COMRADE - A COMPILER FOR ADAPTIVE COMPUTING SYSTEMS USING A NOVEL
FAST SPECULATION TECHNIQUE

Hagen Gddke

Integrated Circuit Design (E.L.S.)
Tech. Univ. Braunschweig, Germany

gaedke @eis.cs.tu-bs.de

1. INTRODUCTION

Several examples have shown that adaptive computers are
capable of outperforming traditional workstations in terms
of computing time as well as energy efficiency [4] [3]. De-
veloping applications for an adaptive computer, however, is
often a complex task. Hardware (HW) and software (SW)
parts as well as their interfaces have to be implemented, re-
quiring specialized skills as well as additional design time.

To overcome this dilemma, the Comrade system com-
piles full ANSI-C to combined HW/SW applications for
adaptive computers. Comrade is a third-generation tool, be-
ing based on concepts of predecessors GarpCC [2] and Nim-
ble [7]. Other high level compilers have been presented, but
none of them (to our knowledge) support compilation from
a full high level input language to combined HW/SW solu-
tions.

This paper gives an overview of Comrade’s architecture
and presents our current and planned future research.

2. COMPILER ARCHITECTURE

The SUIF2-based Comrade front-end creates a control flow
graph (CFG) as intermediate representation. Then, a HW-
SW partitioning pass identifies compute-intense kernels
(generally loops) for possible hardware realization. Com-
rade examines all reasonable partitioning combinations for
loop nests, ranging from just the innermost loops to the en-
tire loop nest. The partitioning pass considers execution
frequencies obtained by dynamic profiling, HW feasibil-
ity (floating point computations and library calls stay on
the CPU due to excessive area requirements) and estimated
speedup over the CPU. Meta information about candidate
HW operations is obtained from our generic hardware mod-
ule library GLACE [8].

Each HW kernel, potentially consisting of multiple ba-
sic blocks, is then converted to a static single assignment
(SSA) form, from which a control memory data flow graph
(CMDEQG) is extracted. A CMDFG (an example is shown
in Fig. 1b) consists of nodes for arithmetic, logic, memory

Andreas Koch

Embedded Systems and Applications Group (ESA)
Tech. Univ. Darmstadt, Germany

koch@esa.informatik.tu-darmstadt.de

access, and /O registers (for communication with the CPU),
connected by data, control and memory dependence edges.
SSA phi nodes correspond to multiplexers in the CMDFG.
The multiplexer inputs are controlled by the associated con-
dition. Note that not the beginning of a data flow path is
controlled by a condition, but its end. This is essential for
speculative computation (Sec. 3). Memory access (MA)
nodes are connected by memory dependence edges to guar-
antee correct order of execution.

From each CMDFG, a controller is generated as Verilog
module, supporting dynamic scheduling for variable latency
operators as well as speculative execution. GLACE gener-
ates an optimized pre-placed circuit for each operator node,
taking into account the exact operand bit-widths and data
types.

Multiple HW kernels can be merged into a single
FPGA configuration in order to reduce reconfiguration time
[5]. Each configuration is equipped with a technology-
independent, configurable multi-port memory access core
[6], providing cached and streaming memory accesses as
well as an interface between CPU and HW kernels.

At this point, the operation of the HW kernels can be
visualized by postprocessing the output of a Verilog simula-
tion. An automatic floorplanner back-end providing a regu-
lar layout of the various components on the FPGA is already
under development. It will complete the entire design flow,
ranging from C to actual HW/SW co-implementations.

3. FAST SPECULATION WITH CANCEL TOKENS

Speculation is a well-known method for increasing compu-
tational performance. The CMDFG in Fig. 1b reflects the
code example in Fig. la. Here, speculative computation
means that both branches of the if-condition are precom-
puted in parallel, before the actual value of the condition C
is known. As soon as C is evaluated, one of the precomputed
values for r is passed on through the multiplexer.
Unfortunately, when using this concept in loops, condi-
tionals that need a different number of cycles in each branch
of computation can lead to a mix-up of the precomputed re-



for (...){
i (c) {
tmp=x*y;
r=tmp -z
}else {
tmp =x+y;
r=tmp + z;
}
}
Loop r
]
(a) (b)

Fig. 1. Example C code and resulting CMDFG

sults of different iterations. To overcome this issue, differ-
ent approaches have been proposed. Pegasus [1] in prac-
tice requires all conditional branches to complete before the
next iteration can start. Another approach is to use sequence
tokens [9] for each precomputed value, which give a clear
mapping to the associated loop iteration. The drawback is
a greater amount of required space to save the sequence to-
kens for each basic block.

Comrade uses a novel approach: computations in non-
taken branches are explicitly cancelled. Example: Assume
that the precomputation of both branches in Fig. 1 starts be-
fore cycle 1, while ¢ is still unknown. The precomputation
of the right branch is finished after 2 cycles; the left branch
needs 9 cycles. Now, if C is ready after cycle 2, the com-
puted result of the right branch will immediately be used for
consecutive computations, while the left branch of the com-
putation for the current iteration will be cancelled. We use
special tokens, called cancel tokens, to cancel operations.
For each multiplexer, a cancel token is assigned to each in-
put port that corresponds to a non-taken branch. Cancel to-
kens move in the CMDFG backwards along data edges until
they collide with an activate token, which is the standard
type of token, representing a finished computation. Collid-
ing activate and cancel tokens vanish. In this manner, all
computations in non-taken branches are cancelled.

Using cancel tokens, our CMDFG implementations take
advantage of speculative computation while the required
storage is just a single additional cancel token bit per
CMDFG edge.

4. PRELIMINARY RESULTS AND FUTURE WORK

Table 1 shows benchmarks of two kernels: the “parallel”
kernel, which computes 50 additions per loop iteration, and

Table 1. Kernel benchmarks for the parallel kernel (100
iterations) and the adpcm kernel (100 input samples)

‘ parallel ‘ adpcm
8.4 us
46.2 us

Pentium M @ 2.13 GHz
HW kernel @ 100 MHz (sim.)

8.1 us
5.6 us

the adpcm coder (audio compression) kernel. The parallel
kernel shows the impact of parallelism on the kernel run-
time: the HW kernel is faster than a Pentium M which has
20 times the kernel clock frequency on the FPGA. For many
typical applications, however, finding sufficient ILP is more
involved. Kernels containing memory accesses (like adpcm)
are currently not executed speculatively. Here, the Pentium
still is an order of magnitude faster than the HW.

Based on our novel speculative controller model, which
enables us to explore more optimization strategies than be-
fore, we are going to examine the following approaches in
our research: parallel and multi-threaded memory accesses,
memory localization, speculative loads, use of dedicated
HW ressources (such as MAC units on recent Virtex de-
vices) and further improvements of the HW module gen-
erators (exploiting bit granularity constants and supporting
floating point operators). Another important objective is the
completion of the HW backend, enabling us to actually test
the full HW/SW co-implementation flow.

5. REFERENCES

[1] M. Budiu, S. Goldstein, “Pegasus: An efficient intermediate
representation”, Technical Report, School of Computer Sci-
ence, Carnegie Mellon Univ., Pittsburgh, USA, Apr. 2002.

[2] T. Callahan, J. Hauser, J. Wawrzynek, “The Garp architecture
and C Compiler”, IEEE Computer vol. 33(4):62-69, 2000.

[3] O.D. Fidanci et al., “Performance and Overhead in a Hybrid
Reconfigurable Computer”, Proc. 17th IEEE Intl. Parallel and
Distributed Processing Symposium, Apr. 2003.

[4] H. Géddke, A. Koch, “Wavelet-based Image Compression on
the Reconfigurable Computer ACE-V”, Proc. 14th Intl. FPL
Conf., Aug. 2004.

[5] N.Kasprzyk, J. van der Veen, A. Koch, “Configuration Merg-
ing for Adaptive Computer Applications”, Proc. 15th Intl.
FPL Conf., pp. 217-222, Aug. 2005.

[6] H. Lange, A. Koch., “Memory Access Schemes for Config-
urable Processors”, Proc. 10th Intl. FPL Conf., Aug. 2000.

[7] D. MacMillen, “Nimble Compiler Environment for Agile
Hardware”, Storming Media LLC (USA), 2001.

[8] T.Neumann, A. Koch, “A Generic Library for Adaptive Com-
puting Environments”, Proc. 11th Intl. FPL Conf., pp. 503—
512, Aug. 2001.

[9] H. Styles, W. Luk., “Branch Optimization Techniques for
Hardware Compilation”, Proc. 13th Intl. FPL Conf., Aug.
2003.



