MalCoBox: Designing a 10 Gb/s Malware Collection
Honeypot using Reconfigurable Technology

Sascha Miihlbach
Secure Things Group
Center for Advanced Security
Research Darmstadt (CASED)

Abstract—Honeypots present networked computer systems
with known security flaws to attackers and can serve to
collect the executable code (malware) aiming to exploit the
vulnerability. We describe and evaluate the proof-of-concept
NetStage Architecture for a high-speed honeypot realized in
reconfigurable logic. Dedicated hardware accelerators for the
different network processing and detection layers allow the
honeypot to operate at full speed of a 10 Gb/s connection and
project the illusion of thousands of vulnerable systems at once.
Furthermore, compromising the honeypot itself is significantly
more difficult than in software honeypots, since all processing
is handled by specialized hardware blocks instead of general
purpose processors.

I. INTRODUCTION AND RELATED WORK

In today’s highly networked and extremely heterogeneous
computing environments, the increasingly sophisticated ex-
ploitation of security flaws has become a significant problem
for private users, businesses, and even governments [1]. In
general, attackers aim to gain control over or information
from as many systems as possible. Thus, attacks themselves
have been automated to a large degree. In one of the common
techniques, the attacker attempts to inject a malware program
(encompassing different types such as trojans, back-doors
or spyware programs) through a security flaw (or user
inattention) into the attacked system and have the malware
executed.

To defend against current or anticipate future threats,
security researchers must examine the malware currently
distributed by attackers. Since reliable connections into the
attacker (“black hat”) community are rare, a common means
is to collect the malware by setting up one (honeypot)
or more (honeynet) computers with known vulnerabilities
(simulated or real) on a publically accessible part of the
Internet (but isolated from the researcher’s internal network),
and wait for them to be attacked (see Fig. 1). The malware
can then be retrieved from the compromised honeypots [2].

A number of software implementations for honeypots
exist (e.g., Nepenthes [3] or Honeyd [4]). However, software
running on a general-purpose computer always carries the
risk that the honeypot will be compromised for real and the

Martin Brunner, Christopher Roblee
Network Security and Early Warning Systems
Fraunhofer-Institute for Secure
Information Technology (SIT)
sascha.muehlbach@cased.de {martin.brunner|christopher.roblee} @sit.fraunhofer.de

Andreas Koch
Embedded Systems and Applications
Dept. of Computer Science
Technische Universitdt Darmstadt
koch@esa.cs.tu-darmstadt.de

Honeypot
Management @

'\ Internal
* Network

&

Attacker

Honeypot
System

Figure 1. Integration of a honeypot system into a network

attacker does indeed obtain full control over the machine.
Even if the access to the researcher’s internal network is
blocked, the attacker could use the compromised honeypot
to attack other external systems, leaving them to blame the
honeypot operator (as one of his IP addresses will show up
in address traces). In well-designed analysis environments,
this risk can be minimized, but at the cost of a complex
maintenance process. Beyond security concerns, the wide
address ranges watched by the honeypot also strain network
processing resources due to the high number of packets that
must now be considered.

We propose the use of the specialized NetStage hardware
Architecture (NSA) based on reconfigurable logic to cope
with both the speed and security challenges. Prior studies
of honeypot specific hardware-architectures do exist, but
they have not considered high-performance aspects. For
example, the architecture in [5] stores the FSMs modelling
the protocols and vulnerabilities as tables in memory, which
are then interpreted. This extends to embedding complete
processor cores into the architecture to handle complex
protocol steps in software. In addition to the security risks
inherent in general-purpose processors, the work does not
give throughput measurements at all. In our approach, all
protocol handling (network processing and vulnerability
emulation) are performed by dedicated hardware aiming for
maximal throughput.

The paper is organized as follows: Section II describes
the new architecture and its major characteristics. Section III

Stage 1 Stage 2 Stage 3 Stage 4
Network o B ubprP c Vulnerability
- Frame /| | U IPHF;?(;:;(;OI || Protocol | | Emulation @
Receiver | D F D Handler D Handler 1
based on
B Vulnerability
U ARP Protocol ICMP Protocol Emulation
Handler Handler
F Handler 2
Assignment
Network o B UDP c Vulnerability |,
-4 Frame /[| U [IPHZ:JJ?eCrm || Protocol | | Emulation @
Transmider | D F D Handler D Handler 1
based on i ; i
g B
~ Priority : u AR: P:ﬁtocol ¢ ICMHP P(;(l)tocol ¢
- Availability /1 F andier andier
1 Selection Legend
C: Control Signal
D: Data
Figure 2. NetStage Architecture of the malware collection hardware honeypot (MalCoBox)

covers implementation details, followed by a discussion of
synthesis results in Section IV. We close with a conclusion
and an outlook towards further research in the last Section.

II. ARCHITECTURE

Our architecture should be both flexible (to allow freedom
for later experimentation) as well as support high-speed
processing (10Gb/s streams on Virtex 5-generation devices).
To achieve both ends, we use a hierarchical design reflecting
the levels of the protocol stack [6]. Lower-level network
operations (e.g., ARP requests) can be quickly handled in
lower architecture stages. Only the application-level vulner-
abilities are handled at the highest architecture stage. In this
fashion, new protocol or vulnerability handlers can be easily
“plugged-in” at the appropriate stage (Fig. 2).

Adjacent stages are loosely interconnected using buffers
to keep brief variations in throughput in a single stage from
interfering with the system-level throughput. This buffering
capability also opens the way for future work on dynamically
reconfiguring handlers. Note that the latency increase due to
data passing through multiple buffers is not an issue for this
application, only throughput is.

In addition to the stages, the NSA is also structured along
the receive and transmit datapaths, with handlers also being
split along those lines. Communication between the receive
and transmit parts of a handler is possible. This is indicated
by the dotted arcs in Fig. 2, e.g., the receiving part of an
ICMP handler can initiate the sending of an ICMP reply.

A. Receive Path

Raw network packets received at the media interface are
initially classified according to their link-level protocol infor-
mation. Those matching the MAC address of our honeypot

and requesting the IP or ARP protocols are forwarded to the
corresponding handler in the next stage, all other packets
will be discarded right away. While ARP packets can be
processed directly in Stage 2, IP packets are just classified
there and forwarded to Stage 3.

In Stage 3, ICMP requests will be processed directly.
Other IP traffic will be handled by the corresponding trans-
port protocol handler. The actual application-level vulnera-
bility handlers will generally reside in Stage 4 (but could
also be inserted earlier, if necessary).

As packets proceed upwards, lower-level protocol headers
will be stripped away and only information required for
further processing will be retained.

B. Transmit Path

The transmit path is organized similarly. A higher level
stage wishing to send a packet puts the desired payload data
and the internal header into the stage output buffer. The
lower-level handler accepts the transmit request and then
creates the appropriate “real” protocol header.

C. Vulnerability Emulation Handlers

The top-level stage consists of the custom vulnerability
emulation handlers (VEH) currently active in the system.
Figure 3 shows a sketch of their internal structure. The VEH
uses a set of matching rules to extract information from
incoming packets (e.g., a login user name). Outgoing packets
are composed by filling in the appropriate fields in stored
packet templates (e.g., echoing the user name provided back
to the attacker).

The main task of our honeypot, the collection of malware,
is also performed by the VEH, e.g., by regular expression

Read Address
Read Data

Write Address
Write Data

Read Buffer Control
Packet Available

elele

Activity Control

Matching Predefined
Rules Packet Templates

Write Buffer Control
Buffer Status

11yt
Py v

Optional: External
Malware Storage

A

Figure 3. General vulnerability emulation handler structure

matching. This is highly vulnerability-dependent: The at-
tacker could provide the malware directly during the attack
as executable binary code, or cause the attacked system to
download it from somewhere else. The malware (regardless
of form) is stored in the honeypot system memory (which
can be, e.g., SDRAM). It can be retrieved either using
a dedicated network interface (isolated from the public
network) or by PCI Express (when the honeypot is directly
attached to a host computer) by the management station.
Each malware collected is also stamped with the identifier
of the VEH that found it, the collection time, and source-
and destination IP addresses.

III. IMPLEMENTATION

We have implemented a proof-of-concept realization of
the MalCoBox on an FPGA-based reconfigurable computing
platform which has the required 10 Gb/s network interfaces.

A. Target Platform

We are using the BEEcube BEE3 platform, which has
been fitted with four Xilinx Virtex 5 FPGAs (2x LX155T,
2x LX95T). In contrast to many other platforms, in has eight
10 Gb/s interfaces on board, externally available as CX4
connectors. The initial prototype discussed here uses one of
the LX155T FPGAs and a single 10 Gb/s port, but could
easily be extended.

B. Core System Functionality

The lowest levels of the network interfaces are realized us-
ing the Xilinx XAUI [7] and 10G MAC IP [8] cores. The ex-
ternal CX4 connectors are driven by Rocketl/O transceivers
connected to the XAUI block. The first processing stage of
our hierarchical NSA connects to the 10G MAC. To achieve
a raw throughput of 10 Gb/s (assuming no inter-frame gaps
or unused bytes) on the 64b data words output by the 10G
MAC, the entire system operates on a clock speed of 156.25
MHz.

However, beyond the network interface itself, all stages
are designed to allow operation at 20 Gb/s, achieved by
using 128b data paths. We anticipate the possibility of

Control FIFO -
Pointer

range for
random
access

Size of Start adr.
packet n packet n

Memory

Size of Start adr. Organization

packet 2 packet 2
Write

Size of Startadr. | pointer
packet 1 packet 1

Figure 4. Ring buffer implementation

momentary stalls in the data transfer (e.g., due to complex
rules matchable only on multiple cycles, or even partial
reconfiguration of handlers) and want the affected handlers
to be able to “catch-up” with the normal 10 Gb/s traffic
by burst-processing the data accumulated in the inter-stage
buffers at 20 Gb/s. On the transmit side, the 128b data words
are converted to 64b streams for input into the 10G MAC.

The core handlers are implemented in a straight-forward
manner reflecting the NSA described in Sec. II.

Since the efficient implementation of hardware-based TCP
offload engines for 10 Gb/s is a complex design task itself
that is outside the current focus of this work, we concen-
trated on the base architecture instead and implemented only
UDP as a core handler in the proof-of-concept system (but
see Sec. V).

C. Inter-Stage Buffers

The inter-stage buffers play a crucial role in decoupling
the different processing stages within the NSA. To achieve
most-efficient buffer use without fragmentation, we use
a ring buffer-like structure as base. Furthermore, and in
contrast to a FIFO, we allow random manipulation of the
read and write pointers. This can greatly speed-up processing
in Stage 2 and later, since handlers often require access only
to a few bytes of the packet, while irrelevant data can be
quickly skipped. The transmit path also profits from the
random access. E.g., a checksum can be written into the
header even after the packet body has already been stored,
an approach not possible with pure FIFOs. However, FIFOs
are useful for their order-preserving properties.

We thus use the combined approach in Figure 4. Packet
data itself is stored in 128b wide, dual-port BlockRAM. Sep-
arate counters act as read/write-pointers into the RAM for
traditional ring-buffer operation. In addition, we use a FIFO
for buffer management: Once a packet has been completely
written into the ring-buffer, a FIFO entry containing its 16b
start address in the BlockRAM and 16b length is created.
The handler in the next stage begins processing as soon as
such a FIFO entry is available.

The ring buffer addressing logic is also set-up to grace-
fully discard entire packets instead of stalling should the

Table I
SYNTHESIS RESULTS FOR THE OVERALL SYSTEM

[Stages | Handler | LUT [Reg. Bits [BRAM |
Stage 1 to 3 Core Handlers | 2,799 2,760 24
Stage 4 SIP VEH | 1,119 364 6

[NetStage Architecture (UDP/IP) | 3,965 | 3,133] 30 |
mapped NSA incl. MAC + XAUI | 7,176 6,832 a7
(% of XC5VLX155T) (7%) (7%) (22%)

buffer begin to overflow. In practice, this should happen only
rarely, with all stages aiming for 20 Gb/s operation.

D. Vulnerability Emulation Handlers

The actual honeypot functionality will be implemented
in the VEHs, specific for a single or a class of related
vulnerabilities. We have developed an HDL template for the
VEHs (see Fig. 3) to simplify the creation of new handlers.

The proof-of-concept implementation presented here emu-
lates a stack overflow vulnerability of the software SIP SDK
sipXtapi [9]. The exploit uses a buffer overflow occurring if
a SIP INVITE packet contains a CSeq field value exceeding
24 bytes in length. Matching rules look for the beginning
of the CSeq field (the string CSeq:) and its end (indicated
by the next field identifier Max-). If the difference between
their positions exceeds 24, a UDP message containing the
matched pattern (the malware) and logging data is sent back
to the management station.

IV. SYNTHESIS RESULTS

The design was synthesized using Synplify Pro 9.6.2 and
mapped with Xilinx ISE 11.4, targeting a Virtex 5 LX155T
and aiming for a clock speed of 156.25 MHz. Table I gives
a summary for the different handlers of the NSA and the
entire system. The separated receive and send handlers for
the core protocols (see Fig. 2) are counted together. The
largest amount of logic is used by the VEH as the parallel
regular expression matching needs more combinatorial logic
than simple rules in handlers only forwarding bytes (see the
ratio of LUTs vs. Register Bits).

Including the 10G MAC and XAUI blocks, roughly 7%
of the LX155T device resources are used and the mapped
MalCoBox design occupies 3291 slices (13%) on the chip.
From this, we estimate that we can put 20-40 VEHs on
a single chip (depending on the complexity), which could
easily be extended due to our hierarchical design to all four
devices in the BEE3. In practice, a honeypot will be looking
at malware injected through current exploits. Thus, being
able to attract roughly a hundred different exploits in parallel
seems sufficient for this purpose.

V. CONCLUSION AND NEXT STEPS

With NetStage, we have presented a flexible system
architecture to build our MalCoBox, a high-speed hardware-
accelerated malware collection honeypot. It can keep up with

10 Gb/s traffic while spanning large IP address ranges and
has spare processing capacity even for complex vulnerability
emulation. By using a hierarchical and modular architecture
modelled on the protocol stack, it is easy to add new
functionality. Similarly, new vulnerability handlers can also
be developed quickly due to their regular structure.

Our proof-of-concept implementation has covered the
basic core modules of the system as well as a sample
vulnerability emulation handler and was successfully tested
on a current reconfigurable computer platform. Both the
limited chip area required as well as the spare processing
capacity show that this approach is feasible even with current
FPGAs.

We will continue our work in this area. In addition to
developing more vulnerability handlers, we also intend to
integrate a handler for the TCP protocol. This, in turn,
would enable the addition of HTTP handlers to emulate
vulnerabilities in web servers. All of these features will also
need to be stress-tested in a real production environment
(e.g., university or ISP), preliminary talks to this end have
already been initiated.

Mid-term research will also consider dynamic recon-
figuration to swap vulnerability handlers at run-time as
well as different memory organizations, optimized for more
complex higher-level protocols such as TCP.

ACKNOWLEDGMENT
This work was supported by CASED (www.cased.de).

REFERENCES

[1] “Security threat report: 2010,” Sophos Group, 2010. [Online].
Available: http://www.sophos.com/security/topic/security-
report-2010.html

[2] N. Provos and T. Holz, Virtual Honeypots: From Botnet Track-
ing to Intrusion Detection. Addison-Wesley Professional,
2007.

[3] “Nepenthes.” [Online]. Available: http://nepenthes.carnivore.it
[4] “Honeyd.” [Online]. Available: http://www.honeyd.org

[5] V. Pejovic, 1. Kovacevic, S. Bojanic, C. Leita, J. Popovic,
and O. Nieto-Taladriz, “Migrating a honeypot to hardware,”
in SECUREWARE '07: Proc. Intl. Conf. on Emerging Security
Information, Systems, and Technologies. =~ 1EEE Computer
Society, 2007, pp. 151-156.

[6] R. Braden, “Requirements for Internet Hosts - Communication
Layers,” RFC 1122 (Standard), Internet Engineering Task
Force, Oct. 1989, updated by RFCs 1349, 4379. [Online].
Available: http://www.ietf.org/rfc/rfc1122.txt

[7] “Xaui v9.1 user guide,” Xilinx, 2009.
[8] “10-gigabit ethernet mac v9.3 user guide,” Xilinx, 2009.
[9] M. Thumann, “Buffer overflow in sip

foundry’s sipxtapi,” 2006. [Online]. Available:
http://www.securityfocus.com/archive/1/439617

