
LOW-LATENCY HIGH-BANDWIDTH HW/SW COMMUNICATION
IN A VIRTUAL MEMORY ENVIRONMENT

Holger Lange and Andreas Koch

Technische Universität Darmstadt
Embedded Systems and Applications Group (ESA)

Darmstadt, Germany
{lange,koch}@esa.cs.tu-darmstadt.de

ABSTRACT
Adaptive computers combine conventional software program-
mable processors with reconfigurable compute units. We
present techniques that allow the high-performance real-
ization of demand-paged, virtually addressed main mem-
ory shared between both of these processing elements. Fur-
thermore, we have achieved low-latency communication be-
tween software running on the CPU and the reconfigurable
compute unit, allowing even fine-grained hardware/software
partitioning. A system-level evaluation quantifies the advan-
tages of our approach.

1. INTRODUCTION

Reconfigurable compute units (RCU) have accelerated ap-
plications from a wide spectrum of domains [1]. In many
cases, however, it has proven advantageous to combine con-
ventional software programmable processors (CPU) with a
reconfigurable compute unit. Such an architecture is often
called an adaptive computing system (ACS). Its CPU exe-
cutes performance noncritical or operating system functions,
while the RCU implements the computation kernels of an
application in a hardware accelerator (HA).

Programming an ACS still requires specialized knowl-
edge in digital logic design and processor architecture. To
ease development, considerable effort has been made in the
creation of automatic compile flows [2, 4, 5, 6] targeting
such heterogeneous computers. Ideally, such tools parti-
tion the application between the two kinds of processing
elements (PEs). System-level performance is maximized
when the communication overhead between the two parti-
tions can be minimized. Generally, there are two classes of
communications in such a setup. First, the data processed
by the algorithms must be available to both PEs. This data
is commonly located in main memory, inducing the need for
high-performance high-bandwidth memory access for both
CPU and HA. Secondly, control information is exchanged
between the two PEs. Since only few data items are ex-
changed for this purpose, high-bandwidth transfers are not

required. However, the communication latency for these ex-
changes now becomes a crucial factor and must be mini-
mized.

The computation model, which orchestrates this inter-
action between heterogeneous PEs, is highly dependent on
how well both of these communication requirements can
be fulfilled. The work described here is motivated by the
computation model used by the Comrade hardware/software
compiler [6]. That model, which was presented in greater
detail in [18], aims at fine-grained partitioning between CPU
and HA execution. In this manner, operations unsuitable
for hardware acceleration or requiring operating system ser-
vices can be handled by quickly switching execution back to
the CPU. Since the application data is kept in shared main
memory, only a limited set of live variables has to be ex-
changed between HA registers and CPU variables. We will
show that an ACS following this approach is efficiently im-
plementable in today’s technology. Since our fundamental
techniques are not hardware-specific, they are widely appli-
cable to other ACS platforms.

2. PLATFORM REQUIREMENTS

To guide the following discussion, we will now identify in-
dividual requirements on our hardware platform for actually
implementing the communication mechanisms described a-
bove. The low-latency signaling and data communication
between CPU and the HA will be referred to as R1. Effi-
cient access to the shared memory requires a common ad-
dress space (R2) to allow the exchange of pointers between
CPU and HA, and high-throughput data transfers from and
to memory for both PEs (R3). Software scheduling deci-
sions made by the operating system must be respected in
that the HA may not prevent the CPU from accessing mem-
ory (R4). This requirement is motivated by OS stability
concerns: Critical functions, such as timekeeping and I/O,
must be performed when demanded by the OS, otherwise
data loss or a system crash may occur. Finally, the presence
of an HA may not slow down the execution of software on

the CPU (R5).
Practical solutions for most of these requirements have

initially been described in [18]. In this paper, we describe
significant advances over that work, specifically in the areas
of R1 to R3. This includes improvements of pre-existing
features as well as the addition of new capabilities. As be-
fore, we take a system-level view: we consider operating
system as well as computer architecture issues. All tech-
niques are implemented and evaluated on a real hardware
platform (a Xilinx ML310 board [13] based on a Virtex II
Pro-FPGA [15] with two embedded PowerPC 405 processor
cores), running a full-scale version of the multi-user, multi-
tasking, virtual memory Linux operating system. Due to the
increasing use of Linux even in the embedded world [7],
such an architecture is of great practical interest.

3. PRIOR AND RELATED WORK

Prior work has often considered only a subset of these or
other requirements. For example, [8] focuses on ease-of-
use of CPU/HA communications by automatically mapping
the HA registers to named files in the kernel /proc file sys-
tem. While this removes the need for memory-mapping the
hardware registers, the added file-system overhead increases
latencies significantly and would violate R1 of our model.

A similar approach is described in [9], but goes further
by mapping the entire device structure at the configuration
level (CLBs, BRAMs, etc.). While this allows the exchange
of large chunks of data (by allowing the CPU direct ac-
cess to the HA on-chip memories), the file-system integra-
tion again leads to latencies inacceptable for our execution
model. None of these approaches considers the other re-
quirements R2 to R5.

[10] proposed a message-passing interface which would
allow the HA master-mode access to memory (R2), and the
underlying network-on-chip could be extended to provide
R4 (none of which is actually addressed by that work). The
technique also does not deal with R3 and R5 at all.

For a completely different perspective on R2, the Philips
SAA 7146A Multimedia Bridge [16], a chip used in many
DVB systems, contains a simple MMU which can translate
virtual addresses to physical page frame addresses if sup-
plied with a single level page table by the associated device
driver. However, this scheme is severely limited: First, the
page tables are not automatically updated by the OS kernel
whenever page allocations change, but by the device driver
(introducing additional synchronization overhead). Second,
the single level page table, stored in a dedicated 4 KB mem-
ory page, limits the virtual address space per DMA channel
to a mere 4 MB. For our scenario of HA and CPU acting as
equal peers, such a small shared memory could be realized
more efficiently using the DMA buffer/AISLE approach of
[18]. Finally, virtual address spaces in the Philips approach

are local to each DMA channel (8 in total), complicating
unified address handling even more.

R2 is also addressed by the dedicated virtual memory
window described in [3]. In this implementation, HA and
CPU access a virtually addressed shared memory area. The
CPU is signalled by the HA when the latter attempts to ac-
cess a page not present in the window, causing a virtual
memory window manager in the OS to copy the missing
page(s) between shared and main memory, thus allowing the
HA full memory access. However, the technique is limited
by the slow address translation (4 cycles per TLB access)
and the high copying overhead (up to 50% of the execution
time). Furthermore, the described implementation limits the
window size to just 16 KB, making it unsuitable for the data-
intense processing often performed by HAs.

4. HIGH-PERFORMANCE HA MEMORY ACCESS

As other reconfigurable SoCs, the Xilinx Virtex II Pro de-
vice uses on-chip busses to tie its different components to-
gether. The CoreConnect Processor Local Bus (PLB) [12]
is normally used for memory accesses. However, both Xil-
inx implementations of the CoreConnect protocol (even the
recent 128 bit version) as well as the DDR-DRAM con-
trollers have significant limitations that render them unable
to achieve the maximum performance. For our platform,
that would be 64-bit DDR-200 operation, yielding a 1.6 GB/s
transfer rate. These deficiencies are further discussed in
[17, 18].

As a solution, we proposed the FastLane high perfor-
mance memory interface (Figure 1) in [17]. It establishes a
direct connection of the memory-intense HA to the central
memory controller without an intervening PLB. By also us-
ing a specialized, lightweight protocol, we can avoid the ar-
bitration as well as protocol overheads associated with PLB.
This significantly reduces the latency between the HA core
and the memory controller, since no wrapper logic is inter-
posed between the two. Incidentally, this arrangement also
allows the HA the use of the already existing PLB slave in
the memory controller core for HA to CPU communication
(providing the foundations for R1).

To improve upon the previous results, we have created
FastLane+, enhanced over the original version by doubling
its data path width to 128 bits, still clocked at 100 MHz,
thus allowing full double data-rate operation. We achieved
this by extending the existing DDR-DRAM controller of the
EDK reference design [14].

Even with its improved performance, the new design still
enforces OS scheduler decisions at the hardware level by
never letting the HA starve the CPU from memory accesses
(R4). To this end, the CPU and other bus master devices
always have priority over the HA block, which can be ex-
plicitly designed to tolerate access delays. The arbitration

256 MB
DDR DIMM

HW Accelerator

PPC
405

PLB
Bus

PLB
Slave

DDR
Ctrl

PLB-DDR

F
as

tL
a

ne
+

1
28

 B
it

Fig. 1. FastLane+: Attaching HA directly to DDR controller

logic required is completely hidden from the HA within the
FastLane+ interface. The CPU, and other bus master de-
vices, may interrupt memory accesses initiated by the HA at
any time, while the HA cannot interrupt the CPU, and has to
wait for the completion of a CPU-initiated transfer.

5. LOW-LATENCY CPU↔HA COMMUNICATION

Adaptive computing systems combine conventional CPUs
and HAs to efficiently deliver high compute performance.
In our model of computation [18], we allow the creation of
HAs from code containing operations that cannot be effi-
ciently mapped to reconfigurable logic. This might include,
e.g., dynamic memory allocations or I/O such as a printf()
function call. Normally, the presence of these operations in
a computation kernel would prevent it from being realized
in an HA. But if our hardware/software partitioning step de-
termines that they occur sufficiently infrequently (based on
dynamic profiling) the rest of the kernel is still realized as
an HA. If these rare conditions actually arise at run-time, the
HA requests execution of the hardware-infeasible operation
as a software service on the CPU.

For high-performance, these switches should be perfor-
med with minimum latency (R1). This is easily achievable
in an embedded system running either no operating system
or only a lightweight RTOS. With the increasing complexity
of embedded systems, there is a trend to run them under full-
scale operating systems such as Linux [7]. Unfortunately,
such OSs introduce a relatively long time penalty for switch-
ing from one task to another. Interrupt handlers, which are
responsible for accepting requests from hardware devices
such as the HA, also suffer from additional switching de-
lays, making hardware/software execution switches costly
and violating R1.

We have developed hardware/software mechanisms to
achieve R1 even in such a hostile environment. To put our
work into perspective, consider that even when running a
Linux version patched for low-latency, the interrupt response
time on the ML310 platform is 62µs. The interrupt initiated
by the HA passes through numerous layers in the Linux ker-

User program

CPU

Kernel

HA

IRQ

start

live variables

sema-
phore

handler main
thread

FastPath
normal path

Registers

Fig. 2. FastPath: Low-latency SW calls and live variable
transfers

nel before it reaches the handler in the software-portion of
the ACS application. (shown as a dotted path in Figure 2).
This long overhead would allow only a very coarsely granu-
lar hardware/software partitioning.

To reduce the latency, we let the HA communicate with
the CPU using a dedicated interrupt vector of the PowerPC
405. This vector invokes a special handler that replies to
all software service requests from the HA. If required, the
execution flow (shown as a solid arrow in Fig. 2) can di-
rectly branch to a C-callback function in the user program,
which has easy access to all application data (e.g., global
variables etc.). By employing a dedicated handler, we can
significantly reduce the interrupt overhead and thus work
towards R5. The user-space interrupt handler is synchro-
nized with the main software thread using a semaphore. This
semaphore, however, is not realized using the comparatively
heavyweight semaphore mechanisms in the C standard li-
brary. Instead, to avoid memory accesses and bus contention,
it is implemented in a special CPU register not used by the
software compiler. Thus, we avoid increasing pressure on
the compiler’s register allocator. The main thread is still
controlled by the Linux scheduler, which may choose to
suspend it, thus at first glance eliminating the advantage of
the fast semaphore operation. While this could be avoided
by increasing the priority of the main thread, such broad
measures should only rarely be necessary, since the call-
back handler can execute latency-critical operations directly.
As we will show in Section 7, these combined measures,
which we call FastPath, significantly reduce response la-
tency, allowing frequent hardware/software switches with-
out increasing system load. Additionally, the interrupt re-
sponse time is nearly independent of the system load. The
new signalling scheme now allows the use of HAs to accel-
erate even shorter sections of the program.

Beyond the quick signaling between HA and CPU, R1
also requires a low latency data exchange between HA hard-
ware registers and CPU software variables. This is achieved
by the CPU issuing reads and writes to the memory-mapped

HA registers (see Figure 2). At the hardware level, these are
actually handled by the PLB slave the HA shares with the
memory controller. The latency for a read is 20 ns, while
a write takes 40 ns per data item. Since, in general, a soft-
ware service requires the exchange of only very few vari-
ables [19], the overhead of these data transfers is negligible
compared to the signaling latency.

6. HA INTERACTION WITH VIRTUAL MEMORY

The design of an adaptive computing system has to care-
fully consider both hardware and software aspects. One of
these is the integration of the HAs with the operating system,
the software environment shared by all programs running on
the ACS. Since the HA must be capable of master-mode ac-
cess to main memory, this is a non–trivial endeavor in an
OS environment supporting virtual memory. On the CPU
side, a memory management unit (MMU) is responsible for
translating virtual user space addresses, as handled by the
software applications, into physical bus addresses, which are
sent out from the CPU via the PLB. In this manner, address
translation and the resolution of page faults are transparent
for application software. However, the HA does not have
access to the processor’s MMU.

6.1. AISLE

In [18], we have introduced the Accelerator-Integrating Sha-
red Layout for Executables (AISLE) as one solution to this
problem. In AISLE, all data areas of the program (stack,
heap and initialized data segments) are kept inside a so-
called direct memory access (DMA) buffer. Such a DMA
buffer is guaranteed to consist of contiguous physical mem-
ory pages that are always present in physical RAM, they
will never be swapped out to disk. Virtual addresses, lo-
cated in the DMA buffer, always have a constant offset from
their physical address. By transparently compensating for
that offset when initiating memory accesses from the HA,
the HA can now also use virtual addresses. Thus, point-
ers can be freely exchanged between both CPU and HA.
As an aside, since the PowerPC 405 has no multi-processor
cache-coherency mechanisms (like most embedded proces-
sors), keeping the cache coherent between CPU and HA ex-
ecution also requires software intervention. We realized this
in a fashion that allows the CPU to execute at full speed
(R5).

While AISLE fulfills all requirements, it does have lim-
itations. The size of the DMA buffer is normally set at
the start of a program. At runtime, it can be resized only
with significant overhead. Thus, it is always allocated to
the largest data area required by the program, which can be
wasteful. Additionally, DMA buffers are always present in
physical memory and remove their areas from the general
demand-paging performed by the OS. This not only reduces

Page Frame

Page Frame

addr

Page Fault

Resolved

read/
write

addr

CPU HA

TLB TLB

load

+

...=a[i]

Page Global Dir

Page Table}SW

addr
4K

4K

read

...
...

addr MMU

FSM

MMU

Fig. 3. PHASE/V TLB system: HA↔OS interactions

the amount of memory available to the entire system, but
also forces the loading of all data areas in the program’s ex-
ecutable file, even if they are not actually required at run-
time.

6.2. Full Virtual Memory Support in the HA

As an alternative solution, we will now describe the new
Processor-Hardware Accelerator Shared Environment with
Virtual Addressing (PHASE/V). Here, the HA is integrated
with the MMU-based virtual memory system. Instead of
mapping just a window of the virtual address space in the
form of a DMA buffer, we map the complete virtual ad-
dress space between HA and CPU. All virtual memory fea-
tures, such as demand paging, swap space, copy-on-write,
and file-backed mmap mappings, are thus supported both in
hardware and software. Since demand paging is now avail-
able for the HA, memory pages are physically allocated (and
loaded from the executable file) only when they are actually
needed, not in advance.

Like many embedded processors, the PowerPC 405 does
not allow external access to its MMU (Figure 3). Thus,
we had to implement a separate translation lookaside buffer
(TLB) in the HA. It operates in a direct-mapped fashion and
has 64 entries. Beyond the HA-TLB, an associated FSM
is able to walk the CPU MMU-managed page tables stored
in main memory, consisting of the Page Global Directory
and the Page Tables themselves. This FSM is responsi-
ble for performing a virtual-physical address translation in
case a HA-initiated memory access leads to a HA-TLB miss.
Should the mapping be already present in the HA-TLB, the
translation only takes a single clock cycle, providing the HA
with maximum throughput at minimum latency (R3).

In addition to performing virtual-physical address trans-
lations, our scheme must also be able to handle page faults.
These occur when the HA requests a virtual address that

does not yet have (or no longer has) an associated page in
physical memory, a condition that will be detected during
the HA-initiated page-table walk. For its resolution, we rely
on the standard OS mechanisms: We use our FastPath sig-
naling scheme introduced in Section 5 to request the han-
dling of the page fault as a software service. The Linux ker-
nel then fetches the missing page frame, updates the page
tables, and switches back to the HA to continue process-
ing. To treat the case when the OS flushes page frames from
memory, or swaps them out to disk, we have modified the
OS kernel to not only invalidate the CPU-TLB, but also the
HA-TLB, which is visible to the CPU in a memory-mapped
fashion. Relying only on sniffing for CPU TLB- or page
table writes is insufficient, since not all HA-accessed pages
will have been mapped into the kernel page tables before
starting the HA. As AISLE, PHASE/V also uses software to
ensure cache-coherency between CPU and HA. PHASE/V
does support multiple HAs, either sharing the same HA-
TLB or having dedicated TLBs (which would require ex-
plicit inter-HA-TLB coherency mechanisms).

With PHASE/V, the HA now has the same capabilities
as the CPU for virtual memory management. However, as
we will examine in the next Section, these features do have
a performance penalty over the simpler AISLE approach.

7. EVALUATION

In this section, we evaluate all of these techniques together
at the system level.

FastLane+ has significantly improved performance by
exploiting the full memory bus width, almost doubling the
throughput over FastLane and achieving ≈ 90% of the the-
oretical maximum for this memory. As before with Fast-
Lane, running an HA in parallel to normal software pro-
grams slows down the CPU only negligibly (R4). Inciden-
tally, despite being focused on the HA, the improvements
in FastLane+ even result in minor software speedups (up to
5%) for the CPU. A more detailed discussion of this method-
ology is found in [17].

To evaluate our low latency hardware/software commu-
nications scheme, we consider the impact of its delay toverhead
on the effective speedup achievable, given the raw hardware
acceleration factor HWaccel and the execution time tHA spent
in hardware before switching back to software, e.g., to re-
quest a service.

effective speedup =
tSW

tHA + toverhead
=

tHA×HWaccel

tHA + toverhead

The delay time has two components: the interval tIRQ
between the HA initiating an interrupt and the reaction in
the user space interrupt handler (e.g., determining the inter-
rupt cause by reading from an HA register), and the time
tsem between the handler accessing the semaphore and the
resumption of the main program thread. Measured times

toverhead = 2.7 µs
toverhead = 9.6 µs
toverhead = 62.0 µs

 0
 2

 4
 6

 8
 10

HWaccel
0 20 40 60 80 100 120 140

tHA (µs)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

eff. speedup

Fig. 4. Effective speedup as function of HA execution time
and raw HW acceleration factor for different latencies

are cycle accurate, being determined by a dedicated hard-
ware counter. As baseline, we measured the overhead for
the standard Linux interrupt path on the ML310 (employ-
ing the usual tasklet-driven wait queue in lieu of our fast
semaphore), resulting in toverhead = 62µs. In contrast to
this, FastPath achieves a toverhead between just 2.7µs and
9.6µs (best case: tIRQ = 2.1µs, tsem = 0.6µs; worst case:
tIRQ = 8.8µs, tsem = 0.8µs). Combined with the negligible
times for the live variable transfer (20. . . 40ns, see Section
5), we can thus shorten the total overhead by a factor of 6.5x
to 23x (R1). In this manner, FastPath even outperforms spe-
cialized real-time variants of Linux, such as RTAI/LXRT or
tuned versions of recent 2.6.x kernels, running on a desktop
PC CPU much faster than our 300 MHz PowerPC 405 [11].

The system-level effects of these measurements are visu-
alized in Figure 4. It shows the achievable effective speedup
(z-axis) for different combinations of raw hardware speed-
up (y-axis), execution time spent in hardware (x-axis), and
the different communication overheads. For the latter, the
bottom surface shows the effective speedup achievable us-
ing the standard Linux communications mechanism, while
the upper two surfaces show the impact of FastPath (top:
best case, middle: worst case). It is obvious, that for very
short hardware execution times, the communication over-
head dominates and even high hardware acceleration fac-
tors yield only small effective speedups or even slowdowns.
All three surfaces in the figure converge against an imag-
inary plane representing the theoretically optimal speedup
(where eff.speedup= HWaccel). The two FastPath surfaces
already reach 90% of the optimum after just 23 . . .75µs of
hardware execution, while the conventional communication
mechanisms requires much longer times spent in hardware
to achieve similar effective speedups. Such information is
crucial to perform a high-quality hardware-software parti-
tioning, since it will directly influence the granularity of
the execution sections assigned to hardware or software pro-
cessing.

Both AISLE and PHASE/V allow the free interchange

List length SW HA with AISLE HA with PHASE/V
16K 7.4 ms 3.4 ms 3.5 ms
32K 15.8 ms 6.8 ms 12.2 ms

128K 68.3 ms 27.4 ms 64.0 ms

Table 1. Runtimes of the pointer-handling application

of userspace address pointers between the HA and CPU,
which allows much faster operation than the explicit copy-
ing of data between CPU and HA memories [18]. However,
the full virtual memory capabilities of PHASE/V do come
at a performance cost. Table 1 shows the execution times
for processing a different number of elements of a linked
list randomly arranged in memory. Since we are interested
only in quantifying the memory access overhead, we per-
form only a trivial operation on the data to avoid measuring
the effect of possible hardware acceleration [18]. The re-
sults show that the performance of PHASE/V is highly de-
pendent on the size of the application’s data set. In the 16K
case, the page mappings for the memory area completely
fit into the HA-TLB, thus no threshing occurs and the per-
formance roughly equals that of AISLE. With 32K list el-
ements, the performance drops since TLB threshing begins
to occur. Still, PHASE/V is 23% faster than the SW ver-
sion. At 128K, heavy TLB threshing slows the acceleration.
However, even in this extreme case, PHASE/V is still able to
outperform the pure SW implementation by 6%. Thus, de-
pending on the application requirements, the simpler AISLE
should continue to be used if the enhanced capabilities of
PHASE/V are not needed.

8. CONCLUSION AND FUTURE WORK

In our aim to demonstrate the practical feasibility of adap-
tive computing systems supporting fine-grained application
partitioning between CPU and HA, we have achieved both
improvements to previous work as well as the realization of
completely new capabilities.

We have further improved the interface between main
memory and HA, with FastLane+ almost reaching the theo-
retical throughput of the memory chips themselves (and sig-
nificantly exceeding that of the CPU). Beyond the memory
access itself, we have also further considered how CPU and
HA can interact in a virtual memory environment. With our
new PHASE/V technology, we have shown that full demand
paging is possible even if the CPU-MMU is not directly ac-
cessible to the HA. Apart from memory throughput, the ef-
fective speedup achievable for a finely-partitioned applica-
tion is also highly dependent on the delay of inter-partition
communications. Using the new FastPath low-latency com-
munications mechanism, even shorter fragments of applica-
tion code can now be successfully hardware-accelerated.

One area of future work is increasing the efficiency of

PHASE/V. Even using FastPath, the explicit synchroniza-
tion of the TLBs in the CPU and the HA does have a rel-
atively high overhead. This could be avoided by having a
shared TLB between CPU and HA. The CPU-internal TLB
could be switched off and the shared TLB would be im-
plemented in reconfigurable logic outside of the CPU hard-
core. Since we have shown that it is possible to construct
such TLBs running at full bus speeds on the FPGA, this de-
sign would not impose additional performance penalties.

9. REFERENCES

[1] Gokhale M., Graham P.S., “Reconfigurable Computing”, Springer,
2005

[2] Budiu M., Venkatarami G., et al., “Spatial Computation”, Proc. Intl.
ACM Conf. on ASPLOS, 2004

[3] Vuletić M., Pozzi L., Ienne P., “Virtual Memory Window for
Application-Specific Reconfigurable Coprocessors”, Proc. Design
Automation Conference (DAC), San Diego, 2004

[4] Callahan T., Hauser J., Wawrzynek J., “The Garp Architecture and
C Compiler”, IEEE Computer, 04/2000

[5] MacMillen D., “Nimble Compiler Environment for Agile Hard-
ware”, Storming Media LLC (USA), 2001

[6] Kasprzyk N., Koch A., “High-Level-Language Compilation for
Reconfigurable Computers”, Proc. Intl. Conf. on Reconfigurable
Communication-centric SoCs (ReCoSoC), 2005.

[7] Balacco S., “Linux in the Embedded Systems Market (Vol. VII)”,
Venture Development Corp, 2007

[8] So H., Tkachenko A., and Brodersen R., “A Unified Hard-
ware/Software Runtime Environment for FPGA-Based Reconfig-
urable Computers using BORPH”, Proc. 16th Int. Conf. on Field
Programmable Logic and Applications (FPL), Madrid, 2006

[9] Donlin A., Lysaght P., Blodget B., and Troeger G., “A Virtual
File System for Dynamically Reconfigurable FPGAs”, Proc. 14th
Int. Conf. on Field Programmable Logic and Applications (FPL),
Antwerp, 2004

[10] Nollet V., Coene P., Verkest D., Vernalde S., and Lauwereins R.,
“Designing an Operating System for a Heterogeneous Reconfig-
urable SoC”, Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS), Nice, 2003

[11] Laurich P., “A comparison of hard real-time Linux alternatives”, Lin-
uxDevices, 2004

[12] IBM, “The CoreConnect Bus Architecture”, White Paper, 1999
[13] Xilinx, “ML310 User Guide” (UG068), 2005
[14] Xilinx, “Embedded System Tools Reference Manual” (UG111),

2006
[15] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Com-

plete Data Sheet” (DS083), 2005
[16] Philips Semiconductors, “SAA7146A Multimedia bridge, high per-

formance Scaler and PCI circuit (SPCI)”, Product Specification,
2004

[17] Lange H., Koch A., “Design and System Level Evaluation of a High
Performance Memory System for reconfigurable SoC Platforms”,
Proc. HiPEAC Workshop on Reconfigurable Computing, Ghent,
2007

[18] Lange H., Koch A., “An Execution Model for Hardware/Software
Compilation and its System-Level Realization”, Proc. Intl. Conf.
on Field Programmable Logic and Applications (FPL), Amsterdam,
2007

[19] Kasprzyk, N., “COMRADE – Ein Hochsprachen-Compiler für
Adaptive Computersysteme”, Ph.D. thesis, Tech. Univ. Braun-
schweig, 2005

