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e Comparison of Paradigms
 Conventional compute unit
O Temporal distribution of computation
O Reuse of area for different operations
O Only one operation per time step
O Controlled by variable software
O Universal
1 Reconfigurable compute unit (RCU)
O Spatial distribution of computation
O Dedicated area for each operator
O Multiple operations per time step
O Controlled by fixed controller
O Made universal only by ability to reconfigure
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4]  Continuum of Architectures
0 Many architectural choices between
O Pure temporal distribution
O Pure spatial distribution
0 Examples
O Superscalar processors
e Multiple compute units per time step
o Increased degree of parallelism
O Area-constrained reconfigurable processors
o Reuse of area by reconfiguration
o Reuse of area by shared operators
o Non-pipelined multi-cycle operations
o Decreased degree of parallelism
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o i
Terminology I
0 Configurability
O Ability to structurally adapt compute unit to specific
problem(s)
O Increased spatial distribution of computation
¢ Hardware accelerators for software operations
O Includes configurable processors (extensible ISA)
e Tensilica Xtensa and ARC ARCtangent cores
0 Reconfigurability
O Ability to configure after hardware has been deployed
1 Dynamic reconfiguration
O Reconfiguration during algorithm execution
O Also called run-time reconfiguration (RTR)
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Fr Terminology II
a Programming
O Vary behavior while preserving structure
O Example: Writing parameters to HW registers
1 Discussion
O FPGAs generally support only reconfigurability
¢ No dynamic reconfiguration (far too slow)
O Hybrid approaches in practice
o Configurable processors may have an RCU
e Experimental ST device with Xtensa + FLEXEQOS
e Hardwired ASICs may allow reconfiguration of
individual logic elements
e eASIC’s eASICore with vCells
e Program new data values into RCU registers
e Often much faster than reconfiguration

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 7

Fr Terminology III
Q Granularity
O Extent of the functionality of individually
. configurable elements
fine e Transistor pairs (rare, was Crosspoint)
e Lookup-Tables (very common) “FPGAs"”
e PLD-like (e.g., Altera, Lattice)
e ALUs
e 4b (Elixent)
e 8b (MIT MATRIX)
e 24b (PACT)
e 32b (Chameleon) “network processors”
e Complete processors “adaptive processors”
e 16b (picoChip)
v e 32b (MIT RAW)
coarse
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Terminology IV

Q Binding interval

O Shortest interval between changes in function
o May be theoretical (e.g., infinity for ASIC)
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i Granularity and Binding
0 Binding interval often depends on granularity
O Coarser granularity
=» Shorter binding interval (less configuration data)
0 Shorter binding intervals
O Better reuse of reconfigurable resources
o Allow spatial implementation of more kernels
O Continuous single cycle reconfiguration
e Tricky: Millions of CMOS transistors switching
simultaneously 9 Poof!
0 But match both to application (domain)
O Single large kernel 2 reconfigure just at start-up
O Bit-oriented cryptography 2 use fine granularity
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Terminology IV cont’d.
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Motivation

0 Today’s CPUs and DSPs seem pretty ...
O fast
O cheap
O low-power
O easy to program

% So why consider anything else?
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o RCU Performance
O Early success: gene sequence matching
O 1993: SPLASH-2 beats MasPar MP-1 by 1300x
O Many successes in cryptography
O 1999: IDEA encryption 12x CPU, 1.4x ASIC
O 2001: World record RSA decryption (600Kb/s)
O 2001: DES encryption 2x ASIC (13.3 Gb/s)
O Digital signal processing
O “10x-1000x practically achievable over DSPs”
-- Ray Andraka, FPGA DSP Guru
O FPGA vs DSP
e Altera Stratix @ 250 MHz: 56.0 GMACs
e TI 32064Cx @ 600 MHz: 4.8 GMACs
» But raw performance numbers may be misleading!
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7
b Performance cont’d.
0 Application-level cost-performance
O Full analysis available from BDTI
1 OFDM receiver
. I - - o o .| viterbi
Demo«ﬁllator . el Delct:?):lelr >

1 Motorola MSC8101 DSP @ 300 MHz
O << 1 channels, $140 » ~$500 per channel

 Altera Stratix 1S20-6 FPGA
O >12 channels, $325 » ~$10 per channel
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Performance cont’'d

e N
[ N

1 0 Sample application

O Label objects in
b/w images

I
e e

O Scan image using
operator window

 Student design
O CS undergraduate

O;/)erator Window Néw Pixel

1 Tool flow
O Verilog HDL
OC
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Performance cont’d.

=—— Sun UltraSPARC lll+ @ 900 MHz M

—— ACE-V RCU @ 33 MHz ,U\/
7 pd

4 W
= AMD Athlon XP @ 1533 MHz ///
00 ZA//

‘% image size in pixels

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

0 Application fits in XC2S100E: US$ 23 part
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Fr RCU Power Consumption
0 “Power-dissipation of a well-executed FPGA design
is typically about 20% of the power consumption of
a software-based system operating at the same
sample rate”
-- Ray Andraka, EDN Oct 3, 2002
0 Experimental low-power FPGAs do better
O BWRC LP_PGAII: up to
70x reduction in energy
over equivalent Xilinx XC4005XL part
O In reconfigurable SoC Maia for VSELP encoding:
~20x reduction in energy
over 2.5V ARM8@120MHz
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Power cont’d.

1 QCELP encoder on QuickSilver ACM

33 MHz
All algerithms run on Power DSP I 84mw
dedicaiad /Sty Area DsP 4 sqmm
DSP
ASIC
3mW
Top eight subroutines Iy 15.45mwW
each implemented as —#»
individual ASIC blocks D Pawer WIRCEYY 18.45mW
Area ASIC | DSP | 27.2 sq mm
ASIC DSP
23.2sqmm 4 sqmm
ACM
( 2.9mw
s 15.45mW
. ) 4 MHz —
Top eight subroutines Power 18.35mW
downloaded into ACM — D D
50 times per second Area || ACM 9.15 sq mm
ACM DSP t
‘L 4 5 mm
5.15sqgmm
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e RCU Flexibility
0 Reconfigurability allows early implementation start
O Despite fluid standards
0 “Interoperability insurance”
0 Improve performance after deployment
O Experience gained from field use
0 Allow use of completely new algorithms
O Limited only by RCU capabilities (area, speed)
=» Reconfigure to new application versions
0 Even better than configurable CPUs/DSPs
O Have to get custom instructions right the first time
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Fr Flexibility cont’'d.
0 Example
1 TSI TelSys equipment for satellite comm.
O High-rate communications
O Signal processing
O Multiple
o Network protocols
o Data formats
» Use standard hardware platform
O ACEcard
e Sun uSPARCIIep RISC + 2x Xilinx XC6264 FPGAs
O ACE2card
e Sun uSPARCIIep RISC + 2x Xilinx XC4085XL FPGAs
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 20
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Architectural Efficiency

1 Moore’s Law still holds:

2x transistors / 18 months

0 Unfortunately, this does not guarantee:

2x performance / 18 months

0 Example: Intel Pentium III CPU
O 1999: 500 MHz, 9.5M transistors, ext. L2 cache
e 20.6 SPECint95, 14.7 SPECfp95
O 2000: 1000 MHz, 28M transistors, int. L2 cache
e 46.8 SPECint95, 32.2 SPECfp95
O Sounds good: 2.3x int, 2.2x fp, but ...
e 2x clock freq and 3x transistors to get there

|”"
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Efficiency

1 Current fab processes: 300 M transistors

1 What to do with this much real estate?
O Larger caches
e HP PA-RISC 8700: 1.5MB L1 cache on-chip
e SPEC benchmarks execute completely in cache
O Higher integration
e On-chip memory controllers
O Multiple processors on-chip
e HP PA-RISC 8800: 2x PA-RISC 8700

X ... but not much architectural innovation

0 Idea: Spend some transistors on RCU

|”"
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Efficiency cont’d.
0 Transistor budgeting
O Example: Xilinx Virtex 1000 FPGA
e 75 M transistors / 1 M gates RCU capacity
O Much denser architectures exist
1 But even smaller RCUs can still be useful
O B/W image labeling: ca. 100 K gates
O From EEMBC benchmarks:
e Add custom instructions to Tensilica Xtensa
e Use 22K gates: 37x performance “telecom”
e Use 200K gates: 23x performance “consumer”
e Add custom instructions to ARCcore ARCtangent
e Use 58K gates: 40x performance “telecom”
e Use 113K gates: 18x performance “consumer”
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Fr Economics of Fabrication
0 More transistors per chip, but ...
O Tool flow challenged (timing closure etc.)
O Fab on advanced process extremely expensive
o Higher cost of masks, more masks per chip, ...
1 Advanced fab technology only for
O Cost-insensitive applications
o Requirements dominate, “it just has to work”
O High-volume applications: CPUs and DSPs
e Multiple uses for each device are a must
¢ But reduced performance, power, efficiency, ...
1 RCUs might fill the gap
O FPGAs already act as process drivers
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o System Architecture
O How to integrate an RCU into a system?
1 RCU does not automatically imply FPGA!
O FPGAs have been around longest
X ... but are far from perfectly suited as RCU:
e Fine granularity ./. word-oriented applications
e Glacial configuration speed
e Order of 100ms for large devices
e Precludes dynamic reconfiguration
O Recent improvements
o Heterogeneous blocks (RAMs, multipliers)
e On-chip processors
= ... aid in improving system integration, but not the
idea of dynamic reconfiguration
o Inefficient use of silicon area
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Stand-Alone RCU

Stand-Alone RCU

Workstation

0 Example: ASIC Emulation
O Attached via SCSI

O 112 M gates reconfigurable capacity
¢ RCU weighs 1.1t
e 12KW 350V three-phase power

O Very limited set of suitable applications

on figure by Scott Haud
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Attached RCU

Attached RCU

CPU Core

<

32b @ 33 MH;l;4b @ 266 MHz 128b @ 500 MHz

0 Attached to peripheral busses
O PCI, VME, SBus, ...
O Standard busses, RCU easy to deploy
O Most common method of RCU integration
0 Better than stand-alone, but still slow
O PCI write latency: 10 clocks, read: 30 clocks

32b @ 1000 MHz

Based on figure by Scott Haucl
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Feuld A\ 174
"=| RCU Peer Processor ("SMP")
RCU Peer Processor
CPU Core
32b @ 33 MHz I;b @ 266 MHz 128b @ 500 MHz
32b @ 1000 MHz
O Equal partner to CPU (SMP-like)
O Much higher bandwidth, lower latency
O RCU implementation of multi-processor bus
protocols (133 MHz should be achievable)
e Interrupt handling, cache coherency, ...
O RCU could be retrofitted into standard SMP boards
O No practical realization yet (?)
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RCU Co-Processor

RCU Co-Processor

CPU Core

<

32b @ 33 MH;lG4b @ 266 MHz 128b @ 500 MHz

32b @ 1000 MHz

 Attached to internal processor bus
O Shares cache with processor (possibly only L2)
O No (or fewer) coherency issues
O More bandwidth, less latency
O Implementation based on standard cores
O UCB GARP (=custom RCU + MIPS core)

Based on figure by Scott Haucl
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e RC Function Units
CPU Core
32b @ 33 MHz I64b @ 266 MHz 128b @ 500 MHz
32b @ 1000 MHz
RC Function Unit
0 RCU as function unit
O Directly integrated into the processor datapath
O Very low latency
O Generally: Limited bandwidth (data starvation)
e Operates only on 2-3 registers per instruction
e Some exceptions: OneChip-'98 has memory port
e Can still be useful: PRISC-1 gains 22% on SPECint92
1 Needs custom or configurable processor core
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 30
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I/0 and Memory

| General Purpose 1/0 |

RCU «—>| 512Kx32b ZBT SSRAM

512x8b SSRAM
12x8b sskaM| [€ L 512Kx32b ZBT SSRAM

«—>| 512Kx32b ZBT SSRAM

)

0 Heterogeneous memories
O On-chip / off-chip
O Multi-bank / multi-type
O Configurable I/0 system
O Sometimes expandable by daughter board

4—>| 512Kx32b ZBT SSRAM

A
\ 4

8Mx64b DDR SDRAM
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Effect on Applications

 Suitable applications depend strongly on degree
of coupling

O Table shows typical RCU execution times

Application Minimal effective DataI/O
RCU Type computation time rate

Stand-Alone Very long (~10s) Very low
Attached Long (~10ms) Medium
Peer Processor Medium (~100us ?) High
Co-Processor Short (~1us) High
Function Unit Very short (~10ns) Low

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 32




Device Architecture

0 General idea
O Configurable interconnection network
O Configurable function blocks

O Many variations possible!

0 Example:

[T

Interconnection networks
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Symmetric Hierarchical Crossbar
Array Array Interconnect
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Fine-Grained Block

i
(

} CS Mux
RP Mux
F
|c p oS

Clk——p

ol
LT

Clr

a Xilinx XC6200 logic block
0 Realizes

O Any 2-input function

O Some 3-input functions

VLSI
X1
X2
X3
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 34

Figure from Xilinx
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Medium-Grained Block
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a Xilinx XC4000 block
O Two arbitrary 4-input functions
O Some wider functions (e.g., 2b add/sub)

Figure from Xilinx
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e Coarse-Grained Block
Cin
I
Gen. <3>
Ain <O sum [[”] Reg 94‘ F out
<3> Function
Unit
Bin +‘ ‘
4 Gen.
Carry
E 4x C out
 HP Labs CHESS (now Elixent D-Fabrix)
O 4b ALU
O Logic and simple arithmetic (add, sub)
O Function controllable by another block at run-time
O Example: JPEG encoder takes 512 ALUs of area
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Fr Very Coarse-Grained Block
A\ 4 y
\ ALU / | Ctrl
O PACT XPP ALU block
O 24b and (12b, 12b) split-operation
O Logic, arithmetic including multiplication
O Automatic synchronization for
o Data flow
e Partial run-time reconfiguration
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 37
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Fr Homogeneous Arrays
Classic aa
oy ErEatS O Traditional FPGAs are
Array homogeneous
OOOoOoOonO O Single type of configurable
OO0OgoOgooog element
Oo0oOooo ° Possuply multi-functional
e Logic or RAM mode
e Composed to assemble any digital
function
v Advantages
e Simpler tools
e Simpler device layout
Configurable Block X But may be very inefficient, for
x» Multipliers
» Larger memories
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 38
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Fr Heterogeneous Arrays
Modern .
Heterogeneous O Heterogeneous devices

Array O Embedded hardwired blocks
Ooon0 O Fast multipliers
Oooo O Larger memories
oood O Even complete processor(s)
oo O Clock Management
OO0 O Specialized I/0 interfaces
OO0 v Higher performance
) / v More efficient area usage
Configurable
Block X Only when blocks are used!
Memory -
Block X Increased tool complexity
Multiplier O Must obey additional
Block constraints

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 39

Fr Architecture Trends
* With this prior development, what's next?
 Three broad approaches have become visible

Q System FPGAs

® Reconfigurable Systems-On-Chip (rSoC)

® Specialized devices for adaptive computation
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 40
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System FPGAs

0 Higher capacity reduces number of devices on board
O Xilinx XC2V8000: 8 M configurable logic gates

0 On-chip features for improved system-level density

O Integrated processor(s)
e Up to 4x PowerPC 405 cores in Xilinx Virtex II Pro devices

O Digitally controlled impedance
o Replaces board-level termination resistors

X But reconfiguration is still rather slow
O At best ~50ms for large devices

=» Not really aimed at reconfigurable computing
O Infrequent mode switches
O Soft-hardware updates

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 41

Reconfigurable SoCs (rSoC)

TR e Qa !-Ieterqgeneous SoCs
A L including RCU(s)
8 = = O Customized for application
domain(s)
e But still flexible to handle
new developments
- 1 True reconfigurable
computing possible
O High on-chip bandwidth
allows fast configuration

e 500us for 200 K gates on
fine-grained fabric
e M2000’s FLEXEOS IP
e 33us for 128 ALUs on a
very coarse-grained fabric

e PACT's XPP128-ES, core now
available as IP

(RENS

TRERBRBRNNEANNR N}

RN A RNRRRANRANNRRANRRNRANNRRRRARRNRRRRRRNRRRR
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k4| Adaptive Computing Devices
0 Specifically built to
QuicksSilver ACM efficiently compute
0 Single clock cycle
reconfigurability
0 Ultra low power
o0
® 0 Heterogeneous array
0 Example: QuickSilver ACM
O >57.000 reconfigs/s for
CDMA2000 Rake finger
O 200 MHz ACM vs ASIC
¢ CDMA2000 searcher
® 00 00 . 108x
e CDMA2000 pilot search
@ -Arithmetic Node @ FsSM Node e 108x
. . . o W-CDMA searcher
.:::;:Iampulatlon @ scalar Node " iy
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Fr Design Flows for RCUs
0 How to program these contraptions?
O Quickly
O Efficiently
O Correctly
0 Three variables
O Cover only hardware or hard- and software
O Degree of tool support
e Fully manual < fully automatic
O Input format of algorithm description
¢ Related to computation model used
e Data flow-oriented (many variations)
e State machines (e.g. Harel diagrams)
e Imperative (common software languages)
e Structural (schematics or some HDL style)
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 44




kel
VLSI

Hardware and/or Software?

0 Depends on application area
1 Scenarions for pure hardware
O High-speed interfaces

e Possibly with pre-processing: Collider event detection
O Glue logic

O Simple state-machines
e Traffic lights, vending machines, =)
1 Scenarios for combined hardware/software
O Compute kernels in hardware

¢ Small blocks of compute-intensive code
e Loop nests

o Often streaming code
e Array/matrix operations
O Complex irregular control in software

e Application and system-wide control
e Operating system

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 45

Fully Manual

0 Very rare in this extreme form!

Algorithm

1 Relaxed form sometimes used
Gate

Netlist O For high-performance designs

e “John Henry” approach

O Finely tuned hard IP blocks
Mapped . )
Netlist O Generally relies on automatic

routing
Automatic

Routing

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 46
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Fully Automatic Flows

a Translate algorithm
O ... pure HW (limited!)

o HDL synthesis, Forge HW/SW
O ... into HW and SW Partitioning
e GarpCC, Nimble-C —
. Add HW/SW| Compile to
O Often: Interface HW Netlist
e Manual partitioning l 1
Compile to
HW Netlist f Technology
1 Compile SW Mapping
Technology l
Mapping Place &
l Route
Place &
Route Bind

Pure HW Flow
Hybrid HW/SW Flow

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03
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e Graphical Entry
o
Ay n r In
Fixed Point - e
1 Compose blocks
_ O Hierarchical, parameterized
- Pt * O Ptolemy, SPW, Simulink, ...
i e Also circuit schematics
o . .
S BT AT # [ Fractionally Spaced Equalizer
= : O Simulink representation
>R e T “,, ¥ (1 Suitable for DSP+telecomm
O Or low-level design entry
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o Textual Description

FIR in ANSIC FIR in SilverC
fir( int input[], void run (void)
int coef[], int nCoef,
int output[], int nOut ) fract16 sum;
loop (int 1=0; I<nOut; I1++) dataflow {
inti, j; sample = input.read();
int sum; sum = 0.0;
unroll (int i=0; i<nCoef; i++) {
for (j = 0;j < nOut; j++) { sum = sum + coefReg[i] * sample[nCoef-i];
sum = 0;
for (i = 0; i < nCoef; i++){ output.write(sum);
sum += input[j+i] * coef[i]; b
¥
output[j] = sum >> 15;

 Very high-level languages: MATLAB

0 Conventional high-level languages: C, Java

0 Specialized RC languages: TDFC, Handel-C, SilverC,
0 Hardware description languages: Verilog, VHDL

tesy of Tec]
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Fr HDL-based Programming

 Currently the most common way to program RCUs
1 Use HDL to formulate the hardware parts
O Generally at register-transfer level (RTL)
O Some structural parts to access special RCU hardware
e Multipliers, multi-port memories, DLLs, ...

1 Software parts in high-level programming language
(HLL)

O C, C++, some Java
1 Reasonably robust tool support for
O HLL compilation
O HDL synthesis
O Technology mapping, placement & routing
O Simulation
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-E Internal PCI—Busg

Fr Target Environment: ACE-V
ACE-V Card
microSPARC-llep CPU Xilinx Virtex 1000 FPGA
1 ¥
DRAM SRAM
I
External PCI-B
Xterna us Q
0 Attached RCU o5t computer
O CPU: 100MHz microSPARC-IIep RISC
O RCU: Xilinx Virtex XCV1000-4 FPGA
1 64MB DRAM (shared), 4MB SRAM (RC-local)
3 On-board Bus: 33MHz 32b PCI
1 Custom port of RTEMS 4.0.0 as operating system
Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 51

i Sample Application
a Practical example
O Software development
O Hardware development
O Hardware/software interfaces
0 Application: Reversal of bit order in 32b word
Bit|31]30]29]28] 00000 I3]2]i Jo] Input
Bitfo |1 | 2| 3] XXX |28]29]30[31] Output
O Three stages
O Pure software solution
® Slave-mode RCU
e CPU controls data transfer
® Master-mode RCU
e RCU controls data transfer

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 52

26



Fr Tool Flow

|
Algorithm
inC

HW/Sw
Partitioning

1 Manual algorithm description

Add HW/sw lllDescribe HW 0 Manual HW/SW partitioning
Interface in Verilog I
0 Manual HW description

——— RTL 0 Manual HW/SW interfacing
o SHIHiEs 0 Standard SW flow
|
Place & 0 Standard RTL-FPGA flow
Route O Custom binding phase
Bind

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03
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Fr Pure Software Version
// Kernel to process all data words
for (m=0; m < NUM_WORDS; ++m) {
inword = inwords[m];
outword = 0;
mask 1;
set 1 << 31;
// Bitwise assembly of the processed word
for (n =0; n < 32; ++n) {
if (inword & mask)
outword |= set;

mask <<=1;

set >>=1;
¥
// Enter the result in the output array
outwords[m] = outword;

¥
0 Compute kernel of the pure software version
O See Listing 1 in your handouts
0 Performance: 512 Kw in 1449623us = ~1.5s
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Slave-Mode Version

module user(

CLK, // System clock

RESET, // System-wide reset

ADDRESSED, // High when CPU addresses RCU

WRITE, // High when CPU writes to RCU

DATAIN, // Data written from CPU to RCU

DATAOUT, // Data from RCU to be read by CPU

ADDRESS // RCU Address of access (ignored for this application)
)i

// Inputs

input CLK;

input RESET;

input ADDRESSED;

input WRITE;

input [31:0] DATAIN;
input [23:2] ADDRESS;

// Outputs
output [31:0] DATAOUT,;

0 Slave-mode interface to RCU
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Slave-Mode Compute Kernel

reg [31:0] result; // Register for computation result
reg [31:0] reversed; // Temporary value

// Always output the result register (independent of address)
assign DATAOUT = result;

// Compute the bit-reversed version of the current data input value.
// Note: This is a pure combinational block
always @(DATAIN) begin: comb_block

integer n;

for (n=0; n < 32; n=n + 1) begin

reversed[n] = DATAIN[31-n];

end

end

// Control
always @(posedge CLK or posedge RESET) begin
// Initialize result register to recognizable magic number (for debugging)
if (RESET) begin
result <= 32'hDEADBEEF;
// When CPU writes data to RCU, store the reversed word as result
end else if ( ADDRESSED & WRITE) begin
result <= reversed;
end
end
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Accessing the RCU from SW

acev_load_config(&config_reverse);
// Get pointer to start of RCU address space

rc = acev_get_sO(NULL); O Configuration

// Initialize RCU

acev_init();

// Run RCU at a 40 MHz clock 0 RCU API
acev_set_clock(40e6);

// Configure RCU with bit-reversal application O Setup

O Clock control

CPU Address Space RCU Address Space
OxFFFFFFFF

1 Memory mapping
Ox7FFFF O Slave-mode
O RCU-CPU space

rc 0

0x00000000

|”"
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Slave-Mode Software

// Remember start time of actual computation
start = RTEMSIO_getTicks();

// Kernel to process data
for (m=0; m < NUM_WORDS; ++m) {
// Transfer input data word to RCU
rc[0] = inwords[m];
// Fetch reversed result from RCU and store in output array
outwords[m] = rc[0];

b

// The core computation is completed, remember the current time
stop = RTEMSIO_getTicks();

1 CPU controls data transfer
O Write data word to RCU for processing
O Read processed word from RCU
O Details see Listing 2 in handouts
0 Performance: 512 Kw in 825365us = ~0.8s

|”"
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oy Evaluation
O So far, so good:
O 40 MHz RCU beats 100 MHz RISC for computation
e ... ignoring RCU configuration overhead of ~0.9s
a Can we do better?
O Computation looks pretty tight already
O But how about communications overhead?
O Measurements
O Shortest time between read and write accesses
e 50 RCU clocks
O Longest time between read and write accesses
e 694 RCU clocks
=» Slave-mode is extremely inefficient!
e Due to PCI sub-system (BIUs in uSPARC and RCU)
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o Master-Mode Solution
0 Idea
O Avoid quick read/write direction changes
O Implement data transfer control in hardware
O RCU can now independently access main memory
O Protocol engine must be implemented
O Should exploit burst transfers
o Requires local buffering
O Buffer architecture depends on access patterns
e Irregular: Cache
e Regular: FIFO
O Should be reusable
X ... the problem is becoming complicated
=» Memory Architecture for Reconfigurable Computers
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MARC IP

ModDRAM

MARC
core

Arbitration

Configurable Configurable
Back-Ends Front-Ends
3 Physical Ports Logical Ports R
N System I/0 Bus "
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T F

Read port from stream to RCU

Write port from RCU to stream
Stream parameters in programming mode

Start/stop stream

Stream stalled, RCU must wait

Flush internal buffers to main memory

Switch stream to programming mode

e MARC Stream Interface
MARC-Stream
[ READ
Data
L WRITE_PROG
[ ENABLE
Flow control
L STALL
[ FLUSH
Control
L PROG
O Number of streams configurable
O Priority arbitration, but no inter-stream coherency
0 Parameters run-time programmable
O Start address, length, stride, width, read/write
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Coupling MARC Streams

Read-Stream
STREAM_ENABLE

Flow Control Write—Stream

STREAM_ENABLE

STREAM_STALL

STREAM_STALL

STREAM_READ

STREAM_WRITE_PROG

\/ REVERSED WRITE_DATA

Bitwise Reversal

O Link read and write streams
O Interpose computation
a Flow-control mechanism required
O Stop read stream if write stream stalls
O Stop write stream if read stream stalls
O Use forward / backward pressure concept

VLSl
Stream 0 comb_block flowcontrol Stream 1
a Idea
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// System clock
// System-wide reset

// High when CPU accesses RCU

// High when CPU writes data to RCU
// Data written from CPU to RCU

// RCU output data readable by CPU
// Adress, used both by RCU and CPU
// Set high for RCU to interrupt CPU

// Read data bus from MEM to RCU

// Write data bus to MEM and MARC programming
// Per-stream stall signals

// Start/stop signals for streams

// Set high to flush write streams to MEM

// Set high to switch stream to programming mode

o Master-Mode HW Interface
module user (
// *** Global signals
CLK,
RESET,
// *¥** Slave interface
ADDRESSED,
WRITE,
DATAIN,
DATAOUT,
ADDRESS,
IRQ,
// *¥** Interface to MARC streams
STREAM_READ,
STREAM_WRITE_PROG,
STREAM_STALL,
STREAM_ENABLE,
STREAM_FLUSH,
STREAM_PROG
)i
O All stream signals aggregated into wide busses
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Fr Master-Mode Hardware

0 See Listing 4 (rather long) in your handouts

0 comb_block inserted into streams
Line 131-139 O Bit-wise reversal of passing data words
0 RCU starts in slave mode to accept parameters
Line 152-162 O Start address of input data in main memory
O Start address of output data in main memory
O Number of words to process
O A command to start execution
0 RCU-internal controller FSM takes over
Line 168-211. ) MARC streams are appropriately programmed
Line 212-23¢ ) Streams are started, data is being processed

Line 224-229 3 On end-of-read-stream, flush write stream
e Force internal FIFOs into main memory

tine 242 O Indicate completion by interrupt to CPU
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Master-Mode Software
// Handler for RCU-initiated interrupts
void
irg_handler() {
// Ask RCU to deassert interrupt (any read to RCU-space will do)
int volatile foo = rc[0];
// Mark RCU operation as complete.
// Execution continues in main() after acev_wait(), Line 83
acev_mark_done();
¥
void
main() {
// Register handler function for RCU-initiated interrupts
acev_irg_handler(irg_handler, NULL);
// Mark RCU status as 'operation in progress'
acev_mark_busy();
// Program this run's parameters into RCU
rc[REG_SOURCE_ADDR] inwords; // Start address of input data in memory
rc[REG_DEST_ADDR] outwords; // Start address for output data in memory
rc[REG_COUNT] NUM_WORDS; // Number of data words to process
rc[REG_START] 1; // Send start command to RCU
// Wait for RCU execution to complete (indicated by interrupt, line 32)
// CPU could continue operation in parallel
acev_wait();
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Evaluation

Approach RCU Computation Speedup vs.
Size Time [us] Pure SW
[Slices]

Pure Software 1449623 1.00

Slave-Mode RCU 40 116 825365 1.76

Master-Mode RCU 25 1369 109933 13.19

Slices available on XCV1000: 12228

1 Master-mode is considerably more efficient
=» Despite of ACE-V misfeatures
O All memory accesses via PCI

O Faulty off-chip handshaking
e Pin not connected on PCB
o Limited burst length
o Limited clock speed
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Automatic HLL Compilation

C code
|

Front-End Compiler

« architecture-independent optimization
« dynamic profiling

« analysis and visualization

« automatic HW/SW-partitioning

HW-Kernels as CDFGl  —

Datapath Synthesis
« Scheduling

« Technology Mapping

* Module generation

« Floorplanning

Architecture
Description

Module
Generator
Library

Pre-placed Netlist

HW-EnvironTent Place & Route SW(—:PgrtJInterfaces
»wrapper Xilinx M4 Sl
FPGA bit stream 3 ACE-V
Runtime Lib. i
RTEMS 05 / API [4 ’ GCC I > Hardware
Figure from Randy Hai
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Example Program
void
main(int argc, char *argv[])
{
inti, j, k;
// Integer value of the first command line parameter
j = atoi(argv[1]);
// Integer value of the second command line parameter
k = atoi(argv([2]);
for (i=0;i<k;i++)
{
j=3*13;
if (j > 1000000)
printf("j=%d too large in loop i=%d\n", j, i);
¥ Sample execution
printf("result: j = %d\n", j); $ ./a.out 10 5
3 j=3712930 too large in loop i=4
result: j = 3712930
 Compute j * pow(13, k)
O Check for an overflow condition, print message
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Fr HW/SW Partitioning
1 Dynamic profiling identifies kernel
O Problem: printf() not realizable in hardware
O Most tools give up here
O Maybe inform the programmer to make a change
 Alternate approach
O Determine how often the condition occurs in fact
¢ Data dependent!
O If sufficiently infrequent, hardware execution might
still be useful
¢ But have to handle case if it does occur
= Manage both HW and SW versions of the kernel
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HW/SW Execution

Software Operation

j = atoi(argv[1]);
k= gtoi(arg\l[zlh
i=0;

Hardware Operation

j>1000000>

HW/SW Transition
| printf("result: j = %d\n", j); |
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o Control-Data Flow Graph
for-loop whilei <k
Multiplication by 13 I:!:T
Caz<bd Cas<bd
CasbD
----------------------------- D
Detect overflow when temporary value > 1000000
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Hardware Mapping

Data Bus

Datapath
to CPU _ from CPU
2
R5
__.to CPU:
a<b ENABLE Ry EXIT_A
szato0000—a
:D—NALY
READ R2
R4
mRel
D R | cous
! EXIT_B
enseLe Rr_|ce
READ Rt
|B5- IHALT
waire ro—{oe
—
Controller FSM
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HW/SW Interfaces

// Transfer software variables into RCU register
rc[2] = j;
rc[6] = k;

Loophead: // Destination jump label for restarting RCU after exception processing
rc[4] = i;

// Start RCU execution and wait for completion indicator (interrupt)
rc[HW_START_REG] = 1;
acev_wait();

// OK, RCU execution stopped. Find out why ...
if (rc[HW_EXIT_REG] == HW_EXIT_A) { // RCU indicated overflow of temporary value.

// Fetch current values from RCU registers into software variables
j = rc[2];
i =rc[4];

// Execute rest of this iteration in software
printf("j=%d too large in loop i=%d\n", j, i);
i=i+1;

// Now execute next iteration
goto Loophead;
} else /* HW_EXIT_B: RCU indicated normal exit */ {
// Fetch final result from RCU register into corresponding variable
j =rcl2];

// Finish by executing remaining non-kernel instructions in software
printf("result: j = %d\n", j);
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o i
Debugging
1 Should not be necessary with fully automatic tools
O ... but accidents happen, so:
a Allow single-stepping of hardware
O Debug control block in hardware “wrapper”
O RCU registers holding variables are CPU-readable
O Without need for external debug support
e E.g., Xilinx ChipScope
O Symbol tables associate register with variable names
¢ Even more difficult than optimizing compilers
e Consider speculative execution
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Fr Performance Optimization
0 Example application was unspectacular
O At best, 3 parallel operations (FSM: 2, 4, 7)
a Current compiler does not exploit, e.g.,
O Dynamic hardware/software selection
O Vectorization of array operations (SIMD)
O Multi-threading (cache miss stalls entire datapath)
= Much potential for achieving real speed-ups
e Today: On GARP, 4x over MIPS on image compression
1 Much lore from parallel / vector / VLIW compilers
O Often applicable to hardware compilation
¢ Huge suite of beneficial loop transformations
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Fr RCU-executable IP Blocks
0 Despite best efforts:
O Compilers are at best “good enough”
O But cannot replace human expert
e Assembly language programming
o Highly optimized libraries for
e Math, DSP, graphics, etc.
o Easy interoperation with compiled code
e Linking of object files
=» Similar capability required for RCU compilers
O But “linking” is more difficult
e Much more freedom in hardware
e Plethora of custom interfaces and data formats
e Actually exploited for performance / area reasons
O Shared resources must be managed (e.g., memory)
J Ongoing research
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e Practical Tips & Tricks
1 For high-performance solutions
O Don’t just translate a software program
O Think “hardware”
o Digital signal processing started in late 1950’s
e Without software programmable processors
e Everything realized in custom hardware
e Many algorithms suited for RCUs buried in dusty tomes
0 Examples
O Coordinate Rotation Digital Computer (CORDIC)
e Approach to calculate trigonometric and other
transcendental function using just shifts and adds
O Vector magnitude of (a,b)
e Expensive: m = sqrt(a*a + b*b)
e If 10% inaccuracy is OK: m’ = max(a,b) + 0.5 min(a,b)
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Custom Number Formats

0 Simple: Match operator width precisely to data
O Only internally, external I/0s are fixed width
O Example: 8b + 12b = 20b instead of 32b ops

0 Medium: Modified standard formats
O Custom fixed point formats: 8b.4b

O Custom floating point formats
e E.g., increased precision, reduced dynamic range
O Match to requirements at specific points in algorithm

0 Complex: Non-standard numerical representations

e 1's Complement (Mersenne), Diminished 1 (Fermat)
1 Good overview of techniques

O Uwe Meyer-Baese

o Digital Signal Processing with Field Programmable Gate
Arrays, Springer 2001

O For Number Theoretic Transforms (can outperform FFT)
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Fr Partial Evaluation
1 Reduce hardware size by propagating known
constants through circuit
? ?
 Occurs when creating circuit structure
O Circuit synthesis for HDL-based design flows
O Within parameterized module generators
1 Very common use: constant coefficient multipliers
O See previous HLL compilation example
1 Other applications:
O Encryption-key specific RCUs
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Late Binding

O Change circuit function

Reprogrammable Late Bound

Comparator Comparator
— 5 LUT D

Q)
input =%1"?
— ) >t

[ P

input =“0"?

O Limited form of run-time reconfiguration

O ... But retain structure of mapped circuit
¢ Number and interconnection of logic elements constant

O Only contents of logic elements are changed
1 More area and delay efficient than reprogramming
0 Value changes are often slower due to (partial) RTR
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hput

O Data distribution across banks crucial

Fr Multi-Bank Memories
1 RCUs often have dedicated memory banks
O On-chip memory blocks
O External memories
O In general fast SRAM
a Allows multiple simultaneous memory accesses
O Can greatly improve throug
1 When programming for micro-processors
O Homogeneous memory space
O At best: Consider locality (cache characteristics)
1 Using multi-bank memory system
O Organization exposed to programmer
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Off-the Shelf Technologies

0 System FPGAs
0 Adaptive Computing Devices
1 Reconfigurable IP Blocks

0 (Configurable Processors)
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System FPGAs

 Altera Excalibur
Q Triscend A7/E5
Q Xilinx Virtex II Pro
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Altera Excalibur

Extemal -

Memory SRAM SRAM SRAM
Interfaces Module Embedded
Processor
Stripe.

Interrupt
Watchdog Gotoler ARMg22T DPRAM DPRAM DPRAM

Timer

EPXA1

32 Kbytes SRAM
16 Kbytes DPRAM

PLD

EPXA4
128 Kbytes SRAM
64 Kbytes DPRAM

EPXA10

256 Kbyles SRAM
128 Kbytes DPRAM

0 ARM922T core @ 200MHz

1 Max ~ 1 M config gate capacity, up to 256 KB RAM
0 DRAM memory controller (SDR and DDR)

0 UART, IRQ controller, timer, watchdog, ...

Figure from Altera Corp.

Andreas Koch - TU Braunschweig, Dept. E.I.S. - DATE ‘03 85

Triscend A7/E5

To external memory

Clock Synthesizer
Power Control

Memory

Interface Unit
‘SDRAM and /or Statlc.
Memories

- I Configurable
£ i @)
sscopes a Matrix
Fl T i up to
% e 25K Gates.

2
2| |5
%q

8K Bytes Cache
* Protection Unit |

" Hardware )

Interconnect Socket

Hardware <
Breakpoint Unit A
Peripherals
EARETR =
C *2 UARTS
Arbiter DMA Controllers < ntemupt Conrol
*Watchdog Timer

JTAG Interface

Configurable System
Interconnect (CSI) Bus

0 A7: ARM7TDMI @ 60 MHz, E5: 8051 @ 40 MHz
0 ~25 K configurable gate capacity

0 16 KB internal RAM

0 DRAM memory controller (SDR and DDR)

1 UART, IRQ controller, timer, watchdog, .

|”"
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Xilinx Virtex II Pro

RocketlO™
DCM Multi-Gigabit Transceiver

a 1-4x PPC405 @
300+ MHz
CLB s
S O Max 4 M gates
g <§( o1 B BE capacity
[ [%]
g%/ | I Q O Up to 216
23 EL? 18bx18b
Q-U) - -
=g multipliers
=2 — O No hardwired
clB interfaces/periphe
: rals
| Corfge® | 0 486KB RAM
awms
/
SelectlO™-Ultra DS083-1_01_010802
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o Quicksilver ACM
Matrix Interconnect
Network (MIN)
O Heterogeneous
architecture
 Hierarchical
Ik (fractal)
interconnection
network
1 Distributed
memories
 Single cycle
@ Arithmetic Node @ FSM Node configuration
.Bit-Manipulation . Scalar Node
Node
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Quicksilver ACM cont’d.

a Arithmetic node

¢ Implements different, linear, variable-width, arithmetic
functions clock-cycle-by-clock-cycle

¢ Implements different, non-linear, variable-width,
arithmetic functions clock-cycle-by-clock-cycle
0 Bit-manipulation node
¢ Implements different, variable-width, bit-manipulation
functions clock-cycle-by-clock-cycle
O Finite state machine node
¢ Implements different, high-speed, complicated, finite-
state machines clock-cycle-by-clock-cycle
0 Scalar node
¢ Implements different, complicated control sequences
0 Configurable input/output node

o Implements different interfaces to external interfaces
such as buses

Tech

|”"
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Quicksilver ACM cont’d.

mini-malrix mini malrix Arithmetic Node Structure

dma  Network dma - Network
engines engines

oo

Ccu

Distributed

E=(A+ B)*(C+D) configuration memory

i

Ccu

|”"

Type _Type cu
iMemory iMemory Ccu Ccu Ccu Ccu type 2
typel| |[typel| |[typel]| ||typel
RAM

Highway []
o L_evel [
§ Highway
5| | Level1
O Highway
=3
g Level 2
§ Highway
=

Boolean

Highway

Y
Tech
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Fr Reconfigurable IP Blocks
 Actel VariCore
0 eASIC
O Elixent D-Fabrix
Q IBM/Xilinx
a IP Flex
0 Leopard Logic
0 M2000 FLEXEOS
a PACT XPP
0 picoChip
0 Can be combined with configurable processor
O Tensilica Xtensa
O ARC ARCtangent
=» Reconfigurable custom instructions
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e Actel VariCore
* 0.18um technology
110 | - CMOS SRAM
1 * Max. 250 MHz operation
* Uses 5 metal layers
FEa FEG PEG PEG * GDSII deliverable
* 5K - 40K ASIC gates
PEG PEG PEG PEG
PEG PEG PEG PEG B e
PEG PEG PEG PEG e :z . o
_JTAG | 0 | EISTIF_ S
0 Building blocks 25 /
O PEG Blocks: 8x8 4x Logic Unit
O RAM Blocks: 512x 18b RAMs
1 Sizes: 2x1 ... 4x4 PEGs, 0 ... 8 RAMs
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Actel VariCore cont’d.

O Dual-pronged tool flow

[ Design Creation and System-Level Simulation H Models

Synthesis
.| EPGA Compile

@ | Physical Verification EPGA Verification S
Rules P — Models
| Lvs [ DRC T|m|ng[ Power | Functn T|m|ng Power

y

-
Device

—» Data [ Systems Test and Integration
—» Tool
ASIC RCU
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M2000 FLEXEOS

I s
Cluster Il FE/LAT
2
LuUT
13 2
e
L
14 rok,
Global CEN
Global INI
00000
Global CLK MFC

Global Network

AX

Program & Test
I/F

In In In Out Out Out Control Bus

Figure from M2000 S.AR
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M2000 FLEXEOS cont’d.

0 Equivalent ASIC gate capacity up to 25 K gates
O 200K FPGA equivalent gates
O Example configuration: 3,000 MFCs

 Size of 8 sq. mm on ST HCMOSS8, 0.18um

O Programmability:

O Configuration size 48KB
O Loading time: <500 ps at 100MHz
e Suitable for dynamic reconfiguration!
0 Maximum measured frequency is 340MHz
O Typical system clock 120MHz
a Very low power requirements:
O Standby current less than 100pA
O 100mW power consumption for 120 counters at

66MHz

|”"
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Elixent D-Fabrix

AHB Interface

D-Fabrix
Array

High- _
speed |
1/0

>
>D>

AN
AA

1 Based on HP Labs CHESS
array

O Max. 2048 ALUs, 256KB RAM
e Other configurations possible
O Fast reconfiguration
e 32b,64b configuration ports
O GDSII for CMOS SRAM
e 0.18um
e 0.13um
 Programmable in
O Verilog, VHDL
O Handle-C, MATLAB

VLS|
4b ALU +
Registers
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PACT XPP

I/0

ALUs RAM

LD_D_DIDQDLDQDLDQDLDQDLDQDLDQDIDQDLD@DLD_D_@

LD_D_DLDQDLDQDLDQDLDQDEQDLDQDLDQDLD@DLD_D_DJ
LD_D_DLDQDLDQDLDQDFQDPQDLDQDLDQDFQDLD_D_DJ
LDQD_LDQDLDQDLDQDE@DEQDLDQDLDQDLD@DLDQDJ
LD_D_DLDQDLDQDLDQDLDQDLDQDLDQDLDQDLD@DLD_D_DJ
LD_D_DLDQDLDQDEQDPQDEQDLDQDLDQDLD@DP_D_DJ
OB JopCopC]oeCepioeCopiocCopEg

[ T A A P

a Array of multi-bit ALUs
0 Embedded RAM blocks
O High-speed interfaces for streaming I/0

VLSl
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PACT XPP cont'd.

Delivered in RTL HDL as synthesizable soft-core
O Targetable to 0.13um and 0.09um processes
Parameters
O Array size
O ALU word width
O Routing channels
O RAM block size
Wrapped in 1 ... 2 external AHB interfaces
O Connect to XPP-internal I/0 streams
Fast run-time-reconfiguration
O 43b wide configuration bus
O Multiple parallel configuration busses possible
O 15us configuration time for 8x8 array

VLSl
a
a
a
a
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=TI C6203 DSP ./. PACT XPU128

Normalized Power

Clock Cycles
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1 Reconfigurable computing has much potential
O Performance
O Power
0 Trends
O Higher integration density
O Exploitable dynamic reconfiguration
O Tool support for higher-level programming
1 Wide range of architectures
O Match to specific application (domain)
 Most important recent development
Reconfigurable Systems-on-Chip
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Color Slides in Soft-Copy

a http://www.cs.tu-bs.de/eis/koch/koch-date03.pdf
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