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ABSTRACT
We present experimental evidence that multiple compute-units, com-
piled from sequential high-level language input programs, can be
merged into a reduced number of configurations for a reconfig-
urable fabric (such as a modern FPGA), thus significantly reducing
the reconfiguration overhead. For cases requiring multiple config-
urations, both heuristical and exact algorithms to solve the config-
uration merging problem are described.

1. INTRODUCTION

Significant effort has been invested in the research on and
the development of compilers for adaptive (reconfigurable)
computing system (ACS) [1] [2] [3] [4] [5]. These tools
aim to allow the programming of both the fixed-structure
(software-programmable processor) and the variable-struc-
ture compute unit (reconfigurable device) of an ACS from a
conventional high-level language, instead of the hardware-
centric descriptions (HDL or even schematics) that are com-
monly used today.

The more powerful of these ACS compilers also automati-
cally partition the input application between hardware and
software execution [1] [2] [3]. In this process, computation-
intense kernels are extracted from the description and map-
ped to dedicated compute units (CU) implemented on the
reconfigurable fabric (rF).

Orthogonal to this flow is the manner, in which the indi-
vidual CUs are scheduled onto the rF. The solution to this
problem is highly dependent on the nature of the rF and af-
fected by characteristics such as reconfiguration time, partial
reconfigurability, the depth of a reconfiguration cache, and
the available rF area.

For example, the Garp-CC compiler, targeting the Garp ACS
[1] scheduled a single CU at-a-time onto the rF. However,
due to the presence of a configuration cache, the rF could

switch very quickly (order of tens of clock cycles) between
a limited number of CUs. Other approaches target devices
that are quickly partially reconfigurable by examining online
scheduling and placement techniques [6] [7]. Here, multiple
CUs are scheduled dynamically onto the rF, possibly even
observing quality-of-service constraints.

However, most commercially available devices have neither
a configuration cache nor rapid reconfigurability. Partial re-
configurability, if it is offered at all, is often still slow rela-
tive to the system clock and encumbered by additional limi-
tations (lack of tool support, imposes placement constraints,
etc.). Thus, our work concentrates on optimizing the com-
plete reconfiguration approach.

In the next sections we will discuss both previous work as
well as our current research to exploit high-level language
programming of an ACS even under these adverse condi-
tions (no on-chip configuration cache, only full reconfigura-
tions supported).

2. NOVEL RECONFIGURATION STRATEGY

The compiler COMRADE [8], currently under development,
is a spiritual successor to Nimble [2]. Like its predecessor,
it can also target commercially available FPGAs as rF.

Nimble dynamically scheduled reconfigurations at run-time.
The decision whether to realize a kernel as CU, or keep it in
software, was made at compile time. Each CU was imple-
mented as a separate configuration bitstream. However, of-
ten, a single reconfiguration obliterated the entire speed-up
achievable by executing a kernel as CU on the rF.

In order to alleviate this excessive configuration overhead,
a different reconfiguration strategy is employed in COM-
RADE: Practical experiments, both in COMRADE and in
Nimble, determined that the largest CUs practically extrac-
table from sequential programs written in the C program-
ming language have around a hundred operators.



Assuming that no bit-width reduction occurs, most of these
are 32b wide (C’s native integer data type). In the common
fine-grained FPGA architectures (based on 4-input look-up
tables plus optional flip-flops), many of these operators will
require just 32 cells (possibly extended with dedicated carry-
logic for fast arithmetic). Thus, most CUs require fewer than
3000 cells on the rF.

Since even medium-sized low-cost FPGAs currently have
more than 17,000 cells available, the traditional of paradigm
of “one CU, one configuration”, followed since Garp-CC, is
extremely wasteful today.

In our new strategy, each configuration can now hold mul-
tiple CUs. The effect is that of a configuration cache: The
rF can now quickly switch between all of the CUs packed
into the current configuration. The total silicon area effi-
ciency of this approach is of course less than that of a dedi-
cated configuration cache (which only has to replicate con-
figuration SRAM cells). However, an advantage lies in the
variable granularity of the “cache entries”: When using the
rF area in this manner, the number of cacheable CUs is in-
versely proportional to their size. Thus, a large number of
small CUs can be supported as well as a small number of
large CUs. This trade-off is not possible with most of the
proposed configuration caches, which support only a fixed
number of cached full-size configurations.

The back-end tools of the compile flow have to be enhanced
to accommodate this new use of the rF resources. In our
case, this enhancement consists of a specialized floorplan-
ning tool that places all of the individual CUs in a regular
fashion on the rF, and also synthesizes/places multiplexers
and their associated decoders on-the-fly to connect the indi-
vidual CUs to the shared infrastructure on the rF (memory
interfaces, processor interface and control logic, etc.).

The focus of the following discussion, however, are the al-
gorithms to determine which CUs to pack into which con-
figurations, replicating CUs as necessary to reduce config-
uration times even further. We will present both a heuristic
for quickly generating estimates as well as an exact method
for determining optimal solutions.

3. NOTATION

For the following discussion, we will use these notational
conventions:

• P = {p1, p2, . . . , pn} is a set of n CUs.
• s : P→ N is the size of the CU in rF resources.
• K is the total number of resources available on the rF.
• C = {C ∈ 2P : ∑p∈C s(p)≤K} is the set of all feasible

configurations
• C ′ ⊂ C is the set of sequence-maximal feasible con-

figurations (see Section 5.2).

• T = (pi, p j, . . . , pk) ∈ Pm describes the dynamic exe-
cution order of the CUs as a sequence of m steps.
• R = (Ci,C j, . . . ,Ck) ∈ C m is the reconfiguration se-

quence. Ri ∈C is the configuration that must be loaded
onto the rF before the CU Ti can be started.

• Ĉ = {C : C ∈ R} is the set of unique configurations
used to realize R.
• A reconfiguration occurs each time Ci 6= Ci+1, for 1≤

i < m.
• ri ∈ N is the number of reconfigurations that have to

be done if execution starts with the trace step Ti. Thus,
r1 indicates the total number of reconfigurations for
the entire trace T .

4. HEURISTICS

4.1. Core data structures

The heuristics described here do not require dynamic ker-
nel execution sequence data (such as Nimble’s LEP) on the
input program when assembling CUs into configurations.
They are thus independent of the complexity (trace length
m) of the application’s run-time behavior. Instead, our main
data structure, the Global CU Sequence Graph (GCSG), is
based on a static view of the program. The GCSG models all
possible execution sequences of CUs, globally across the en-
tire program (crossing procedure call boundaries in the pro-
cess). Thus, it is more detailed than the hierarchy-focussed
view in Nimble’s representation of the static program, the
LPHG.

The nodes GV of a GCSG G are the CUs P (which in COM-
RADE consist only of loops), while the directed edges GE
indicate execution (control) flow between them. The GCSG
is built hierarchically, flattening the program structure in the
process. Thus, edges may initially be labelled with a proce-
dure call, which is resolved during a later pass. An edge is
inserted between two nodes if, at any time, execution passes
from the origin to the destination CUs in the static program
structure. Cycles may occur when a procedure is called from
multiple locations in the input program.

Figure 1 illustrates the transformation from input program
(a) via the intermediate hierarchical GCSG (b) to the final
fully flattened GCSG (c). The nodes in this final GCSG are
then annotated with their resource requirements on the rF
and their execution factor e(l). The latter is the relative ex-
ecution frequency as determined by dynamic profiling, de-
fined as e(l) = c(h(l))/maxi∈I c(i).

where c is the execution count (as determined by dynamic
profiling) of instruction i, I are the instructions of the entire
program, and h(l) gives the header (entry) instruction of CU
(loop) l.
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Fig. 1. Building the Global CU Sequence Graph from input
program

MERGECUSINTOCONFIGS(G, Ĉ )

1 Ĉ ← /0
2 for C ∈ C : ∀p ∈C are nodes on a natural loop in G do
3 Ĉ ← Ĉ ∪{C}
4 Ĉ ← Ĉ \{C ∈ Ĉ : C ⊂C′∧C′ ∈ Ĉ }
5 for C ∈ Ĉ do
6 while ∃p ∈ u(VG, Ĉ ) : (q, p) ∈ EG∧q ∈C

∧s(C)+ s(p)≤ K
∧∀p′ ∈ u(VG, Ĉ ) : e(p)≥ e(p′) do

7 C←C∪{p}
8 for p ∈ u(VG, Ĉ ) : (q, p) ∈ EG∧q ∈⋃

C∈Ĉ C do
9 GROWCONFIGAROUNDCU(p,G, Ĉ )

10 for p ∈ u(VG, Ĉ ) do
11 GROWCONFIGAROUNDCU(p,G, Ĉ )

Fig. 2. Configuration merging heuristic

4.2. Algorithm

Fundamentally, a clustering algorithm (shown in Figure 2)
is used in the heuristic. For brevity, we define the set of
CUs from VG not yet merged into a configuration in Ĉ as
u(VG, Ĉ ) = VG\

⋃
C∈Ĉ C.

The operation proceeds in three stages: First, maximal con-
figurations are built which cover all natural loops [9] in the
control flow (Lines 1 to 4).

By using this dominator-based natural loop concept as our
detection criterion, we are looking for correctly nested loops
that actually have a single header followed by a body. If we
were just determining cycles in the graph, we could stum-
ble into cyclic sub-graphs that do not have the proper loop
structure just described.

Then, CUs not part of a natural loop, but adjacent to an al-
ready covered one, get included into the loop’s existing con-
figuration in order of the highest execution factor, as long
as they fit on the device (Lines 5 to 7). At this point, the
loop-based configurations can no longer be grown, and new
configurations are being created. This is done in two sub-
steps: In Lines 8 to 9, the process is started at CUs that
are executed immediately after one of the already-processed
loops. For pathological cases (unrelated loops exceeding the
device size), a last pass collects all CUs that are not adjacent
to loops in the control flow (Lines 10 to 11).

The manner in which new configurations are created is shown
in Figure 3: They are grown around a seed CU, with the
growth proceeding alternatingly between the CUs that are
following just the seed CU in the control flow, and those
CUs following the entire configuration-under-construction
in the control flow. In both cases, the candidate CU with the
highest execution factor, but still fitting on the rF, is added
first. Figure 4 shows a sample GCSG and the result of apply-
ing the heuristics for a device size of K = 400 to assemble
the |P|= 7 CUs into |Ĉ |= 3 different configurations.

5. EXACT SOLUTION

To verify the quality of these heuristics, we also developed
a number of methods to calculate the optimal solution to the
problem. After initial attempts using ILP-based methods,
we formulated a solution as a dynamic program. While the
heuristics presented in the last section are still faster in some
cases, the run-time of the exact method is still sufficiently

GROWCONFIGAROUNDCU(p,G, Ĉ )
1 C← /0
2 repeat
3 C′←C
4 C = C∪{q ∈ u(VG, Ĉ ) : (p,q) ∈ EG

∧s(C)+ s(q)≤ K
∧∀q′ ∈ u(VG, Ĉ ) : e(q)≥ e(q′)}

5 C = C∪{q′ ∈ u(VG, Ĉ ) : (q,q′) ∈ EG∧q ∈C
∧s(C)+ s(q′)≤ K
∧∀q′′ ∈ u(VG, Ĉ ) : e(q′)≥ e(q′′)}

6 until C = C′

7 Ĉ = Ĉ ∪{C}

Fig. 3. Growing a new configuration around a seed CU
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MINIMALNUMBEROFRECONFIGURATIONS(T,C )
1 for i← m downto 1 do
2 ri← ∞
3 for C ∈ C : Ti ∈C do
4 j← i
5 repeat
6 j← j +1
7 until j > m∨Tj /∈C
8 if j > m then
9 Ri←C

10 ri← 1
11 elseif ri > r j +1 then
12 Ri←C
13 ri← r j +1

Fig. 5. Calculating the minimal number of reconfigurations

short to occur within the hardware/software partitioning step
of the compile flow.

5.1. Minimizing the number of reconfigurations

For a given trace T of length m, we want to determine a se-
quence R = (Ci,C j, . . . ,Ck) ∈ C m of feasible configurations
that realizes T . The optimal reconfiguration sequence R will
have a minimal number of reconfigurations across the entire
trace T . Thus, r1 is to be minimized. The solution to this
problem is formulated as a dynamic program [11], shown in
Figure 5.

The correctness and optimality of this algorithm can be pro-
ven by induction.

1. Consider a trace of length 1. Any configuration con-
taining T1 is an optimal configuration sequence.

2. Assume correctness and optimality for a trace of length
t−1.

3. Consider a trace of length t that has been constructed
by prepending a single CU Ti to an existing trace of
length t−1. To compute an optimal configuration for
this new trace, it suffices to examine all configurations
C containing Ti. Such a configuration C possibly also

SEQUENCEMAXIMALCONFIGURATIONS(T,C ′)
1 C ′← /0
2 for i← 1 to m do
3 C← /0
4 j← i
5 while Tj ∈C∨∑p∈C s(p)+ s(Tj)≤ K do
6 C←C∪{Tj}
7 j← j +1
8
9 C ′← C ′∪{C}

Fig. 6. Building C ′ from all sequence-maximal feasible sub-
sets

contains one or more of the CUs that follow Ti in the
trace. Then let j be the index of the first trace element
not in C. Two cases have to be treated:

(a) ∀ j ∈ {2,3, ..., t} : Tj ∈C⇒ ri = 1. Here, C con-
tains not only the new Ti, but also all other CUs
in the trace. Thus, the number of reconfigura-
tions from the new CU at position i to the end of
the trace remains 1.

(b) j ≤ t ∨ ri > r j + 1⇒ ri = r j + 1. Now C con-
tains the CUs up to, but excluding Tj. Thus, a
reconfiguration has to occur at this break. The
total number of reconfigurations from i to the
end of the trace is thus one larger than the recon-
figurations from j to the end of the trace. Since
j ≤ t−1, this is optimal.

The time complexity of the algorithm is O(m2|C |), since
the membership tests in Lines 3 and 7 of Figure 5 can be
performed in constant time.

5.2. Restricting the search space

So far, we have used as search space the set of all feasi-
ble configurations C = {C ∈ 2P : ∑p∈C s(p)≤ K}. Unfortu-
nately, this set is far too large and can only be generated in
exponential time. While the size of the set can be reduced
trivially by removing all non-maximal sets (sets that are sub-
sets of other sets), the generation time remains exponential.

However, since we are specifically optimizing for the mini-
mum number of reconfigurations, we can restrict the search
space to just the sequence-maximal feasible configuration
subsets, named C ′ (Figure 6).

Clearly, the number of sequence-maximal feasible subsets is
bounded by m, with the running time of the algorithm being
polynomial in m.

This restricted search space does not degrade the quality of
the solutions as long as we are only optimizing for the min-
imum number of reconfigurations r1 (our current aim). If



we were also aiming to minimize the number of different
configurations |Ĉ |, this would no longer hold true, though.

Operating on C ′ instead of C , the running time of the algo-
rithm in Figure 5 is now bounded by O(m3).

Lack of space here precludes the discussion of additional
optimization techniques, such as compressing the execution
traces and splitting the trace at suitable breakpoints, which
can reduce the run-time even further. For consistency, the
effect of these advanced techniques will not be shown in the
experimental evaluation below.

6. EXPERIMENTAL RESULTS

Table 1 presents the results when applying both the heuristic
and the exact solution to the configuration merging problem.
We applied the algorithms to a number of real-world appli-
cations and one synthetic benchmark. The CUs were gen-
erated by the COMRADE compiler from C-language input
programs, targeting as rF a Xilinx Virtex-like architecture
for K = 5120, and an XC4000-like architecture for other
values of K. K is given as CLBs, where a CLB consists of
two logic cells. Note that COMRADE attempts to exploit
larger devices by building larger CUs (holding more paths
through the kernels), but currently does not optimize the re-
configuration schedule (the subject of this work).

For comparison, we have also shown the absolute minimum
number of configurations to hold the CUs in P, regardless of
the number of reconfigurations required. This was optimally
calculated using an ILP-based bin packing formulation [10].
All run-times are given in seconds, rounded to 1/100s, on a
900 MHz UltraSPARC-III+ CPU.

The effectiveness of the methods presented here can be de-
termined by comparing the length of the execution trace m,
which would be the number of reconfigurations in the tra-
ditional approach, with the reduced numbers in the columns
‘Min r1’. In many cases, the results are obvious (all CUs
could fit into a single rF configuration, thus requiring only a
single reconfiguration for the application). However, even in
more complex cases (CUs exceed rF area), significant sav-
ings can be realized. E.g., for K = 1920 in the Versatility
application, instead of 5381 reconfigurations of 8 different
configurations, now only four reconfigurations of four con-
figurations are optimally required. While the heuristic re-
sult requires an additional reconfiguration, this calculation
required only a fraction of the computation time (less than
1/100s) of that for the optimal solution. Note that the heuris-
tic does not duplicate CUs, thus s(Ĉ ) = s(P).

Furthermore, it becomes clear that the current COMRADE
approach of greedily moving ever larger parts of the input
program to the rF needs to be guided by the configuration
merging/scheduling techniques introduced here. Since they

are sufficiently fast (especially the heuristic), they can be
employed in the hardware/software partitioning step to trade-
off somewhat smaller CUs (e.g., losing parallelism) with
significantly reduced reconfiguration overhead.

7. CONCLUSIONS

We have demonstrated a novel approach to use the increas-
ing number of resources on current rFs to significantly re-
duce reconfiguration times by merging multiple (possibly
duplicated) CUs into larger configurations. To this end, we
have described both a fast heuristic independent of the (pos-
sibly very long) run-time execution flow of the input pro-
gram, as well as an optimal solution that does take the flow
into account while also having polynomial run-time. Es-
pecially the heuristic is well applicable for use within the
hardware/software partitioning step of the compile flow, and
could significantly reduce reconfiguration times by guiding
the kernel selection/synthesis.
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