over different FPGA

architectures before a single architecture, the Xilinx

LCA, is examined in detail.

2.1 FPGA Overview

The overview begins with a retrospective

examining the development of programmable logic

from roots such as PROM and PLA to modern

FPGAs with a short digression presenting MPGAs.

The lecture continues with a presentation of the

elements of an abstract FPGA. Afterwards,

concrete implementations of these abstract

elements are examined. Examples include Mux-,

PLD-, transistor- and LUT-based logic blocks.

Next, common routing topologies and

programming technologies are explained and

compared. This general part of the lecture closes

with a discussion of the design flow followed when

working with FPGAs. The different tools such as

partitioning and place and route and their

intermediate results are described.

2.2 Xilinx Architecture

The lecture then specializes on the Xilinx LCA.

Due to the lack of appropriate CAD tools, only the

XC3000 architecture was discussed in the last

semester. However, since the situation has been

remedied with the availability of more advanced

CAD tools through Eurochip, we plan to include

the XC4000 architecture the next time.

While a detailed knowledge of the

underlying chip architecture might be considered

superfluous by some, we feel that it is very

important to provide the students with thorough

understanding of the chip specifics, enabling them

to gain insight into tool algorithms and to consider

the implications of changes on the schematic level

on the implemented circuit. Furthermore, the

experience obtained at this stage will be useful later

when different FPGAs have to be compared and

evaluated for suitability to a given application.

This part of the lecture uses transparencies

from the Xilinx Programmable Gate Array Training

Courses, offered to educators by the Xilinx

University Program. We found them extremely

helpful and suggest, that any site intending to offer

Xilinx-based courses establishes firm relations with

the program, which provides a wealth of material to

educators, ranging from sample project descriptions

to lecture notes.

3 FPGA Labs

Students can put their freshly acquired

understanding of FPGAs to work in the labs

following the lecture. Since this was the first time

we offered FPGA labs, only three groups of 2-3

students each participated and were warned, that

unexpected glitches of hard- and software might

occur during this trial run.

3.1 Work Environment

The labs used PC hardware (486/33-16 MB) under

MS-DOS to run the Viewlogic Workview CAD

package for schematic entry and simulation and

Xilinx XACT for design implementation and LCA-

level entry.

While MS-DOS does not provide the multi-

user features (file protection, account management)

that make Unix easy to administer in a lab

environment, it performed adequately for our

purposes. The computing power of the hardware

was also sufficient for entry and simulation.

However, when the designs were to be

implemented (mapped, placed and routed), and the

tools iterated over a design numerous times to

improve chip performance, execution times

between eight and sixteen hours were not

uncommon. Since MS-DOS is only a single-tasking

system, the computer was unusable for other

purposes during such a run.

The Workview software, on the other hand,

was a pleasant surprise. Compared to Cadence ES2-

EDGE, which we are using for semi-custom

designs, it is extremely easy to use while still

providing appropriate functionality. The students

praised the software's ease of use and flat learning

curve. This contrasts quite sharply with the

comments regarding ES2-EDGE, which is often

described as too complex and user-hostile.

XACT also performed flawlessly, neither the

automatic design implementation tools nor the

LCA-level editor posed any serious problems for

the students.

3.2 Lab Procedures

The semester labs consisted of two smaller

problems which had to be entered on the LCA level

and one larger problem to be completed using

schematic entry and simulation.

The two initial labs concerned the design

and implementation of simple combinatorial

circuits directly on the LCA with the students

performing both the circuit partitioning, placement

and routing manually. Apart from making the

students more familiar with the Xilinx architecture,

these labs served to demonstrate the flexibility of

FPGAs in general, since the designs could be

downloaded into the Xilinx XC3000 demonstration

board directly after making modifications.

After this first practical exposure to FPGAs,

the students began to work on the larger problem,

the design of a four digit octal calculator. For this

design, we emphasized careful planning and a

structured, well documented design style

accompanied by intensive simulation to avoid the

“trial and error” design methodology commonly

encouraged by the use of reprogrammable FPGAs.

At this stage of the labs, the aspect of the

subsequent FPGA realization was completely

disregarded and the students had to work under the

assumption that they were designing a real ASIC

and serious design errors would cost their

companies ten thousands of dollars and delay their

market entry by months. No FPGAs were

programmed while the students were designing and

simulating. However, the prospect that all designs

would be “fabricated”, as demonstrated during the

first phase, motivated the students considerably: To

see a design performing as expected in the

simulator is one thing, to play with a working

calculator quite another. This contrasts with the

traditional design labs, where only a few selected

designs are submitted for fabrication and most

students never see a working chip.

At the end of the semester, the moment of

truth came, when the implemented designs were

downloaded into a special calculator test board.

This board makes a keyboard and five digit display

available to the student chips. The interface and

communication protocols between chip and board

were specified as part of the initial problem

description, thus modelling the real world situation

that no chip works stand-alone but is always

integrated into a larger system. To the students'

delight, two of the three designs submitted worked

immediately after download, the third one had

minor problems when certain operation sequences

were entered.

4 Research and Development

In addition to the rewarding application of FPGAs

for teaching chip design, they are also used in

research and development projects at the

department. We are currently working on an

FPGA-based co-processor card for SBus

workstations (such as the SUN SPARCstation

series of machines).

Our proposed architecture will be suitable as

a customizable co-processor for the acceleration of

specific applications as well as an evaluation

platform for solutions obtained using hardware-

software co-design. In a secondary function, it will

be able to act as a flexible I/O subsystem. The

architectures we considered are based on a small

number of FPGAs. While it is certainly possible to

obtain more impressive results by employing

dozens of large FPGAs in parallel, this approach is

not economically feasible for general use. Our aim

is to demonstrate that even a small co-processor can

be used with good results when added to a standard

workstation.

4.1 The SUN SBus

The SBus was developed by SUN Microsystems as

an I/O bus to replace the VME bus in their desktop

workstations. While it is predominantly used in

SUN SPARC-based workstations and their

compatibles, the bus is processor independent. It is

a high bandwidth/low latency design supporting

multiple bus masters and automatic virtual-physical

address translation as well as fast burst data

transfers. Further features include flow control and

retry mechanisms for slave devices, dynamic bus

sizing, central bus arbitration with geographic card

addressing and flexible interrupt management. The

bus has a CMOS-compatible interface and is based

on simple, synchronous protocols.

4.2 Co-Processor Architecture

Our proposed architecture is defined by three major

design decisions.

First, we decided to add on-board RAM to

the expansion card. While it would have been

easily possible to directly access the host memory,

the bandwidth constraints of the SBus compared to

those of a custom processor-memory bus make

accesses to the on-board memory far more efficient.

This on-board RAM can then be accessed by the

host using fast-burst data transfers.

Second, in order to overcome the capacity

restrictions of a single LCA, we decided to assign

the tasks of data and address management to

different but closely coupled LCAs. This allows us

to implement a 32 bit data path in the main FPGA

(termed user FPGA) and shift all addressing logic

to one or more FPGAs containing data paths for

address manipulation (termed service FPGAs).

Since we now have dedicated LCAs for address

operations, we can easily implement complex

address generators offering, for example, fast

indirect addressing and address arithmetic capable

of increment/decrement and scaled indexed

addressing as well as the generation of non-linear

address sequences. The latter can be especially

helpful for the efficient implementation of certain

matrix operations. We feel that this is a very natural

way of partitioning the target algorithms we

envision. The communication between user and

service FPGAs will be facilitated by allowing both

chips access to the shared data bus and a relatively

small (≈10) number of dedicated bi-directional

control lines (see Fig. 1).

Addr

Data Data

Control

User
FPGA

Service
FPGA

G
lu

e
G

lu
e

R
A

M

Control

Figure 1 FPGA/RAM Interface

Third, the basic architecture was expanded

by the addition of a second RAM subsystem. The

gains offered by this approach far outweigh the

added complexity. Apart from the additional gate

capacity afforded by the second service FPGA, this

co-processor can access data in two different RAM

banks in parallel. This makes the architecture far

more interesting to experiment with, since it offers

a distinct advantage over conventional CPUs,

which can only use one RAM access path at a time.

This expanded architecture is sketched in Fig. 2.

Note that an additional FPGA is used as a master

controller for the whole card, managing SBus

transactions and the configuration of the user-

programmable data path.

R
A

M
 B

an
k

1

Service
FPGA 1

User
FPGA

Service
FPGA 2

R
A

M
 B

an
k

2

SBus
Control

SBus

Figure 2 Co-Processor Architecture

4.3 Special Hardware Features

In order to run each FPGA configuration at its

optimum speed, the board also includes a

programmable clock generator capable of genera-

ting frequencies from a few hundred kHz up to 80

MHz with fine tuning to almost any target

frequency in between. Thus, FPGA applications

can be clocked independently of the SBus clock,

slower for more complex circuits, faster for simpler

designs.

Configuration information for the complete

board is stored in a dedicated RAM bank. Since this

bank has sufficient capacity to hold multiple

complete configurations for all three FPGAs plus

appropriate parameters for the programmable clock,

later reconfigurations using the stored data place no

load on the SBus at all. While the current configu-

ration can naturally be selected by user software, an

important feature of the architecture is the ability of

the co-processor to reconfigure itself at run-time

without intervention of software or the host CPU.

This capability exemplifies our approach of sharing

the same hardware not only between different

programs and algorithms, but also between phases

of a single algorithm, thus maximizing the

efficiency of co-processors with limited gate

capacity.

4.4 Software Interface

User software communicates with the co-processor

through a device driver, which is integrated into the

Unix kernel. Only this driver may directly access

the card, thus conflicts caused by multiple

processes trying to use the same card concurrently

can be avoided. Furthermore, the driver supervises

the configuration process, ensuring that only

complete bit streams are downloaded into the

configuration memory, and the driver allows user

software and the co-processor to execute in parallel,

with the co-processor notifying user programs of

the end of calculations through a software interrupt

signal.

User programs transfer data to and from the

card by advising the host memory management unit

(MMU) to map the card on-board RAM into the

virtual memory space of the user process, allowing

the user to access card RAM regardless of its

physical location. Since all accesses are still

supervised by the MMU, the memory protection

remains inviolate. Thus, algorithms executing on

the co-processor cannot bypass system security

measures.

4.5 Applications and Future Directions

The card is intended as a test platform for

hardware-software co-design and will eventually be

used to establish lectures and labs on the subject.

The FPGA co-processor satisfactorily merges both

VLSI and computer science aspects, a combination

which fits extremely well in the agenda of our

department (being a branch of the computer science

faculty). Student labs could consist of a general

problem specification which had to be implemented

initially as a software-only solution to validate the

algorithms proposed, which is then profiled to

determine bottlenecks and finally partially shifted

onto a problem-specific co-processor. This

procedure should be interesting for computer

science as well as electrical engineering students,

exposing them to the intricacies of an advanced

multi-user, multi-tasking operating system and a

non-standard processor architecture.

Sample applications currently being

investigated for successful implementation on our

proposed architecture include general purpose

algorithms such as data compression as well as

more specialized circuits dealing with computer

vision and system security. In the current absence

of CAD tools tailored to our co-processor

architecture, we are using the Xilinx X-BLOX

synthesis tool to implement the designs, but further

research efforts will concentrate on the seamless

integration of hardware facilities such as those

provided by the card into augmented high-level

languages and synthesis optimized for the proposed

architecture.

5 Conclusions

We feel that FPGAs are an extremely valuable tool

in teaching VLSI design. While the traditional

techniques of full- and semi-custom design

certainly have their places for analog, high-

performance or complex applications, the prospect

of putting “their” chip to the acid test of a real

hardware environment motivates students

tremendously. Other aspects of FPGAs also make

them attractive for use in teaching, such as their

low cost and reusability compared to “real silicon”,

but this increased motivation, created by the

guarantee that all chips designed will be

“fabricated” at the end of the semester, should not

be underestimated.

The dynamic nature of the FPGAs also

offers many opportunities in the exploration of

novel computing structures and problem-specific

processors. The expansion card design presented is

only a first step in this direction. Apart from

providing a broad variety of areas for further

research, ranging from the design and implemen-

tation of application specific co-processors to the

development of specialized CAD tools, we are also

looking forward to the educational possibilities

offered by a working configurable co-processor: It

could be a good teaching vehicle for hardware-

software co-design, featuring sophisticated hard-

and software interfaces and thus exposing students

to the best of both worlds when designing

interacting programs and circuits while still

considering the constraints of an existing

environment.

