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Abstract.  Complex  SoC  and  platform-based  designs  require  integration  of
configurable  IP  cores  from  multiple  sources.  Even  automatic  compilation
flows from a high-level description to HW/SW systems can benefit from having
access  to  reusable  sophisticated  hand-optimized  IP  blocks.  This  work
proposes the Parametric C Interface For IP Cores (PaCIFIC) to allow the
automatic embedding of complex IP cores in a high-level language such as C.
PaCIFIC  provides  for  formal  description  of  IP  behavior  and  interface
characteristics as well as an idiomatic programming style natural for software
developers.  Additionally,  the  techniques  for  integrating  PaCIFIC  into  a
compile flow and interfacing IP cores with automatically generated data paths
will be discussed.

1 Introduction

In many of current design approaches such as systems-on-chip (SoCs), embedded
systems and platform-based techniques involving hardware-software codesign, a gap
appears  in the  design flow at  the  interface  between hardware  and software.  The
individual hardware and software sub-flows (from RTL to layout and software to
binary  code)  themselves  are  quite  mature  with  regard  to  tool  support,  but  the
interface between both requires significant manual effort to establish [1][10]. This
applies even more strongly if the hardware contains IP cores, as these often feature
complex functionality and interfaces. The challenges the designer has to cope with
include  large  system-specific  parameter  sets  that  span  a  huge  space  of  possible
combinations, not all of them legal. While configuration management is already well-
explored [7][8][9], this paper concentrates on HW/SW interface design.

Two aspects play key roles in interface design. First, the interface functionality
itself  has  to  be  partitioned  between  HW  and  SW realizations.  Second,  concrete
interface mechanisms and protocols must be determined (e.g., physical connections,
address ranges, transfer modes, device drivers, etc.). Both of these issues require the
designer to explore a large design space, a time consuming and sometimes tedious
task despite initial efforts at tool support [3].

This work focuses on the latter aspect in the context of using an ANSI C language
description to embed, compose and interact with IP cores. ANSI C has been chosen
as this work is part of larger project dealing with automatic HW-SW partitioning and
C-to-HW compilation [4][5],  enabling pure SW developers inexperienced in HW
design to benefit from hardware acceleration in the context of adaptive computers.
Different  from building  SoC by  connecting  IP  cores  and  processors  via  on-chip



buses,  a  reconfigurable  computer  offers  core  integration  directly  into  the  custom
datapath.  As  a  solution,  we  propose  the  Parametric  C  Interface  For  IP  Cores
(PaCIFIC). It establishes an automatic design flow presenting convenient, simple C
interfaces (function prototypes) to a software programmer. Our approach hides the
formal  descriptions  of  IP-  or  platform behaviors  and  interface  characteristics  by
encapsulating  them  together  with  other  IP  configuration  data  in  a  dedicated
repository [9].

2 Related Work

Tomiyama et. al. [2] compare several Architecture Description Languages (ADL)
and determine the characterizing properties to be behavior- and structure description.
They  demand  an  explicit  behavior  description  of  processors  for  better  compiler
generation. However, they consider synthesis-based ADLs or Hardware Description
Languages (HDL) neither sufficiently easy-to-use nor flexible enough for this task.
Balboa  [3]  is  a  HW/SW codesign  framework for  system models.  It  abstracts  IP
interfaces in a two-fold intermediate layer consisting of a Component Integration
Language (CIL) and the Balboa Interface Description Language (BIDL) providing
automatic  data  type  matching  and  interface  generation.  The  IP  behavior  is
implemented as C++ models. The CoWare N2C suite [10] contains a set of interface
behavior  descriptions  expressed  as  prototypes  or  templates  specialized  in  many
detailed descendants. Despite their great number, the behavior descriptions are not
universal and cannot replace a behavior description language. Handel-C [11] is an
extension to the C language with explicit parallelism, hardware data types and inter-
thread communication channels based on the model of Communicating Sequential
Processes (CSP) [13].  SystemC and Synopsys  Behavioral  Compiler  both provide
abstractive  interface  modeling,  but  the  hardware  extensions  of  SystemC  are  not
accepted  by  the  software  community,  even  less  so  the  HDL  input  required  by
Behavioral Compiler. Carloni et. al. [16] construct an interface mechanism based on
latency  insensitive  protocols.  Thronicke  [7]  and  Zeller  [8]  present  configuration
management methods from hard- and software domains. At present, there seem to be
no attempts to combine configuration management and ADLs, although this would
appear advantageous when building systems of complex IP cores and software.

3 Problem Description

Consider  a  scenario  with  two  IP  cores  which  should  be  arranged  forming  a
pipeline. Assume that each core has one input and one output interface.



Fig. 1. Hardware pipeline used by software

As shown in Fig. 1, the data path comprising both cores is supposed to be used
from a software description that also sources and sinks the data. A natural approach
for plain software would consider the two IP cores to be C functions, leading to the
following code:

int *indata, *outdata, *intermediate;
for (n = 0; n < 64; n++) {
  compress (indata++, intermediate);
  crypt (intermediate++, outdata++);
}

From  such  a  code  description,  the  HW  pipeline  shown  in  Fig.  1  should  be
automatically  inferred.  This  requires  additional  information  about  the  hardware
“functions”  compress and  crypt.  The software developer should not have to be
aware of the actual mechanisms involved in realizing the structure.

To this end, several issues must be addressed when dealing with hardware embedded
in a software description:

• Recognition of IP cores
Since C cannot distinguish between hardware and software, function calls aiming
at IP core instances have to be detected somehow.

• Low-level interface control
In contrast to HDLs, plain C has no notion of timing- or cycle-accurate execution
schedules.  Thus,  for  each  IP  core,  interface  parameters  like  signal  timing,
handshaking and bus arbitration must be provided in an external representation.

• Data transfer
There are several ways to exchange data between software and hardware. IP cores
are often programmed via register files. Thus, a Programmed I/O (PIO) mode is
mandatory in this case. On the other hand, this is highly inefficient for the large
data  sets  which  are  commonly  processed  by  complex  IP  cores  (video,
networking).  In  these  cases,  Streaming  I/O  (SIO)  mechanisms  are  generally
employed, often assisted by rate matching and buffering using FIFOs. We will
refer  to  such  a  setup  as  a  stream engine.  For  each  use  of  an  IP  core,  the
appropriate transfer method used has to be determined based upon data-traffic
statistics and interface descriptions delivered by the IP provider.

• Hardware events
Some transactions are initiated not by the software, but by the IP core, e.g., the
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acceptance to process the next data block. Asynchronous events such as interrupts
or error notifications are beyond the semantics of a C function. The functional
synchronization, such as the indication of the current state of a hardware function,
must be realized, for example, to determine the end of a C function call (=IP core
execution) and proceed with the rest of the program.

4 Proposed Solution

PaCIFIC consists of rules for an idiomatic programming style which must be used
when embedding IP cores in a C source program, and interface control semantics
which describe the interface behavior of an IP core (see Fig. 2). To this end, PaCIFIC
includes  a  data  model  and  human-readable  description  language  for  the
characteristics of individual IP blocks as well as entire platforms. In this paper, we
will only concentrate on the scope of IP blocks. All components are tied together in a
number  of  dedicated  compiler  passes  that  perform  the  necessary  analysis  and
synthesis steps for both hard- and software. These extra steps access the PaCIFIC
descriptions to find idiomatic HW function calls in the C source program. For the
first practical realization, the Compiler for Adaptive Systems (COMRADE) [4][5]
will act as the host compiler. PaCIFIC enables COMRADE to access and integrate IP
cores  which  are  too  complex  to  be  generated  automatically  from  a  software
description,  especially  if  they  are  hand-optimized.  For  brevity,  the  details  of
PaCIFIC's integration into COMRADE have to be omitted.

Fig. 2. Design flow with PaCIFIC

The data models and representations are based on the study of more than thirty
commercial  IP  blocks,  that  were  classified  using  the  attributes  of  the  PaCIFIC
interface template [12]. The aim was the capability to describe all of the IP cores'
interface semantics with the existing attribute catalog. The majority of the evaluated
cores belong to the domains of multimedia and networking. The first cores generally
presented a data path oriented interface, with the video or audio stream processing
being the main task. In contrast, the networking IP cores employed a processor-based
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register interface. More complex IP blocks even use multiple different interfaces of
both kinds.

5 Hardware Interface Description

The PaCIFIC interface description [12] is used to define the static properties for
all  IP interfaces as well  as the dynamic flow of the interface protocols  based on
synchronous  logic  operating  without  a  central  flow  control  authority.  As  usual,
properties are expressed as attributes and values. Some of the many defined attributes
are:

• Identification (class, type, version, name).

• Auxiliary information (author, comments).

• Port definitions (transaction type, direction, width, associated clock, abstract data
type,  associated  address,  handshaking  protocol,  data  traffic  statistics,  bus
arbitration).

• External resources required by the IP core and their allocation modes (shared,
exclusive,  persistent).  This  might  include  external  memories  or  special  I/O
requirements (e.g., access to multi-Gbps transceivers).

Port transaction types and handshaking protocols will be examined in more detail
in Section 5.1. A fragment of an interface template for the crypt IP core is shown
below:

Example: Part of PaCIFIC Interface for the crypt IP

interface crypt
  type:    custom
  version: 1
  port INDATA
    transaction: data
    direction:   in
    width:       32
    sequence repeat: inf
      bigendian: 32 bit signed
    end sequence
    enableout:   name ACK_OUT offset 0 latency 0
  end port
  port ...
...
end interface

The abstract data type defined by the sequence block of the example (here just a
single scalar integer), plays a central role in the data exchange between software and
hardware. It arranges the nature, order and count (repeat) of the data items that are
transferred  over  the  port  or  bus.  Every  sequence  block  corresponds  to  formal
parameter of the fictitious C function representing the IP core.

Interface templates can be used to group and reuse the same or similar interfaces
in a fashion analogous to the classes and inheritance of object-oriented programming.



5.1 Interface Protocol Description

The fundamental interface flow control mechanism in PaCIFIC is a handshaking
scheme  which  consists  of  an  incoming  and  an  outgoing  signal  per  port.  For  an
outgoing signal, the asserted state (selectable as high or low) means that the IP block
is ready to consume data (on an input port) or that data is waiting to be fetched (on an
output port). The incoming signal is the outgoing signal from the connected port at
the other end of the communication. It is not necessary to specify both signals, a one-
way handshake  is  possible  as  well  as  no handshake.  A transaction is  considered
complete when all specified handshake signals are active at a clock edge. If both
signals are specified, it  is illegal to reset the first active signal before the second
signal has been activated. For all handshakes, a time offset or initial latency with
regard to another handshake may be specified. Additionally, an interrupt semantic
can be selected for the handshaking signals. This is useful if no actual data transfer is
required during the transaction, e.g.,  to indicate that data must be fetched from a
mailbox register.

When  such  static  interface  properties  no  longer  suffice  to  describe  the
characteristics of an IP core's interface, an enhanced version of the FLAME UCODE
notation is employed [6] to describe dynamic behavior. A UCODE block is a list of
statements most of which are executed sequentially. It represents the state machine of
an interface controller. An excerpt of the UCODE statements is shown below:

• The level statement asynchronously sets ports to the values given as arguments
of the form port=value.

• The posedge statement is similar to level, but operates synchronously with a
rising clock edge.

• The continue statement takes three kinds of parameters: an optional timeout:
n,  optional  error:  port=value expressions  and  normal  port=value
expressions  which  are  interpreted  as  conditions.  The  first  two  branch  to  the
exception block either if all error conditions are true or the timeout in clock
cycles has expired. If no timeout or error occurs, the control flow is halted until
all normal continue conditions are valid. As stated in [6], multiple conditions in
the  same  continue statement  are  logically  ANDed,  multiple  successive
continue statements are ORed. The asynchronous continue statement can be
synchronized by a following posedge.

• The exception block, if present, is located at the end of the UCODE block. It
marks the branch target for all error and timeout clauses and puts the interface
or IP block into a well defined error state. The normal control flow terminates, if
the exception block or the end of the UCODE block is reached.

• The mandatory transfer n name block represents the transfer of n sequences
to port  name,  with  the  nature  of  the  sequence  being  defined  in  the  PaCIFIC
interface  description.  Without  a  sequence  description  on  a  port,  transfer
indicates  n scalar  transfers  using  the  full  port  width.  It  acts  as  a  loop in the
UCODE control  flow. Each iteration is triggered by the handshaking protocol
defined for the port.



6 Software Interface Description

The last  sections dealt  with the hardware realization of the interface to the IP
cores. In this section, the corresponding software mechanisms will be examined.

From  the  study  of  multimedia  IP  cores  it  is  obvious,  that  a  powerful  data
streaming service is needed to source and sink the data path interfaces of the IP. The
stream engine fetches and stores data from respectively to shared memory, which is
accessible to the SW running on the CPU. The start address of the memory range to
be streamed can be expressed as a pointer to C structures reflecting the composition
of the sequences defined in a PaCIFIC interface.

In all cases, the IP cores also require programming (e.g., for initialization) using a
register interface. This can be realized by simply mapping the registers into a SW
accessible memory region (but not necessarily the main memory space).

To recognize the actual  IP core embedding and establish both communication
methods,  an  idiomatic  C  programming  style  is  required:  Only  two  modes  of
instantiating IP cores from C are supported by PaCIFIC, but they are sufficient to
cover all interface types under discussion.

First, there is the fully automatic interface generation, which results in the creation
of read and write  primitives  for  access to the ports  of the IP core in both direct
(register) and streaming fashions. This method works from the PaCIFIC interface
definition, the IP designer (or more precisely, the author of the PaCIFIC description)
does not have to provide any additional data. However, the SW has to explicitly call
the primitives in the required order to actually get the IP core to perform the desired
function.

Second, there are functions which atomically perform complex operations without
requiring  incremental  prodding  by  a  SW  program.  For  the  realization  of  these
monoliths, the IP designer has to supply an algorithmic description of the control and
data patterns that must be applied to the interfaces of an IP core for the required
function. The monoliths are then generated automatically and their call  resembles
conventional C library functions (all individual control steps have been hidden and
implemented automatically).

Note that POSIX threads still work with PaCIFIC enabling parallel execution of
HW and SW. This can be beneficial when calling data-intensive IP cores, e.g., while
the HW is still running, the SW prefetches the next data block into memory and
writes processed data to disk.

6.1 Primitives

Consider an input port  without an associated address  that  is  32 bits  wide (cf.
example in Section 5). For this case, the C function write_indata is generated. It
writes  32-bit  integers  (sequence  bigendian: 32 bit signed)  and terminates
data dependently (repeat: inf):

void write_indata (int *data);



Unrelated to the previous example, an output port with an associated address that
delivers a sequence of composite data items (here mapped to the  struct comp)
produces the following function:

void read (int address, struct comp *data);

If the  repeat value in a sequence definition equals one, SW wrapper functions
may be used to eliminate the unwieldy pointer in favor of just passing scalar data.
Primitives are most suitable for use with simple register- or memory-style interfaces.

6.2 Monoliths

Due to the strictly sequential semantics of C, it is not possible to directly describe
pipelined accesses using primitives.  However,  this is achievable using monoliths.
The  example  below reconsiders  the  compress-crypt  scenario  from Section 3  and
describes the underlying control  protocol for  the behavior “encrypt” in PaCIFIC-
extended UCODE [6] (see also Section 5.1).

behavior encrypt
proc crypt(plaintext, ciphertext)

; load key
posedge LOAD_KEY=1
        KEY=10027821 ; fixed key
posedge LOAD_KEY=0

; process single data item
transfer 1 INDATA
  level    INDATA=plaintext
           ACK_IN=1
  continue timeout: 16
           error: INIT=0 ACK_OUT=1
  posedge  ciphertext=OUTDATA
  level    ACK_IN=0
endtransfer INDATA

; wait for end of pipeline flush
exception
continue INIT=1
; execution terminates here
end behavior

The function prototype in the proc statement corresponds to the C function, with
variables being passed by reference. Fig. 3 displays the signal timing described by
the transfer block above with INIT := 1.

The  following  sequence  is  defined  in  the  PaCIFIC  specification  for  the  port
INDATA:

; data
sequence
  bigendian 32 bit signed
endsequence

From this description, the  crypt function in the example of Section 3 can be
generated. The function terminates after encrypting one data word from the memory
pointed to by plaintext and delivering it to *ciphertext:

crypt(int *plaintext, int *ciphertext)

Fig.3. Signal timing for the crypt IP



7 Experimental Results

To evaluate the feasibility and efficiency of the PaCIFIC approach, the Xilinx
High-Performance 16-Point Complex FFT/IFFT [14] from the Core Generator was
coupled to an ANSI C program applying the PaCIFIC algorithms manually, since an
automatic tool flow is not yet available. The FFT expects data to be continuously
streamed to its input buses as well as from its outputs. For simplicity, the 16 bit real
and imaginary buses are combined to 32 bit buses carrying complex numbers. The
output data is available after an initial latency of 82 cycles. To efficiently source and
sink data, two stream engines are employed with a FIFO capacity of 256x32 bit each.

The test platform was an ACE-V card [15]. The relevant platform hardware used
in this  scenario was a microSPARC IIep processor at  100 MHz with 64 MB of
DRAM and a Virtex 1000 -4 FPGA. The microSPARC accesses the FPGA via PCI
and a PLX PCI9080 local bus bridge. For comparison, the FFT was exercised on a
second test platform, an ADM-XRC card attached via PCI to a standard PC (AMD
Duron 800 MHz, 256 MB SDRAM). The ADM-XRC is a subset  of  the ACE-V
providing the same Virtex FPGA and PLX local bus bridge.

The C program executed by the processor reads the source data from a file into the
DRAM, calls the FFT hardware implemented on the FPGA and finally writes the
result back to disk:

int main(int argc, char* argv[]) {
  FILE* infile, * outfile;
  int* dram_in, * dram_out;

  infile   = fopen("time.dat", "r");
  outfile  = fopen("freqspec.dat", "w");
  dram_in  = calloc(16384, sizeof(int));
  dram_out = calloc(16384, sizeof(int));
  fread (dram_in, sizeof(int), 16384, infile);
  vfft16(dram_in,  dram_out);
  fwrite(dram_out, sizeof(int), 16384, outfile);
...
}

The FFT logic is sourced and sinked by two stream engines co-located on the
FPGA which access the DRAM in bus master mode. The naive approach without
PaCIFIC would require to set up the stream engines and the control signals for the
FFT manually, which PaCIFIC combines in one C function call.

After application of the PaCIFIC algorithms, the software part was compiled using
gcc, while the resulting RTL description for the stream engines and interface control
logic was synthesized with Synplify 7.3.3. It  was subsequently mapped with ISE
6.2.01i,  integrating  the  FFT  core  netlist  underway.  The  achievable  clock  speed
without optimized floorplanning for the mapping results in Table 1a is 27 MHz.

Table 1. FFT mapping results (a) and performance results (b) with PaCIFIC



a) Area
Slices

Total
V1000

BSR* Total
V1000

FFT
S/I*

Sum

1386
1385
2771

11%
11%
22%

0
4
4

0%
13%
13%

*S/I: Stream engines and interface
control; BSR: BlockSelectRam

Table 1b shows the performance results for the FFT processing 4096 words on
both ACE-V and ADM-XRC/PC at 27 MHz FPGA clock. The time spent in software
processing  is  not  considered here  since it  depends  mostly  on  the  host's  file  I/O
capabilities  rather  than PaCIFIC interface design assuming that  a naive approach
would also access memory in master mode.

8 Conclusions and Future Work

We presented PaCIFIC, a strategy for using complex IP cores from within ANSI
C programs as seamlessly as pure C software functions. The HW-specifics unfamiliar
to  a  SW developer  are  encapsulated  in  the  PaCIFIC framework.  Instead,  the  IP
provider  supplies  the  details  required  for  core  integration  as  a  machine-readable
description. The HW/SW interfaces are then generated automatically without user
intervention, thus raising design productivity by closing the gap between the vertical
hardware and software design flows.

This approach applies not only to COMRADE or the specific domain of adaptive
computing  systems,  but  generally  to  all  HW/SW  co-design  environments.  The
unified  notation  for  IP  configuration  and  interface  protocol  description  enables
(semi-)  automatic  design  composition.  Reusable  interface  descriptions  allow  the
separation  of  interfaces  and  implementation  details.  Although  most  ideas  we
presented are known separately, their combination catalyzes a new and easy-to-use
HW/SW codesign flow. Hence, PaCIFIC is applicable to the entire spectrum of SoC,
platform-based and derivative designs.

Our future work will concentrate on the actual implementation of tool support for
PaCIFIC within COMRADE.
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