
A Generic Library for Adaptive Computing
Environments

Tilman Neumann and Andreas Koch

Tech. Univ. Braunschweig (E.I.S.), Gaußstr. 11, D-38106 Braunschweig, Germany
neumann,koch@eis.cs.tu-bs.de

Abstract. The Generic Library for Adaptive Computing Environments (GLACE)
consists of a comprehensive set of module generators currently targeting Xilinx
XC4000 and Virtex devices. In contrast to other research efforts in this area, it
provides detailed meta-dataaboutthe generated circuits (behavior, area, timing,
topology etc.) using the active FLAME interface. All of the modules adhere to
a common layout scheme which allows the efficient automatic composition of
high-performance data paths.

1 Introduction

While well known for decades, the use of module generators in VLSI design flows has recently
been exploited with renewed interest. In the ASIC field, commercial products such as Module-
Compiler [1] are achieving good results in terms of design time and quality. For FPGAs with
their limited interconnect resources and coarse-grain logic blocks, module generators have tradi-
tionally been the tool of choice to quickly provide fast and dense circuits [2] [3] [4] [5] [6].

However, most of the existing generator systems for FPGAs generate only structural circuit
descriptions (e.g., netlists or pre-placed layouts). What they sorely lack is meta-dataabout the
generated instance: Main design flow tools (such as compilers and synthesis) rely on accurate area
and timing data for making optimization decisions. More advanced flows including automatic
floorplanning steps [9] additionally require topological information (layout shape, port placement
and pitch) as the base of their operation.

This work introduces the Generic Library for Adaptive Computing Environments (GLACE).
It offers a comprehensive suite of parameterized module generators suitable for automatically
composing data paths on adaptive computers. In addition to placed layouts and simulation mod-
els, it also makes a broad spectrum of meta-data available to the client tools.

2 GLACE Architecture

The GLACE architecture (Figure 1) is not monolithic. Instead, it encompasses a number of other
technologies which remain hidden from clients in the main design flow. These are being presented
with a single consistent tool- and device-independent interface.

2.1 JHDL

The BYU JHDL package [6] is used as the foundation for actually creating circuits. JHDL con-
sists of a Java class library that allows the composition of primitives to describe designs at the
structural level. These circuit elements may then be annotated with device-specific mapping and

Figure 1. GLACE Architecture

Client
Tools API

FLAME
Data
Model

LM−ATL Gen

BYU JHDL

Java Function Calls

GLACE

placement directives. The environment, which also allows for seamless simulation of the design,
currently supports the Xilinx XC4000 [7] and Virtex FPGA [8] families.

Since the full expressive power of Java including features such as inheritance and polymor-
phism is available to the designer, very powerful and flexible module generators can be imple-
mented and verified with relative ease.

Unfortunately, JHDL does not exploit the structural, placement, and device data of a design to
automatically derive timing, area and topology information from the circuit description. Instead,
these characteristics have to be calculated manually in explicitly coded sections of the generators
(Section 3.2).

2.2 Gen

The Gen package was implemented by Lockheed-Martin Advanced Technology Laboratories as
part of DARPA ACS project “A Nimble Compiler for Agile Hardware” [10]. It uses JHDL to
provide a complete set of parameterized basic operators suitable for use by automatic hardware
compilation. The behaviors and interfaces of the functions follow the FLAME Library Speci-
fication (Section 2.3). Thus, instead of offering just basic gates, Gen also includes higher-level
operations such as absolute value, arithmetic negation, signed and unsigned shifters, etc. Para-
meters now extend beyond simple bit widths to data types, optional registering of outputs, and
architectural choices (e.g., pipelining depth for a multiplier).

In addition to the specific cells, Gen adds some area and timing estimation capabilities to
JHDL. However, even though Gen can create circuits for both XC4000 and Virtex, the estimation
is only supported for the XC4000 series.

2.3 FLAME

The very flexibility of modern module generators can cause significant difficulties when they
are to be integrated with the main design flow. Since cell characteristics vary with the actual
parameter values used (such as bit widths, data types, absence or presence of optional inputs), the
standard approach of static “library files” simply enumerating all alternatives is doomed to fail.

The Flexible API for Module-based Environments (FLAME) [11] solves these problems.
It consists of three major components: The API itself, the design data model, and the library
specification. Currently, GLACE uses a Java-based FLAME implementation. However, using the
Java Native Interface (JNI) [12], its services can be accessed from languages different from Java.

Figure 2. FLAME Architecture Overview

Synthesis

Floorplanning

Place&Route

FLAME

Manager

FLAME

Interface

FLAME

Interface

Design Data

Module Generator Library

Replies

Main Design Flow

add

mult

logic

abs

Queries

API The API and communications infrastructure provided by the FLAME Manager (Figure 2)
replace static library files with an active function call-based interface. Clients in the main design
flow can thus enter into a dialog with the module libraries and retrieve data specific to the actual
parameter values of the current instance. In GLACE, the client queries accepted by the FLAME
Manager will be forwarded down the chain of Gen and JHDL to result in the computation of
estimated characteristics or the creation of actual cicuits (netlists, placed layouts).

Data Model The information exchanged in this manner is represented using the FLAME de-
sign data model. This model is partitioned into a number of task-specific views: A front-end
compiler might request a “behavior” view to determine which functions are available for a given
target technology. Later on, it could query for a “synthesis” view to retrieve area and timing char-
acteristics for a specific module instance. Additional views include, e.g., “topology” for layout
shapes and port pitch (crucial for efficiently laying out regular data paths). “netlist”, “placed”, and
“mapped” views contain the circuit itself. Instead of defining yet another netlist format, FLAME
seamlessly encapsulates existing formats such as EDIF [13] or XNF.

Library Specification The FLAME Library Specification describes a set of behaviors and inter-
faces. One or more of these can be attached to a hardware cell to precisely define its function for
automatic use by a main flow tool. For example, the cell of a switchable adder/subtracter might
have both the addition and subtraction behaviors attached. The interface carefully distinguishes
between the logical (e.g., the operands of the adder) and the physical perspective (e.g., clock
ports and clock enable signals). Furthermore, in FLAME, an interface extends beyond port spec-
ifications, such as width and data type, to the control characteristics of the cell. This could cover
“start” and “done” signals as well as mode switches (e.g., alternating between addition and sub-
traction). By considering all of these aspects, a main flow tool can choose the cell most applicable
to a given task and automatically drive it correctly from the central data path controller.

Description Behavior Name and Logical Interface
Addition add(sum, [cout,] [ovfl,] a, b [, cin])
Subtraction sub(diff, [bout,] [ovfl,] a, b [, bin])
Multiplication mul(prod, [ovfl,] a, b)
Division div(quot, [zerodiv,] a, b)
Modulus mod(rem, [zerodiv,] a, b)
Negation neg(neg, [cout,] a [,cin])
Absolute abs(abs, [cout,] a)
Logical Shift Left lsl(lsl, din, bits)
Logical Shift Right lsr(lsr, din, bits)
Arithmetical Shift Rightasr(asr, din, bits)
Less-Than lt(lt, a, b)
Less-Than-Equal le(le, a, b)
Equal eq(eq, a, b)
Not-Equal ne(ne, a, b)
Greater-Than-Equal ge(ge, a, b)
Greater-Than gt(gt, a, b)
Logic logic(y, a, b, c, d, [e,] [f,] [g,] ttable)
Multiplexing mux(mux, a, b, [c,] [d,] [e,] ..., sel)
Register reg(q, d [,clk, en] [,lt])

Table 1.Sample FLAME behavior names and interfaces

3 Cell Library

The following sections deal with the capabilities of the current version of GLACE and their
implementation.

3.1 Behaviors

Table 1 shows a selection of FLAME behaviors including their logical interfaces. Optional ports
are marked by square brackets. For example, a simple addition behavior without carry ports is
expressed asadd(sum,a,b) . Optional input ports have well-defined default values (e.g., 0 for
a carry-incin). Unused output ports may result in more compact circuits when their driving
logic can be completely suppressed during module generation.

Individual logical ports in the behaviors are constrained further in a FLAME query to param-
eterize the specific module instance. E.g., the logical inputsa,b in the behaviorlt(lt,a,b)
can be annotated with the constraints(WIDTH 7) (SIGNED 2) to create a 7-Bit Less-Than
comparator using two’s complement signed arithmetic.

With these behaviors, all data flow graphs resulting from high-level synthesis (such as com-
pilation from C using the Nimble Compiler) can be mapped to their corresponding hardware
operators.

3.2 Implementation

The behaviors described in the previous section are decoupled from their actual implementa-
tion. For that, we have to consider both technology-specific features as well as a general module
architecture. Often, these two issues are closely related.

Technology-specific featuresMany FPGA architectures support registering the outputs of com-
binational logic within the same block. Since this is an extremely useful capability for RTL-style
circuits and efficient pipelining, the FLAME data model has dedicated constructs for expressing
the capabilities of the device registers (flip-flops, latches, clock enables) and to actually request
their use. The tri-state buffers available on certain devices are handled in a similar manner. In the
current implementation, the Gen package is able to create registered versions of all combinational
behaviors when a client tool sends the appropriate FLAME query.

Figure 3. GLACE module architecture for Virtex devices

CLB

CLB

CLB

a[0]

a[1]

y[0]

y[1]

a[2]
y[2]

y[3]
a[3]

a[30]

a[31]
y[31]

y[30]

R
eg

u
la

r
D

at
ap

at
h

 R
eg

io
n

Ir
re

g
u

la
r

Ir
re

g
u

la
r

Local Controller

Local Controller

Baseline

Placement Origin

S1

S1

S1 S0

S0

S0

General module architecture The module architecture is heavily influenced by the underlying
device architecture. For the Xilinx XC4000 and Virtex chips, the orientation of the on-chip carry
chains (vertical) determines the direction of data flow (horizontal). Furthermore, efficient data-
path layout relies on aligning busses with matched pitch and avoiding corner-turns in the routing.
To this end, all of the GLACE modules targeting Virtex are laid-out as shown in Figure 3, which
depicts a very simple 32-bit instance that has only one operanda and one resulty . Modules
consist of one or more columns of CLBs, with each vertical CLB processing two bits of each
operand word (thus having a data path pitch of two). In order to balance logic outputs (2 per Virtex
slice) with available tri-state buffers (2 per VirtexCLB), only slice S1 of the column containing
the module outputs is used. This approach guarantees the availability of nearby buffers when a
client requests the outputs to be tri-stateable. Again, note that this waste of area only occurs in
the output columns. Inside of a module, all slices may be used.

Figure 4. Timing/area characteristics of an 8-bit adder

(TECHNOLOGY "Xilinx" "Virtex" "XCV50PQ240I" "−4"
 (STATUS QUERYOK "technology ok. area unit is ’CLB’s...")
 (DPEXTENT
 (RECT 24 16 0 0 0)
)

 (UNIT
 (TIMESCALE −10)
)

 (TIMING
 (("addition")
 (FIXED
 (ARRIVAL
 (("sum" 7 0))
 0 24)
 (CYCLETIME 24)
 (THROUGHPUT 1)
)
)
)

 (AREA
 ("CLB" 4 4 384)
)

Requires 4 CLBs (of 384 available)

Time expressed as units of 0.1ns

Geometry of target device

2.4ns propagation delay

3.3 Module Characteristics

Figure 4 shows the layout and an excerpt from the FLAME timing and area data for an 8-bit
adder on a Xilinx Virtex XCV50 device (speed grade -4). Note that only the left (S1) column
of the CLB slices has been used in the generated circuit. TheDPEXTENT attribute specifies the
maximal area for the data path in CLBs.TIMESCALE sets the time unit to10�10s= 0:1ns. This
is used in theTIMING attribute: The addition result on the output portsum will be valid 2.4ns
after the operand inputs stabilize. The circuit can process one datum per clock cycle. Finally, the
description states that the adder will use 4 of the 384 CLBs available.

The topology information for an unsigned 8-bit multiplier is shown in Figure 5. The instance
has been pipelined to have a register for every two shift/add stages. First, note that the density
within the module is higher than for separate modules: In many cases, both slices of a CLB are
used. Furthermore, this module has two irregular components which are placed below and above
the regular data path region. All busses are spaced so 2 bits of each word are processed per CLB
of module height.

3.4 Performance Evaluation

Table 2 lists area and performance data for a number of GLACE cells on a Virtex device with
speed grade -4 (the slowest). The instances have been created with 32 bits of width, unsigned
operands and registered outputs. The topology data is expressed as a CLB rectangle (rows x
columns). Furthermore, note that the speed in MHz is thesystemspeed measured when instanti-
ating a single module and includes the delay for routing all of its ports to the chip pads.

For some of the cells, additional comments are in order: Mul1 to Mul4 differ in their degree of
pipelining. Mul1 has a register inserted after each shift/add stage, Mul2 only after every second
one etc. While more stages lead to a slower clock rate, the latency in clock cycles to compute
the result drops. In this manner, the area/performance of the multiplier can be matched to the
clock rate of the rest of the data path. The current divider implements a very simple iterative

Figure 5. Topology data for an 8-bit unsigned multiplier

(TECHNOLOGY "Xilinx" "Virtex" "XCV50PQ240I" "−4"
 (STATUS QUERYOK "technology ok. area unit is ’CLB’s...")

 (MATRIX

 (SHAPE
 (RECT 4 6 1 0 0)
)

 (PORTLOC
 (PORTS
 (("a" 7 0) ("b" 7 0) ("start" 0 0) ("out" 7 0) ("done" 0 0))
 (PITCH 2 1)
 (COORD 0 0)

 (FOLDING LINEAR)
)
)
)

extending 1 unit below baseline
Layout is a single 4x6 CLB rectangle

Layout is not folded

Port spacing for busses is 2 bits per CLB

Datapath baseline

Target device has matrix architecture

FunctionArea in CLBsMax. Clock in MHz
Abs 1x16 116.9
Add 1x16 128.3
Eq 1x16 128.3
Gt 1x16 128.3
Div 4x18 34.9
Logic 1x16 167.5
Mod 4x18 39.1
Mul1 3x18 79.1
Mul2 4x18 62.9
Mul3 5x18 53.4
Mul4 6x18 45.4
Mux 1x16 173.2
Neg 1x16 135.5
Reg 1x16 200.6
Shift 1x16 72.4
Sub 1x16 128.3

Table 2.Area and performance data for 32-Bit functions

add/subtract scheme. Later GLACE versions will replace it with a faster circuit. The shifter can
perform any left shift in the range of 0 to 31 bits.

Figure 6. Sample GLACE datapath

Local Controllers

(carries, flags)

Global Controller

32
b

 R
eg

u
la

r
D

at
ap

at
h

 R
eg

io
n

Local Controllers

Figure 6 shows a complete data path composed from 14 GLACE operators. This example
(created by the Nimble Compiler [10]) realizes the first loop in theblock quantize function
of the Versatility benchmark from Honeywell’s ACS benchmark suite [14]. The loop searches
an integer array for its minimum and maximum elements. The circuit consists mainly of 32-Bit
comparators, registers, muxes and adders. In the non-pipelined version shown here, it runs at 54.8
MHz on the -4 speed grade. Note the very regular placement and routing resulting from exploiting
the module architecture described in Section 3.2.

4 Future Work

While already in a practically usable state, the current GLACE version has much potential for
improvement and expansion. Providing a greater number of generators with different time/area
trade-offs is just one route of advance. Additionally, the productivity of a module implementor
would be considerably improved if JHDL could be extended to evaluate the structural, mapping,
and placement data it has available anyway to automatically generate the FLAME meta-data
views. Realizing this functionality is the major item on our mid-term agenda.

5 Summary

With GLACE, we have introduced a module generator system for adaptive computing systems
that goes beyond simple macro-cell creation. Instead, it also offers a comprehensive set of meta-
data views that present the front-end tools with sufficient instance-specific characteristics to base
optimization decisions on.

Cell layouts created by GLACE have a consistent layout style which allows their efficient
composition to form entire data paths. By using the general FLAME interface for all interactions
and data representations, the internals of the system are abstracted. The resulting infrastructure is
thus easily extended by adding other generator cores without affecting the client-tools.

The first public distribution of GLACE will be available in Summer 2001. In addition
to all the software components, it will be accompanied by a comprehensive set of docu-
mentation and usage examples.

References

1. Synopsys Inc., “Module Compiler User Guide”,EDA software documentation, Mountain
View (CA) 1997

2. Xilinx Inc., “X-BLOX Reference”,EDA software documentation, San Jose (CA) 1995

3. Dittmer, J., Sadewasser, H., “Parametrisierbare Modulgeneratoren f¨ur die FPGA-Familie
Xilinx XC4000”, Diploma thesis, Tech. Univ. Braunschweig (Germany), 1995

4. Chu, M., Weaver, N., Sulimma, K., DeHon, A., Wawrzynek, J., “Object Oriented Circuit
Generators in Java”,Proc. IEEE Symp. on FCCM, Napa Valley (CA) 1998

5. Mencer, O., Morf, M., Flynn, M.J., “PAM-Blox: High Performance FPGA Design for Adap-
tive Computing”,Proc. IEEE Symp. on FCCM, Napa Valley (CA), 1998

6. Hutchings, B., Bellows, P., Hawkins, J., Hemmert, S., “A CAD Suite for High-Performance
FPGA Design”,Proc. IEEE Symp. on FCCM, Napa Valley (CA), 1999

7. Xilinx, Inc., “XC4000E and XC4000X FPGA Series”, device datasheet,
http://www.xilinx.com/partinfo/4000.pdf, 2000

8. Xilinx, Inc., “Virtex 2.5V FPGAs”, device datasheet,
http://www.xilinx.com/partinfo/ds003.pdf, 2000

9. Koch, A., “Regular Datapaths on Field-Programmable Gate Arrays”,Ph.D. thesis, Tech.
Univ. Braunschweig (Germany), 1997

10. Li, Y.B., Harr, R., et al. “Hardware-Software Co-Design of Embedded Reconfigurable Ar-
chitectures”,Proc. Design Automation Conference, 2000

11. Koch, A., “Enabling Automatic Module Generation for FCCM Compilers”,Proc. IEEE
Symp. on Field-Programmable Custom Computing Machines, 1999

12. Gordon, R., “Essential JNI”,Prentice-Hall, 1998

13. Electronics Industry Association, “EDIF Version 4 0 0”,ANSI/EIA 682-1996 Standard,
Washington (DC) 1996

14. Kumar, S. et al, “A Benchmark Suite for Evaluating Configurable Computing Systems”Proc.
Intl. Symp. on FPGAs, Monterey (CA), 2000

