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Abstract—We propose an execution model that orchestrates the fine-grained interaction of a conventional general-purpose processor
(GPP) and a high-speed reconfigurable hardware accelerator (HA), the latter having full master-mode access to memory. We then
describe how the resulting requirements can actually be realized efficiently in a custom computer by hardware architecture and system
software measures. One of these is a low-latency HA-to-GPP signaling scheme with latency up to 23x times shorter than conventional
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schemes with different flexibility / performance trade-offs for running the HA in protected virtual memory scenarios. All of the techniques
and their interactions are evaluated at the system level using the full-scale virtual memory variant of the Linux operating system on
actual hardware.
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1 INTRODUCTION

Reconfigurable devices acting as hardware accelerators (HA)
can improve pure compute performance as well as efficiency
(e.g., power requirements and integration density) [1]. Despite
these advantages, practical use of the technology is still
uncommon, generally due to a programming environment which
is unfamiliar to conventional software developers.

For limited application domains such as digital signal
processing, more accessible flows that employ established tools
and notations (e.g., MATLAB, Simulink) do exist [2], [3], but
the automatic translation of traditional software (SW) high-
level languages such as C or Java to exploit a reconfigurable
device as accelerator is still uncommon and hampered by
tool limitations. Such restrictions often include the prohibition
of pointers or conditionals in loops [4], [5], or require user-
specified annotations beyond the core language [6]. If the
input program does not completely match the tool limitations,
translation to an HA will be aborted.

To ease the transition from a SW-programmable general-
purpose processor (GPP) to hardware (HW) acceleration, some
flows [7], [8], [9], [10] target adaptive computing systems
(ACSs): combinations of a GPP and HA, with both processing
elements (PEs) acting as equal peers. On an ACS, parts
of an input program with low instruction-level parallelism,
highly irregular control flow, or area-intensive floating point
computations can remain in SW on the GPP, to which the
compiler can also fall-back if it encounters a language construct
it cannot (yet) map to an accelerator. The program always
remains executable and the developer can be advised of the
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problematical sections to incrementally rewrite them as desired
for full acceleration.

The partitioning of the input program between the different
PEs, both at compile time as well as in its runtime implemen-
tation, is a crucial issue for an ACS. Due to the large body of
prior research in the general field of HW/SW partitioning, we
will focus on the latter issue in this work: How the overhead
of co-executing the application on the different PEs can be
minimized by appropriate HW architectural and operating
system-level measures. As we will discuss later, key questions
in this context are the efficient access of multiple PEs to shared
in-memory data structures and inter-PE signaling. Their answers
will directly influence the choice of the execution model, the
set of rules and protocols that orchestrates the co-execution of
heterogeneous PEs.

Such an execution model is essential when implementing
an automatic tool flow that targets an ACS: The HW/SW
compiler requires a precise model which defines the interaction
between the different PEs as well as shared components such
as memory. This differs significantly from the freedom that is
enjoyed when manually designing HW architectures, which
allows the mixing-and-matching of different paradigms. Since
the compiler always adheres to the rules that are imposed
by the model, the execution model determines the available
solution space for the automatically compiled architectures.

Reconfigurable Systems-on-Chip (rSoC) that combine differ-
ent components (including heterogeneous PEs) connected by
standard buses [19], [20], [21] on a single reconfigurable device
can also be used as an ACS. We will discuss the widespread
IBM CoreConnect bus [21] as an example.

The main contributions of this work are:
• An execution model which supports a fine-grained division

of labor between a GPP and an HA that also allows the
latter to call SW functions for HA-unsuitable or infrequent
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operations. Actual use of this model requires certain
special capabilities from a target platform. We present
practical solutions to all of them next.

• A low-latency communication scheme between GPP and
HA that supports both efficient signaling and live variable
exchange.

• High-performance memory access for the HA which
exploits the full transfer rates of the physical memory.

• Robust, secure and efficient system integration of an HA
in a multi-tasking protected virtual memory environment.
To this end, we apply both HW architecture as well as
operating system measures.

All of our techniques have been evaluated in an actual HW
prototype which runs a full-scale version of Linux (including
MMU support).

Figure 1 gives an overview of our system architecture
and design flow. An input C program (a) is processed by
our compiler COMRADE (b) [10], which partitions it into
SW (exported as C and compiled using a conventional SW
compiler, d) and HW parts (as Verilog HDL). The latter are
subsequently processed by logic synthesis (c) and mapped
into an FPGA. This FPGA, being an rSoC, contains the GPP
(f, which executes the operating system and the SW parts of
the compiled application) and the HA that corresponds to the
HW parts (e). The FPGA also implements the communication
between the HA, the GPP, and external memory (g).

2 EXECUTION MODEL

The four execution models discussed in this Section aim to
support the compilation from C to a GPP/HA combinations.
One of them [7] targets ASICs, the other three [8], [9],
[10] target reconfigurable ACSs. However, the difference in
target technology does not affect the following discussion. Of
greater interest are the different granularities of the HW/SW
partitioning supported by the models.

ASH [7] can switch between GPP and HA only at procedure
boundaries. However, once an entire procedure has been been
moved to the HA, it may call SW functions that are executed
on the GPP (see Figure 2). Procedures form natural partitioning

GPP
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Fig. 2. ASH execution model

...
u = (int) sqrt(a + b);
v = c - d;
for (n=0; n<1000; ++n, p=p->next) {
v += u;
if (v > 10000) {
printf("warning: v too large, rescaling");
v *= 0.271844;

}
p->val = v;

}
w = 53 * v;
...

Fig. 3. Sample program with HA-unsuitable statements

delimiters, but the presence of only a single construct in
the C source code that is not amenable to HW compilation
(e.g., an operating system call or floating-point operation) will
prevent the acceleration of the entire procedure, even if the
problematical operation would occur only rarely (if ever) during
an actual program execution.

The execution models of GarpCC [8], Nimble [9] and
COMRADE [10] support a finer partitioning granularity which
allows switches even within procedures. Since the partitioning
is performed based on dynamic profiling, slow-downs due to ex-
cessive GPP/HA switches and their associated communication
overhead can be avoided (see [10] for more details).

The code fragment shown in Figure 3 will be used to
guide the following discussion. The for loop is surrounded by
statements which are better left on the GPP (e.g., having low

HW/SW Decision at Runtime

SW Exception Handler

if (useRCU())
   startRCU();
else
   // stay in SW;

Low−ILP

if (n >= 1000)
   goto loopexit;
v += u;
if (v > 10000) {
   printf("warning: v too large, rescaling");
   v *= 0.271844;
}

Executed on GPP

HW kernel

Low−ILP

Executed on HA

++n; p=p−>next;
p−>val = v;

v,n,p

u,v,n,p

v

loopexit:

w = 53*v;

u = (int) sqrt( a + b );
v = c − d
n = 0;

if (n >= 1000)
  exitToSW(0)
v += u;
if (v > 10000)
   exitToSW(1);

++n;
p−>val = v;

p = p−>next;

Fig. 4. Example in the Nimble execution model
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if (n >= 1000)
  exitToSW(0)

   exitToSW(1);

++n;
p−>val = v;

p = p−>next;

Fig. 5. Example in the COMRADE execution model

ILP or being only infrequently executed). Library functions
and floating point-operations are assumed to be unsuitable for
direct HW compilation.

With the fine-grained partitioning supported by GarpCC,
Nimble, and COMRADE, it is possible to move just the loop
to the HA as a so-called kernel, while the initial and trailing
statements are left on the GPP. Based on dynamic profiling,
the compilers might recognize that the exceptional (and HA-
unsuitable) branch v > 10000 is executed only very rarely in
practice, and thus HA-execution of the rest of the loop remains
profitable. Once the condition occurs, however, it must be
handled as specified by the input program: Execution switches
back to the GPP, the live variables (shown as edge labels
in Figures 4 and 5) are retrieved from HA registers to their
corresponding SW variables, and the body of the if is executed
in SW. Note that the transfer of the live variables occurs under
GPP control, the HA acts as a slave in this process.

The three compilers differ in how the generated HW/SW
continues to execute after switching to the GPP and executing
the HA-unsuitable code. GarpCC and Nimble proceed to
execute the rest of the current loop iteration in SW before
they consider switching back to the HA. Our new COMRADE
execution model (Figure 5) allows switching back immediately
after completing the HA-unsuitable code. In the example, only
the printf and the floating-point multiply execute on the GPP
as a so-called SW Service. Such fine-grained switching requires
low-latency GPP-HA communication from the ACS platform
(discussed in Section 6), but also reduces the number of live
variables that need to be exchanged between GPP and HA (due
to the limited scope of a SW Service compared to an entire
loop body). A kernel running on the HA can access multiple
Services in this manner.

General-purpose C programs often make heavy use of pointer
operations. When they are to be translated to an ACS, GPP-HA
interaction goes beyond plain signaling and slave-mode live
variable exchange. Now, pointer-based data structures must
be operated on by both PEs. This requires free exchange of
addresses and compatible address arithmetic as well as the
ability of the HA to autonomously access main memory (in
so-called master mode), preferably at high bandwidths. All
of these issues, also encompassing virtual memory, will be
discussed in the next Sections.

TABLE 1
Summary of Platform Requirements

Requirement Description
LOWLAT Low-latency GPP↔HA communication
ADDRESS Shared GPP↔HA address space
HAMEM High-throughput HA memory access
PROTSYS HA access cannot affect other processes

PROTCODE software code protected from HA access
OSSCHED HA must obey OS scheduler
SWPERF HA may not slow down software

3 PLATFORM REQUIREMENTS

The core of this work lies in explaining how to design and
implement an ACS HW/SW architecture that supports the
fine-grained COMRADE execution model. To structure this
discussion, we will first identify individual requirements and
assign them unique names (set in bold type), which will be
referenced later in the detailed implementation descriptions.

GPP-HA signaling, which is needed in all execution models
discussed above, should have low-latency (LOWLAT), but
does not require high-throughput (only few live variables will
generally need to be exchanged in a good partitioning).

The use of pointers by both PEs requires a common address
space (ADDRESS), possibly achieved by sharing main memory
or even parts of the cache hierarchy. Furthermore, it demands
an HA that is capable of GPP-independent high-throughput
access to main memory (HAMEM). The latter is lacking from
many real ACS platforms. At best, the HA can often only
access dedicated memories that need to be explicitly initialized
by the GPP, which also has to retrieve the result data after
the HA has completed its computation. This need for explicit
allocation of HA-accessible memory as well as the copying
of data significantly complicates the handling of pointer-based
algorithms (see [38] for a more detailed discussion).

With growing application complexities, virtual protected
memory is becoming more important even in embedded
scenarios. Supporting ADDRESS and HAMEM becomes
more difficult in such an environment. For security, HAMEM
should have the HA restricted to access only the memory
of the process that runs the SW part of the hybrid HW/SW
application, the rest of the system’s memory spaces must not
be accessible (PROTSYS). For even finer grained memory
protection, the executable code of the HW/SW application
process itself should also be inaccessible to a (potentially
rogue) HA (PROTCODE).

Finally, the performance of SW on the ACS should not
be impeded by the HA. This encompasses that the HA must
respect operating system scheduling decisions (OSSCHED),
e.g., the HA has to be prevented from starving the GPP from
memory accesses that are urgently needed to handle network
packets in time. We also want to avoid slowing down the SW
part of the HW-accelerated application (SWPERF).

We now examine in greater detail how these requirements
have been addressed in prior work and how they can be
achieved on current platforms. Our focus will be on using
FPGAs as reconfigurable target devices for the HA, and Linux,
which continues to grow market share in embedded scenarios (
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[11], market share according to [35]: 20% Linux vs. VxWorks
9% and Windows 12%), as an example for a full-scale multi-
tasking virtual protected memory operating system.

4 PRIOR AND RELATED WORK

Prior research on ACS architecture often considers only a
subset of the above requirements. For exchanging live variables,
[12] emphasizes ease-of-use by automatically mapping the HA
registers to individually named files in the Linux /proc file
system. However, routing each access through the file system
increases latencies significantly and violates our LOWLAT
requirement for GPP-HA communication.

The approach of [13] goes even further: The entire device
structure (described at the configuration level of CLBs, BRAMs,
etc.) is mapped into the file system. While multi-word chunks
of data can now be exchanged between GPP and HA more
efficiently by copying them to and from on-chip memories of
the FPGA, the file system overhead still makes frequent live
variable transfers too costly (violating LOWLAT again). Nei-
ther of these two techniques addresses our other requirements.

An approach that attempts to achieve ADDRESS is the
message-passing interface of [14]. While not described in
that work, it appears to be possible to extend the underlying
network-on-chip to implement PROTSYS, PROTCODE, and
OSSCHED. However, the HAMEM and SWPERF capabili-
ties that we require are not dealt with at all.

A very promising ACS architecture [15] replaces one or
more of the GPPs in a Symmetric Multi Processing platform
with a reconfigurable device, which is now connected directly
to the processor bus (e.g., the Intel Front Side Bus). While such
an architecture can theoretically achieve low latency and high
bandwidth at the HW level, the programming interface appears
to be only rudimentary: A central controller orchestrates the
I/O for one or more HAs that operate only as slaves on the
same reconfigurable device. The GPPs and the HAs exchange
data via a statically mapped and locked-down shared region of
main memory. The HA can signal SW that is running on a GPP
via an interrupt, handled there by a callback function. Since
no measurements on performance or latency are publically
available, it is unknown to which degree the requirements of
our execution model would be satisfied on such a platform in
practice.

It is also worthwhile to look beyond adaptive computer
architectures to see how some of our stated requirements have
been addressed in the past. For example, the Philips SAA
7146A Multimedia Bridge [25] is a chip which is used in Digital
Video Broadcast (DVB) standard receivers. Each of its eight
DMA channels can be supplied with a single-level page table,
managed by its associated device driver. It can thus translate
virtual to physical addresses independently from the GPP.
Such a mechanism would satisfy ADDRESS even in a virtual
memory environment. However, the mechanism has a number
of practical limitations: First, since the device driver sets up a
separate set of page tables, page allocations that are performed
by the operating system must be explicitly synchronized to
those of the chip (incurring additional overhead). Second, only
a single 4 KB page held in dedicated memory is available

for the chip’s page table, limiting the virtual address space to
just 4 MB. Finally, the per-channel nature of each page table
requires even more synchronization overhead when aiming for
a unified address space across all channels.

[26] also attempts to solve the ADDRESS requirement for
an ACS, here using a dedicated virtual memory window which
is shared between GPP and HA. The HA signals the GPP on
a page fault, causing the SW virtual memory window manager
in the OS to copy the missing page(s) from main memory to
the window (and vice versa). While the technique does satisfy
ADDRESS, it has high overhead (slow address translation and
numerous copy operations) and is limited to just a 16 KB
window (much too small for the data-intense processing for
which an HA could be especially beneficial).

[27] presents a simulation of virtual memory integration at
cacheline granularity for multiple HAs. Although ADDRESS is
satisfied here as well, the relatively small (16 entry) translation
lookaside buffer (TLB) for the HA relies entirely on SW
management, which imposes an unacceptable overhead except
for small per-application virtual address working sets. Moreover,
a real world system evaluation is missing.

As a side effect of implementing increasingly complex GPPs
on FPGAs, the GPP memory management units (MMUs)
must also be ported [28]. The OpenSPARC T1 uses a MMU
comprising a TLB with 64 entries, which had to be reduced to
16 or 8 to fit on an FPGA [29]. HA-MMUs require less area,
since they can rely on the protection mechanisms of the GPP-
MMU/OS combination to satisfy PROTSYS and PROTCODE.
Hence, GPP- and HA-MMUs are not directly comparable.

The prior and related work addresses some of the require-
ments we identified (Table 1 in Section 3). It can be roughly
classified into two non-disjunct sets: One set [12], [13], [25],
[26], [27] already has fundamental limitations in individual
requirements. The second one [12], [13], [14], [15], [29]
implements only a subset of our functional requirements. Hence,
none of these approaches fully supports any kind of tightly-
coupled execution model. In contrast, we propose high-quality
solutions to individual requirements and combine all of these
techniques in a well-balanced manner to improve overall system
performance.

5 TARGET PLATFORM

In order to avoid the complexity (and potential inaccuracies)
of simulating a multi-PE system including memories and I/O
devices, we evaluate our techniques on an actual HW platform.

We use the Xilinx ML310 embedded system development
platform (see Fig. 6) as base for our ACS. Architecturally, it
resembles a standard PC, with a variety of peripherals (USB,
NIC, IDE, UART, AC97 audio, etc.) that are attached via a
Southbridge ASIC to a PCI bus. However, the traditional CPU
and Northbridge ASIC have been replaced by a Xilinx Virtex
II Pro (V2P) FPGA [23]. This reconfigurable device embeds
two IBM PowerPC 405 GPPs (internally running at 300 MHz)
in an array of reconfigurable logic. Each of the GPPs has 16
KB I- and D-caches (2-way, 8 words/line, write back) and an
MMU that comprises a 64-entry unified TLB (plus 8 data and
4 instruction shadow entries, page table walks done in SW).
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Fig. 6. ML310 system (from Xilinx manuals)

The entire compute architecture (GPPs, HAs, buses, memory
interface) can be flexibly reconfigured for our experiments and
achieves 100 MHz system clock rates in the reconfigurable
array even for complex designs.

The vendor-provided initial reference design for the ML310
is shown on the gray background in Fig. 6. It uses a single
PowerPC core (the second one remains inactive) to which
several on-chip peripherals are attached using CoreConnect
[21] buses (see [37] for more information). We will describe
some concepts in greater detail below as required.

To stress-test our proposed solutions, we run the platform
under the full-scale multi-tasking, virtual memory variant of
Linux, instead of using a light-weight RTOS (which would
impose a smaller and more deterministic load pattern on the
internal buses).

While we used a concrete platform to verify our techniques,
it is important to note that neither our architectural concepts
nor their actual implementations are specific to the ML310.
Instead, they should be portable to all platforms with similar
characteristics, e.g., rSoCs based on GPP soft cores as well
as more recent boards using newer Virtex-4 FX and -5 FX
FPGAs as reconfigurable devices.

5.1 Vendor Flow for rSoC Composition
Assembling systems-on-chip (even disregarding reconfigura-
bility) is a complex endeavor, generally due to the possibly
large number of components that may also have disparate
interfaces. While some interface standards do exist (such as
the CoreConnect PLB discussed below), components often use
different conventions internally and are generally connected to
the system via protocol-converting wrappers, which sometimes
induce a loss of performance.

The vendor rSoC composition flow Xilinx EDK [22] relies on
PLB for interconnecting components such as the GPP and HA
(shown in Figure 7). PLB has the following key characteristics,
with those added by the recent version 4.6 (which is used on
current Virtex-4 FX and -5 FX FPGAs) set in italics:

256 MB
DDR DIMM

HA

PPC
405

PLB
Bus

PLB
Wrapper

PLB-DDR
PLB

Slave
DDR
Ctrl

Fig. 7. HA integration via PLB

TABLE 2
PLB specification vs. actual implementation

IBM PLB IBM PLB Xilinx
Spec v3.4 Spec v4.6 V2P PLB

Clock 133 MHz 183 MHz 100 MHz
Address 2 cycles unlimited 2 cycles
pipelining
Latency 2 cycles 3 cycles 4 cycles
Burst length unlimited unlimited 16 words
Burst termination anytime anytime full length

• Single beat transfers (one data item per transaction)
• Burst transfers up to 16 data words
• Cache line transfers (one cache line in 4 resp. 8 data beats,

cache-missed word first)
• Master/slave (self/peer initiated) transfers
• Atomic transactions (bus locking)
• Split transactions (separate masters/slaves performing

simultaneous reads/writes)
• Central arbiter, but master is responsible for timely bus

release (no arbitration in point-to-point mode)
• 64 / 128 bit wide operation
It is obvious that PLB is a feature-rich bus which aims

for high-performance operation, but it carries a significant
protocol complexity. This often requires conversions between
the specialized internal protocols of a component and its general
PLB interface, leading to “thick” wrappers.

Our concrete scenario is the efficient interconnection of the
GPP, the HA, and the memory according to the requirements of
the COMRADE execution model. In the vendor-suggested rSoC
architecture, the HA accesses the memory (specifically, the
DDR-DRAM memory controller) via PLB through two latency-
inducing wrappers: A master-mode wrapper at the HA (which
can initiate bus transactions) and a slave-mode wrapper at the
memory controller (which just processes incoming requests).

5.2 Practical Limitations

The high performance which is theoretically possible with PLB
is difficult to achieve in practice. For example, CoreConnect
[21] specifies unlimited PLB burst lengths, with arbitrary
burst termination and deep address pipelining. Actual PLB
implementations, such as those used in three generations of
Xilinx rSoCs, are more limited. For the Virtex II Pro devices
which are employed in our ML310 ACS, some specifics are
given in Table 2.
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TABLE 3
Area overhead for bus wrappers in vendor flow

Min. Size [Slices] Max. Size [Slices]
Wrapper for (slave only) (full master-slave)
PLB v3 64b 180 2593
PLB v4 64b 160 1764

User program

GPP

Kernel

HA

IRQ

start

live variables

sema-
phore

handler main
thread

FastPath

normal path

Registers

(b)

(a)

(c)

Fig. 8. FastPath: Low-latency SW calls and live variable
transfers

In addition, the bus wrappers needed to attach an HA to
a PLB-based system require significant chip area (see Table
3) and also add latency (due to the complexity of the PLB
protocol). Combined with the limited burst length of just
16 words, these misfeatures render the memory subsystem
incapable of actually achieving the 64 bit, DDR-200 operation
that should yield the peak performance of 1600 MB/s on the
ML310 board (discussed in greater detail in [36]). The new
point-to-point interconnect used on the Virtex-4 FX and -5 FX
devices does not address this problem either, since it does not
allow the direct connection of an HA to memory.

6 OS INTEGRATION:
LOW-LATENCY GPP↔HA COMMUNICATION

As described in Section 2, our execution model relies on
the ability to quickly switch execution between GPP and
HA processing to avoid expending reconfigurable area for
infrequent or only inefficiently synthesizable operations.

Our LOWLAT requirement states that such switches should
be performed with minimum overhead. When running the
embedded system only with a lightweight RTOS (or even
without an OS at all), this is easily achievable. However, with
the trend to use full-scale OSs (such as Linux or Windows)
even in embedded applications, it becomes increasingly difficult,
since task switches and interrupt processing (required for our
HW/SW switches) take much longer.

One of our contributions consists of HW/SW mechanisms
to achieve LOWLAT even in such hostile environments. As
a baseline, consider that even with a Linux version patched
for low-latency execution, the interrupt response latency on
the ML310 platform is 62µs. This is due to the numerous SW
layers that an interrupt has to pass through before it reaches the
actual application-level handler in user SW (e.g., to perform a
memory allocation requested by the HA).

This structure is shown in Figure 8a: The top part of
the standard IRQ handler acknowledges the interrupt request,
creates a tasklet, also known as bottom part, and immediately
exits. The actual execution of the bottom part is deferred subject
to the normal Linux scheduling rules. When it is scheduled,
the bottom part dequeues the suspended process which is
waiting for the interrupt (e.g., using acs_wait() in Figure 13)
from the wait queue. But again, execution of the process is
deferred until it is picked by the scheduler. Only then can
the application-specific handling (e.g., the memory allocation)
actually be performed. The high overheads associated with
this procedure permit HA/SW switches only at a very coarse
granularity (= long time intervals between switches), otherwise
the total interrupt processing overhead becomes excessive.

We have taken two measures to reduce the latency of such
an exchange: On the HW side, we now employ the dedicated
formerly unused critical interrupt vector of the PowerPC 405
for HA ↔ GPP signaling, which has a higher priority than the
conventionally used external interrupt (but note that we have
taken explicit measures to prevent priority inversion). On the
SW side, incoming HA interrupts (which request SW Services)
are now processed by directly branching to the application-
level handler in user space (a C-callback function, shown in
Fig. 8b) without the two traditional scheduler interventions.
Virtual addressing and access permissions are set up to allow
the handler code full access to user space data (including global
variables and library functions). Synchronization between
the application’s main thread and the callback handler is
achieved (as usual) via a semaphore. However, in contrast
to the comparatively heavy-weight semaphore facilities offered
by the C library, we realize the semaphore based on the
formerly unused special GPP register USPRG0. Employing a
special processor register avoids the bus contention and memory
accesses which are associated with conventional in-memory
semaphores, but does not increase pressure on the compiler’s
general-purpose register allocator.

The main application thread continuously polls the sema-
phore (again, a cheap operation due to it being a GPP register)
to retrieve which SW Service is currently required by the HA.
Such task switch-avoiding polling is becoming increasingly
common in many modern device drivers [16], [17].

At first glance, the weakness of this scheme appears to be
that the main application thread continues to execute under
control of the Linux scheduler, thus eliminating the advantages
of the quick semaphore operation. While an instinctive response
would be to increase the scheduling priority of the main thread,
such steps should only rarely be necessary in practice: If
operations are so latency-sensitive that they would suffer even
from at most one scheduling round (which might occur during
the main thread if the HA execution period exceeds the allotted
time slice of the process), they can be moved to the callback
handler itself and thus be executed immediately on receiving
an interrupt. Remember that code in the callback has the same
capabilities as in the main thread. We term these combined
measures for achieving our LOWLAT objective FastPath and
will show in Section 9 how they lead to significant reductions
in interrupt latency. They support the fast HA/SW switches as
required by our execution model and allow a finer GPP/HA
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...
// get pointer to HA registers
ha = acs_get_ha_regs(NULL);

printf("ha[0] Value after RESET = %x\n", ha[0]);

// write new value
ha[0] = 0x87654321;
printf("ha[0] New value = %x\n", ha[0]);

Fig. 9. Fast Variable Exchange

partitioning granularity. Interestingly, the reduced interrupt
response time has proven to be nearly independent of the
system load in our experiments.

In addition to quick GPP/HA signaling, LOWLAT also
requires the low-latency exchange between GPP variables and
HA registers (live variables). When memory-mapping the HA
registers, the GPP can read a value in 20 ns and write it in 40 ns.
Since SW Services generally require only very few variables
[40], the transfer time is negligible relative to the signaling
latency (which takes several microseconds, see Section 9).
Figure 9 shows sample code for such a live variable transfer.

7 HIGH-PERFORMANCE MEMORY ACCESS

LOWLAT is only one requirement for an efficient adaptive
computer. Section 5.2 already discussed that the vendor-
recommended rSoC architecture was not able to fully support
the bandwidth of the physical memory chips. To actually
achieve our HAMEM objective, we now exploit the reconfig-
urable nature of the rSoC to implement alternative approaches.

As with FastPath above, we aim to replace generic, but
potentially complex (and slow) structures with specialized,
but much faster ones. The main idea of our FastLane high-
performance memory interface [36] is the direct connection
of the memory-intensive HA to the central memory controller
without an intervening PLB (shown in Figure 10, please
disregard the optional MARC interface, explained later in
Section 7.1, for the purposes of this introductory discussion).
This approach eliminates two levels of wrapper latency and
area (see Table 3) between HA and memory controller as well
as the need for bus arbitration. Furthermore, it allows the use of
a light-weight double-handshake protocol instead of the more
complex PLB one. Full speed 64 bit double-data rate memory
access is now available to the HA. Also, the PLB-side wrapper
of the memory controller, which is still required to provide the
GPP with memory access, can now forward GPP requests to
the HA (for the slave-mode live variable exchange under GPP
control). This sharing of a wrapper reduces area and the load
on the PLB signals, which improves system-wide timing.

The original version of FastLane [36] has since been im-
proved by doubling its data path width to 128 bits (still running
at 100 MHz on the ML310). The current implementation,
termed FastLane+, has thus access to the full bandwidth of the
memory controller.

7.1 Abstracting Memory Interfaces
During our research in reconfigurable computing, we have
found it extremely useful to introduce higher-level abstractions
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into our system architectures. One such abstraction is the
Memory Architecture for Reconfigurable Computers (MARC,
shown in Figure 11). Instead of being focused on physical
memory characteristics, as a classic memory controller would
be, MARC deals with the semantics of memory accesses.
Specifically, it provides separate ports for regular streaming
accesses and irregular cached accesses. Our HW/SW compiler
COMRADE uses MARC as a general memory abstraction,
thus enabling the generation of HA cores which are portable
between different ACS systems.

MARC, which is described in greater detail in [39], consists
of three main parts:
• The core encapsulates the functionality for caching and

streaming services, the cache tag CAM (Content Address-
able Memory), cache line RAM and stream FIFOs. The
core also arbitrates the back ends and front ends, aiming
to keep all of them working concurrently but resolving
conflicts when accessing the same resource.

• The front ends provide standardized, simple interface ports
for both streaming and caching using a simple double-
handshake protocol.

• The back ends adapt the core to several memory and
bus technologies. New back ends can be easily added as
required.

We have extended MARC with a FastLane+ back-end (Figure
11a) to allow both our library of manually designed as well
as automatically compiled HAs to seamlessly benefit from the
new memory system (see Figure 10, now including the optional
MARC interface).
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7.2 System Architecture Issues
While a more efficient memory attachment of the HA is an
enabler for improved performance, the issue of HA-memory
integration must also be considered at the system level. The
GPP, under control of the OS, continues to require its own
access to main memory and may be intolerant of longer access
delays when the HA uses main memory for extended periods of
time. Note that even on an otherwise idle system, OS services
such as interrupt handling, timers, and process scheduling
cause memory traffic. Bus master I/O devices such as network
interfaces that send/receive data directly from/to memory would
be affected similarly if the HA hogged access to the memory
bus. In both cases, memory responses that are significantly
delayed by HA activity may lead to instability at the system
level (lost packets, imprecise timers, etc.).

Thus, we have to give the GPP and bus master devices
priority over the HA (since the latter can be explicitly designed
to tolerate memory access delays). The arbitration logic
required for this behavior is implemented within FastLane+.
It ensures that the GPP and bus master devices may interrupt
HA accesses, but that the HA always has to wait for an
idle memory bus before proceeding. These rules enforce OS
scheduler decisions at the HW level (OSSCHED): The HA
can never hinder a SW process scheduled for execution by
starving it from memory.

FastLane+ thus switches between active and passive modes.
In passive mode, GPP memory requests which are received
via PLB are transparently passed to the memory controller
(Figure 10a), while the HA cannot access main memory. It can,
however, reply in slave mode to GPP requests to read/write
memory-mapped HA registers (Figure 10b, also see Section 6).
Such a slave access can occur in parallel to a memory transfer,
e.g., by a bus master device. In active mode, the HA is granted
access to main memory (Figure 10c). Should the GPP request
memory during that time, that request is briefly delayed until
the currently active HA memory transaction can safely be
terminated (obeying memory controller access protocols). Note
that the reverse is not true: In passive mode, the HA can never
interrupt a GPP access to memory.

8 OS INTEGRATION: VIRTUAL MEMORY

While FastLane+ allows the highly efficient sharing of physical
memory between the HA and the rest of the system (GPP, bus
master devices), this issue also has to be considered further at
the OS level, specifically in terms of both efficient and secure
integration.

Integrating a fully master-mode capable HA into an OS that
supports virtual memory (VM) is not trivial. The GPP relies
on a dedicated MMU (see Figure 12) to translate the virtual
user space addresses which are used in SW applications into
physical addresses suitable for sending out on the PLB. The HA,
however, traditionally cannot access the GPP-integrated MMU
and physically addresses memory. In general, this implies that
HA/SW communication in a VM setting has to use both virtual
and physical addresses. Furthermore, the GPP has to ensure
that all data is physically present in memory before the HA is
started, since the HA usually can neither initiate nor handle page

GPP

HA
DMA
buffer

MMU

0x01004000
virtual

0x12345678
physical

0x12345678
physical

RAM

SW

HW

Fig. 12. Hardware and software addressing of memory

faults. The next sections describe three increasingly capable
approaches for HA/SW interaction in a VM environment.

8.1 Initial Approach: In-Memory DMA Buffer
In Linux, a direct memory access buffer (DMA Buffer) is the
simplest approach to the problem. It consists of a contiguous
range of pages locked into physical memory. As described
above, a DMA Buffer requires the use of both physical (in the
HA) and virtual addresses (on the GPP) for the same memory
locations.

In Figure 12, a SW program has allocated a DMA Buffer and
passes its physical address to the HA. The SW accesses data in
the Buffer relative to its user space base address 0x01004000,
which the MMU translates to the physical address 0x12345678.
The HA directly uses this physical address to access data in
the DMA Buffer.

A sample program using this approach is shown in Figure
13. Two new DMA Buffers (. . . _in for input to the HA,
. . . _out for data output from the HA) are allocated by calls
to acs_malloc_master(), which returns both addresses for
each Buffer. SW then reads the input data from a file into the
buffer, accessing it via its virtual user space address buffer_in).
The physical addresses of both input and output Buffers are
then passed to the HA, which is now started. It uses physical
addresses to read and write the data from/to its respective
Buffer. Once it finishes execution, SW reads back the results
from the output buffer, once more using the virtual address,
and saves them to a file.

8.1.1 Limitations
DMA Buffers on their own provide basic HA/GPP interoperabil-
ity in a VM OS-compatible fashion. But this usage has a number
of disadvantages with respect to our requirements on ACS
architectures (Table 1). Since the HA and the GPP use different
addresses (physical and virtual), it is impossible to share
pointer-based data structures (very common in C programs)
between HW and SW processing. Such a restriction violates
our ADDRESS requirement. While the general approach is
easy to implement, using two addresses for the same data will
be unfamiliar to many SW developers. Furthermore, initialized
data kept in a program’s static .data or .bss segments, as well
as variables dynamically allocated on heap and stack have to
be explicitly copied to and from the DMA Buffers if they
are to be processed by the HA. These copy operations, which
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...
// get virtual address pointer to HA registers
ha = acs_get_ha_regs(NULL);

// request memory for input and output arrays
// retrieves both virtual and physical addresses
buffer_in =
acs_malloc_master(NUM_WORDS*sizeof(*buffer_in),

(void **) &buffer_phys_in);
buffer_out =
acs_malloc_master(NUM_WORDS*sizeof(*buffer_out),

(void **) &buffer_phys_out);

// fill buffer from file using virtual address
fread(buffer_in, sizeof(*buffer_in), 1, file_in);

// transfer physical addresses to HA
ha[REG_SOURCE_ADDR] = buffer_phys_in;
ha[REG_DEST_ADDR] = buffer_phys_out;
// number of data words
ha[REG_COUNT] = NUM_WORDS;
// start command
ha[REG_START] = 1;

// wait for end of computation (IRQ)
acs_wait();

// write buffer to file using virtual address
fwrite(buffer_out, sizeof(*buffer_out), 1, file_out);
...

Fig. 13. API example for DMA Buffer

are required before and after every HA execution, can take a
significant amount of time (see Section 9.3) and would violate
our requirement HAMEM.

Linux DMA Buffers are also generally considered as non-
cacheable memory areas. This reflects their normal (non-ACS)
use for communicating with bus-master I/O devices. Since
these devices can write to the Buffer without the GPP being
aware of it, disabling caching prevents the GPP from reading
stale cached data instead of the current Buffer contents. While
this approach performs acceptably with the usual limited Buffer
sizes (≈ 64KB), it is inappropriate in an ACS scenario that
potentially needs to share much larger data structures between
GPP and HA. If we were to mark such a large block non-
cacheable, all GPP accesses to it would be significantly slowed,
violating our SWPERF requirement.

8.2 Refined Solution: AISLE

The Accelerator-Integrating Shared Layout for Executables
(AISLE) is a refinement of the basic DMA Buffer technique.
We now keep all data areas of a SW executable (stack,
heap and data segments) inside of a larger DMA Buffer at
runtime, thus eliminating the time-consuming copy operations
[37]. This also has the effect of making pointers freely
interchangeable between HA and SW, which fulfills our
ADDRESS requirement. The latter relies on the observation
that the virtual and physical addresses of all data memory
locations now differ only by a constant offset. This offset can
be transparently corrected within the HA address generation
unit, which enables the application on the HA to operate on
the same virtual addresses as user space SW on the GPP. In
this fashion, data is now implicitly shared between HA and
GPP as required by the currently executed algorithm, without
need for explicit copies or pointer relocation operations.

Since AISLE changes the ordering of segments at program
load time, we altered the part of the Linux kernel which is
responsible for loading executables in the common Executable
and Linking Format (ELF) [24] from disk into memory.

The normal in-memory layout of executables is shown in
Figure 14a. Note that due to the demand-paging which is
possible in a VM OS, individual pages of a segment are read
from disk to memory only when they are actually required by
the program (in the form of a page fault). The main task of
the original ELF loader is to establish a mapping between the
underlying disk data and virtual memory addresses: Instructions
in the .text segment as well as various forms of data segments
(.data etc.) are mapped starting at virtual address 0x10000000.
Memory areas that are managed at run-time and have no
underlying data in the executable file (such as the stack and
heap) are mapped to so-called anonymous memory: This will
happen for the heap, growing upward from the end of the
.bss segment, and the stack, growing downward from virtual
address 0x80000000.

Our AISLE arrangement is shown in Figure 14b. At its
heart lies a DMA Buffer, which is allocated at a known virtual
address with a fixed size (16 MB in the Figure, encompassing
addresses 0x10000000 to 0x10FFFFFF). This allocation occurs
when the first AISLE executable is to be loaded. AISLE
executables are standard ELF executables that have a specific
flag bit set in the header and which were created using a linker
script that moves all executable code outside of the DMA
Buffer at link time. Since the HA can only access the DMA
Buffer, the executable code of the program is protected from a
rogue HA, achieving our requirement PROTCODE. This also
exploits the limited DMA Buffer space more efficiently (just
for data storage) and potentially allows the use of narrower
address buses within the HA.

An AISLE executable is no longer completely demand
paged. Instead, in the Linux kernel function do_mmap_pgoff(),
our modified ELF loader now directly reads data from the
executable file into the DMA Buffer. Since the HA does not
have access to the GPP MMU, and thus cannot cause page
faults which would demand-page accessed data from disk to
memory, we have to assure that all data of the program is
present in physical memory before HA execution (but see
Section 8.3 for an alternative approach). Note that executable
code in the .text segment continues to be demand-paged in the
usual fashion even for AISLE executables.

Furthermore, we also have to ensure that dynamic memory
will only be allocated in the HA-accessible DMA Buffer. To
this end, we modified the kernel function do_brk(), which is
responsible for extending the virtual address space of a process,
to hand out memory located in the DMA Buffer instead of
HA-inaccessible anonymous memory. Analogously, we moved
the downward-growing stack into the DMA Buffer by altering
setup_arg_pages(). Note that all of these modifications only
become active if the AISLE flag is set in the ELF header,
conventional ELF executables are fully demand-paged as usual.

HA-internal addresses are clamped by FastLane+ (cf. Section
7) to lie only within the DMA Buffer. We thus not only achieve
PROTCODE for the SW process that controls the HA, but
protect the entire rest of the system (code and data) from a
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potentially erroneous HA (PROTSYS).
Giving the HA the HAMEM ability induces a heterogeneous

multi-processor architecture for our ACS. Cache synchroniza-
tion in such a setting often relies on bus snooping logic or
special bus protocols (MESI, MOESI, etc.). However, such
capabilities are rarely (if ever) present in embedded systems
GPPs. To apply our ACS execution models even in such
restricted architectures, we rely on SW for coherency between
the GPP cache and the (possibly HA-modified) DMA Buffer.

When starting the HA via our control API, we first invalidate
and flush to memory all dirty GPP cache lines that hold
addresses located in the DMA Buffer. Clean lines located
in the Buffer are just invalidated, lines outside of the Buffer
are not affected at all. When SW execution resumes on the GPP
(HA execution is completed or suspended for a SW Service),
all GPP accesses to the Buffer retrieve fresh data. Thus, we can
now make the AISLE DMA Buffer cacheable and allow the
SW process to run at full speed (the SWPERF requirement).

Our AISLE-enhanced Linux fulfills all of the requirements
demanded by the COMRADE execution model in a manner
completely transparent to SW developers: C programs need
neither explicit copy operations, nor specialized management
functions for HA-accessible memory. An example of this is
shown in Figure 15. Memory is allocated by just declaring
variables or using familiar standard C library functions. Only
a single kind of address (virtual) is used in the combined
HA/GPP application.

We have implemented additional ways to customize this
functionality. For example, an HA-accelerated program might
require large I/O buffers that need not be HA-accessible. When
using AISLE in default mode, these buffers would also be
allocated from DMA Buffer space (along with the rest of the
program’s data). However, increasing the DMA Buffer size
comes at a cost: First, more memory is removed from the OS
demand-paged physical memory pool. Second, the HA needs
wider address buses to access the larger DMA Buffer. Large
data structures that do not actually require HA accessibility
thus waste precious DMA Buffer space. To also support
these use-cases efficiently, optional calls in our SW API can
explicitly request HA-inaccessible memory from the extended
heap (shown as .ext heap in Figure 14). The functionality is
provided by the standard C library function mallopt(): It can
set a threshold on allocation sizes, that, when exceeded, causes
an expansion of the entire heap. This expansion uses the mmap()

call that will add new virtual memory outside of the normal
HA-accessible area to the heap. Known SW-only data is thus

...
// get virtual address pointer to HA registers
ha = acs_get_ha_regs(NULL);

// memory for input and output arrays
// in standard program data area
int buffer_in [NUM_WORDS];
int buffer_out[NUM_WORDS];

// fill buffer from file using virtual address
fread(buffer_in, sizeof(*buffer_in), 1, file_in);

// transfer to HA same virtual addresses shared with GPP
ha[REG_SOURCE_ADDR] = buffer_in;
ha[REG_DEST_ADDR] = buffer_out;
// number of data words
ha[REG_COUNT] = NUM_WORDS;
// start command
ha[REG_START] = 1;

// wait for end of computation (IRQ)
acs_wait();

// write buffer to file using virtual address
fwrite(buffer_out, sizeof(*buffer_out), 1, file_out);
...

Fig. 15. API example for AISLE

prevented from bloating the AISLE DMA Buffer.

8.2.1 Limitations
AISLE fulfills our requirements, but does have limitations.
One of these is the mostly static size of the underlying DMA
Buffer: It is allocated with a fixed size when starting an AISLE
program (generally the maximum size of static and anticipated
dynamic data). While resizing the Buffer at run-time is possible,
this is a relatively slow operation. Also, as already described
above, the Buffer physical memory is no longer available for
demand paging. This can slow down program loading (since
data areas are always completely loaded to memory instead
of being demand-paged) as well as the entire system (reduced
physical memory can lead to more paging).

8.3 Full Virtual Memory Support in the HA: PHASE/V
In contrast to the light-weight, but limited AISLE technique,
our Processor Hardware-Accelerator Shared Environment with
Virtual Addressing (PHASE/V) [38] promotes the HA to a fully
capable VM participant. PHASE/V shares the complete virtual
address space between GPP and HA (instead of just a DMA
Buffer as in AISLE). All VM features, such as demand paging,
swap space, copy-on-write, and file-backed mmap() mappings,
are now supported for both HW and SW applications. Both
AISLE limitations (slower program loading, reduced physical
memory for paging) are lifted with PHASE/V.

These enhanced capabilities are accompanied by a signif-
icantly increased implementation complexity. The PowerPC
405 which is employed as GPP in our ACS does not allow
external access to its MMU (Figure 16) and is thus typical for
most embedded processors. Hence, we implemented a separate
MMU in the HA to allow it VM operations independently of
the GPP MMU. This HA-MMU manages a TLB of 64 direct-
mapped entries which is implemented in a carefully tuned
manner for our Virtex II Pro FPGA: Lookup-tables (LUTs) in
RAM mode are used to compose the memories holding the
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physical address translations and tags. Such LUT-RAMs have
64 entries, each 1. . . 2 bits wide, which can be read in a single
cycle. Since we use 4 KB pages (for compatibility with Linux),
a 32 bit virtual address has a tag component of 14 bits, 6
bits of direct-mapped TLB index, and 12 bits page offset. We
employ seven 2-bit RAMs with 64 entries each (RAM64X2S in
Figure 17) to hold the tags. The physical page address would
require 20 bits to cover the entire 32 bit address space (due to
the 4 KB pages). However, since the stock ML310 board that
we use as ACS only has a total of 256 MB physical memory,
16 bits of physical page address suffice in practice. These fit
in eight RAM64X2S blocks (leading to the total of 15 blocks
shown in the Figure). The tag comparator itself is realized
using the fast carry-chain logic that is present in the Virtex II
Pro CLBs.

When the HA initiates a memory operation using a virtual
address (e.g., a load node in the HA data path, see Fig. 16a), a
tag lookup is performed. On a hit, the virtual-physical mapping
is present as an entry in the physical address translation LUT-
RAM, and delivered to main memory (via FastLane+) within
a single cycle (achieving HAMEM). On an HA-TLB miss,
a walk of the page tables in main memory is required. We
achieve this by implementing a small controller Finite State
Machine (FSM, cf. Fig. 16) that can evaluate the OS kernel-
maintained data structures (Page Global Directory and Page
Tables) to determine the correct mapping and cache it in the
HA-TLB for later re-use.

Beyond virtual-physical address translation, we also need to
handle page faults (if no physical memory page is mapped to a
virtual address). This case will be detected when a page table
walk performed by the HA-MMU cannot determine a valid
mapping. Since handling page faults can get very complex
(e.g., fetching data from disk or over a network), we rely on
the standard OS mechanisms and just initiate the process. This
is done by our FastPath signaling scheme (Section 6), which
conceptually treats the page fault as just another SW Service
(shown as signal Page Fault in Fig. 16b). It is the responsibility
of the Linux kernel to fetch the missing page frame and update
the page tables (signal read/write). As usual for a SW Service,
execution switches back to the HA afterwards (signal Resolved,
Fig. 16c).

Handling the current page fault can cause the eviction of
pages that are already resident in physical memory. In this
case, they also have to be removed from the HA-TLB if they
have a valid entry there. This is achieved by modifying the
Linux kernel function flush_tlb_page(), which is the only
function involved with page flushing / swapping in low-memory
situations, to update both GPP- and HA-MMUs.

GPP-HA cache coherency in PHASE/V is handled in
SW identically to AISLE. Finally, PHASE/V can support
multiple HAs, either sharing the same HA-MMU, or using HA-
exclusive ones (this would require additional inter-HA-MMU
synchronization mechanisms, though).

8.3.1 Limitations
While PHASE/V is much more capable than AISLE, it is also
more costly: It requires more HW (≈ 300 FPGA slices, see
Table 4) and is also susceptible to the same performance risks
as a GPP MMU: When an application’s (SW or HW) working
set of virtual addresses exceeds the TLB (GPP or HA) capacity,
the resulting TLB misses cause frequent page table walks (also
known as TLB thrashing) which can lead to severe application
slow-downs (this will be examined in Section 9.3). To some
extent, this could be countered by larger or fully associative
TLBs. However, in addition to requiring even more area, both
of these approaches generally have slower implementations
(violating our current single cycle translation at 100 MHz).

9 EVALUATION

Each component of the different solutions that we have
discussed is now evaluated separately to better understand its
respective impact on the overall system performance. We first
show the advantages of our FastPath quick signaling solution
over standard OS IRQ handling and then give results for the
FastLane+ enhanced memory system. Finally, we compare the
techniques for enabling HA-operation in a VM environment.

9.1 FastPath

The main contribution of FastPath is a reduced HA/SW
signaling latency. Since a common aim of using an ACS in the
first place (instead of a sole GPP) is improved performance, we
will examine the impact of signaling latency (communication
overhead toverhead) on the effectively achievable speed-up.
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Fig. 18. Effective speedup as function of HA execution
time and raw HW acceleration factor for different latencies

We compute the raw GPP-to-HA acceleration factor as
HWaccel = tSW /tHA, the ratio of times for running an algorithm
(just part of a program) in SW to that of performing the
same computation on an HA. Note that this raw factor does
not consider the communication overhead yet. However, the
effective speed-up factor for that part of the program also
includes the overhead:

effective speedup =
tSW

tHA + toverhead
=

tHA ·HWaccel

tHA + toverhead

The communication overhead is computed as toverhead =
tIRQ + tsem. We define tIRQ as the time interval between the HA
initiating an interrupt and the reaction in the user space interrupt
handler (e.g., determining the interrupt cause by reading from
an HA register). tsem is the time between the handler setting
the semaphore and the resumption of the main program thread.

We measured these times for different scenarios using
dedicated cycle-accurate HW counters. The standard Linux
interrupt path (employing the usual tasklet-driven wait queue
in lieu of our fast semaphore) on the ML310 ACS has
toverhead = 62µs. FastPath achieves a toverhead between just
2.7µs and 9.6µs (best case: tIRQ = 2.1µs, tsem = 0.6µs; worst
case: tIRQ = 8.8µs, tsem = 0.8µs). Combined with the negligible
times for the live variable transfer (20. . . 40ns, see Section 6),
we can thus shorten the total overhead by a factor of 6.5x to
23x over the standard case (achieving LOWLAT).

If a serialized single-threaded execution model (the default
Linux case) is not required, the IRQ-handling callback function
(which has full access to virtually addressed user space data and
system libraries) can directly perform latency-critical operations
without synchronizing to the main thread (thus creating a
dedicated callback thread), which would improve toverhead by
another 9. . . 22% even over our fast register-based semaphore.

Looking further, FastPath running on our relatively slow
300 MHz embedded GPP outperforms even specialized real-
time variants of Linux, such as RTAI/LXRT, or carefully tuned
versions of recent Linux 2.6 kernels running on multi-GHz
desktop CPUs [18].

Figure 18 shows the system-level effects of the different
values for toverhead . It graphs the achievable effective speed-up
(z-axis) for a given raw HA speed-up (HWaccel , y-axis) and
time spent in the HA before switching back to SW execution
(tHA, x-axis).

TABLE 4
FPGA areas for rSoCs with specified HA at 100 MHz clock

HA Type Slices 4-LUTs Flip-Flops BlockRAM
Copy-V2P-Ref 8408 9868 7596 28
Copy-FastLane+ 6952 7904 6408 81
List-DMA 6660 7450 6001 24
List-AISLE 6664 7451 6009 24
List-PHASE/V 6898 7731 6146 24

The bottom surface shows the effective speed-ups that are
achievable when using the standard Linux signaling mechanism,
the two upper surfaces show the impact of FastPath (top: best-
case latency, middle: worst-case latency). The impact of an
HA on total performance obviously increases when the HA is
used for longer periods of time tHA and it can actually leverage
the raw speedup itself. Shorter values for tHA, either due to
smaller algorithms being offloaded to the HA, or due to the
HA requesting SW Services, reduce the effective speed-up. For
very short HA execution times, the relatively high signaling
overheads turn even high raw speed-ups into small effective
speed-ups (or even slow-downs, effective speed-up < 1).

More interesting is the behavior for intermediate values
of tHA. E.g., the two surfaces representing FastPath show
that 90% of the raw speed-up is effectively achievable after
just 23 . . .75µs of HA execution time, while the conventional
signaling requires much longer HA execution times to achieve
similar speed-ups.

With FastPath, HW/SW partitioning can be performed at
much finer granularity than using the conventional scheme:
Even smaller kernels that would not yield actual speed-ups
(due to the communication overhead) can now effectively be
accelerated in HW.

9.2 FastLane+

When evaluating the system-level performance impact of
FastLane+, we consider the SW and HW sides separately: To
stress-test the memory system and buses, we use an HA which
repeatedly copies a 2 MB buffer from one memory location
to another as quickly as possible, yielding 4 MB of reads and
writes per turn. The area statistics of the vendor reference and
FastLane+ implementations of the rSoC containing this Copy-
HA are given in Table 4. On the SW side, we run a number of
programs (independently of the Copy-HA) which we carefully
selected for their specific load characteristics (described below).
We then measure both the SW and HA execution times for
different combinations, which include the extreme cases of
either the HA or the GPP being idle.

Our test suite of programs (described in greater detail in
[37]) contains both desktop and embedded applications:
• scp provides a mix of CPU- and I/O load [30]
• netcat exercises network I/O exclusively [31]
• gcc interleaves short I/O- and long calculation phases [32]
• GSM provides codec stream data processing [33]
• imgpipe implements multi-stage image processing [34]
Our first test scenario measures the memory performance

which is achieved by the Copy-HA while the given SW program
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TABLE 5
Copy-HA runtimes and available throughput using original

and FastLane+ memory subsystem implementations
under various GPP software loads

GPP SW V2P ref design FastLane+
Load Exec Time Mem Rate Exec Time Mem Rate

[ms] [MB/s] [ms] [MB/s]
idle sys 18.81 213 5.62 1424
scp 55.11 73 12.61 634
netcat 53.07 75 19.51 410
gcc 32.14 124 17.98 445
GSM 19.05 210 6.03 1326
imgpipe 44.67 90 19.37 413

TABLE 6
Software run times and slow-down on idle system and

using Copy-HA attached by original and FastLane+
memory subsystem implementations

GPP SW HA inactive V2P ref design FastLane+
Load [ms] [ms] slow [ms] slow
scp 4831 61052 1263% 5788 120%
netcat 3130 55938 1787% 3843 122%
gcc 40686 166655 409% 52526 129%
GSM 25981 40045 154% 27357 105%
imgpipe 3545 5109 144% 3806 107%

is executing on the GPP. In Table 5, we show both the HA
execution time to perform the copy as well as the corresponding
memory throughput. The HA is integrated with the rSoC first
by the vendor-provided Virtex II Pro reference design, and
then using our FastLane+ architecture. The advantages of our
approach are obvious: FastLane+ increases the throughput
significantly under all SW load scenarios, in some cases by
a factor of 8.6x. This considerably improves the HAMEM
requirement of our execution model. With only Linux (but
no other user applications) running, we can make 89% of the
theoretical physical memory throughput available to the HA.

Next, we evaluate the effect of running the HA at full speed
on the execution times of the SW applications on the GPP.
We give three run-times for each application, corresponding
to the Copy-HA being inactive (not performing transfers), and
the two ways of attaching the Copy-HA to the system. The
column ‘slow’ shows the increase in SW execution time when
the Copy-HA is active (e.g., a value of 107% here indicates that
the application is 7% slower than with an inactive Copy-HA).

The use of the vendor-provided reference design leads to
significant slow-downs (up to 17.9x) of SW programs once
the Copy-HA becomes active. With FastLane+, though, all
SW programs are significantly less slowed, despite the high
memory throughput that is achieved by the HA copying data
in the background. Our technique to accomplish OSSCHED
by giving the GPP absolute priority over the HA with regard
to memory access is thus shown to be successful.

The differences in slow-down for FastLane+ are due to
the different load characteristics: gcc is slowed most, since
it does only little I/O but spends much time transforming in-
memory data structures (preempting the Copy-HA). scp and
netcat perform more I/O and fewer memory accesses (less

interference with Copy-HA), and are thus slowed less. gsm
and imgpipe run mostly out of the GPP caches and execute
almost without interference from the Copy-HA. Note that the
reference design has a different slow-down profile: The HA
and GPP share not just main memory, but also the PLB which
arbitrates between accesses to memory and I/O devices. Thus,
the more I/O intensive applications in the reference design are
slowed down further by the Copy-HA than with FastLane+.

If even higher memory throughput is required and interrupt
processing can be stopped temporarily, the GPP could be
completely halted (e.g., by freezing its clock signal). In this
case, FastLane+ does indeed make 100% of the physical
memory bandwidth available to the HA and outperforms the
vendor-provided solution again, which just reaches efficiencies
of 25% for reading and 33% for writing in this scenario due
to the limited PLB burst length and frequent rearbitration.

Since FPGAs are often used in low-power embedded
environments, we have also evaluated the power impact of our
techniques. However, our measurements show that the active
power consumption of our accelerators pales in comparison to
that of the PowerPC and the rest of the system (e.g., network
interfaces, memories, etc.). The peak difference between system
idle power and power consumed with both CPU and accelerator
under full load is less than 5%. This does not come as a
surprise, since our hardware components encompass at most a
few hundred LUTs and Flip-Flops, the entire rest of the SoC
remains unchanged. Of course, total energy consumption is
significantly reduced by our approach since we achieve much
shorter hardware and software execution times (see Table 5,
compare with Table 6).

9.3 AISLE vs. PHASE/V
AISLE and PHASE/V are evaluated using a HA which
exploits the ADDRESS capability of our system: SW creates
a randomly linked list, with each list element consisting of
a 32b integer value and a pointer to the next element. The
List-HA traverses the list and performs a dummy operation
on the value (if odd, increase by one). We picked such a
trivial operation on purpose: This benchmark is designed to
test how well the List-HA accesses irregular pointer-based data
structures (instead of the regular data streaming so common to
other ACS applications). We actively avoid the more complex
computations that are amenable to greater HA acceleration,
since they would unfairly bias the results toward the HA when
comparing it to the GPP.

In Table 7, we compare the execution times for different
list lengths of a pure SW version of the application with three
versions of the List-HA (using a raw DMA Buffer, AISLE,
and PHASE/V for memory addressing). The area statistics for
the variants are shown in Table 4. In the raw DMA case, the
SW has to explicitly copy the list into the DMA Buffer for
HA processing. We ensured that both the original and the copy
have the same memory alignment to avoid the slow pointer
relocation operation that would otherwise be required.

The List-HA using AISLE outperforms the 300 MHz
PowerPC 405 GPP by a factor of ≈ 2.5x. It is 8x faster than
the conventional approach of explicitly copying data to HA-
accessible memory. Note again that we are concentrating solely
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TABLE 7
Runtimes of the pointer-handling application

List length Software List-HA using
DMA/copy AISLE PHASE/V

16K 7.4 ms 27.6 ms 3.4 ms 3.5 ms
32K 15.8 ms 55.1 ms 6.8 ms 12.2 ms
64K 33.0 ms 110.1 ms 13.7 ms 29.5 ms

128K 68.3 ms 220.1 ms 27.4 ms 64.0 ms

on evaluating data access times, the potential for accelerating
a more complex algorithm by the List-HA is deliberately not
considered here.

When comparing AISLE and PHASE/V in Table 7, it
becomes obvious that PHASE/V (as all TLB-based VM
architectures) is susceptible to thrashing when the working
set of virtual addresses becomes too large. This occurs above
16K elements (below, PHASE/V performance matches that of
AISLE). In all cases, a List-HA using PHASE/V is still faster
than a SW implementation. The designer (or compiler) can
thus trade-off between the more efficient AISLE and the full
VM participation of PHASE/V on a per-application basis.

10 CONCLUSION AND FUTURE WORK

We have introduced a fine-grained model of execution which
orchestrates the interaction between conventional GPPs and
reconfigurable HAs. Using an actual HW prototype, we
demonstrated that, by making suitable architecture choices at
the HW as well as OS levels, the fine partitioning granularity
which is possible with the model is actually supportable in
practice. Thus, even smaller fragments of code can now be
moved to the HA with effective speed-ups.

With our improved memory interface FastLane+, we increase
throughput by up to 8x and also show that HAs can achieve
performance gains not only for conventional stream processing,
but also for pointer-chasing applications that were not efficient
using prior interfaces (such as PLB). This will hold especially
true for algorithms working on large data sets (such as for
railway routing graphs [41]) that easily exceed the cache
capacities of modern processors, also reducing them to the
raw speed of the main memory system. Modern reconfigurable
devices are already reaching these speeds, but beyond that can
then exploit increased parallelism, with regard to both number
of memory banks and processing elements.

We have raised the SW abstraction for developing hybrid
GPP/HA applications by shielding the programmer from having
to explicitly manage main and HA-accessible memory, even
in virtual memory settings. Depending on the needs of the
application, a developer can choose between the full VM
capabilities of PHASE/V and the more restricted, but faster
functionality of AISLE.

Note that while we have used a concrete platform to
practically validate our approach, our techniques are applicable
and generally portable to other target environments.

Increasing the efficiency of PHASE/V is an area of future
work: Even using FastPath, the explicit synchronization of the
MMUs in the GPP and the HA has a relatively high overhead:
The GPP typically requires 210 ns (min. 60 ns, max. 1710 ns)

per page table walk to keep its MMU up to date. This could
be avoided by sharing a reconfigurable MMU between GPP
and HA, and disabling a possible GPP-internal MMU. With
the efficiency of our HA-MMU implementation, this would
not slow down GPP-MMU operations. Other improvements
that are currently under consideration comprise the inclusion
of dynamic reconfigurability into execution model and HW
architecture as well as the sharing of the reconfigurable area
between multiple SW processes.
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