
Chapter 1
Adaptive Computing Systems and their Design
Tools

Andreas Koch

Abstract While reconfigurable adaptive computing has many proven advantages
over conventional processors, in practice, it is often limited to niche applications.
This situation, which we aim to resolve with our research, is often linked to the
lack of programming languages for adaptive computers that are familiar to software
developers. We present a compile flow capable of translating general-purpose C
programs to hybrid hardware/software applications for execution on an adaptive
computer and give an overview of the required advances in compiler technology as
well as in computer architecture and operating system design.

1.1 Introduction

As demonstrated numerous times, reconfigurable computing can have significant
advantages over conventional processors for a wide range of applications [30]. De-
spite these advantages, however, it is only rarely employed outside of academic
settings.

One of the key reasons for this discrepancy is the difficulty of actually program-
ming a reconfigurable computer. Most commonly, this is done by designing a com-
pute architecture for the algorithm from scratch, which is then described in a hard-
ware design language such as VHDL or Verilog.

While this approach can result in very high-performance implementations, it re-
quires programmers to be experienced in computer architecture, digital logic design
and hardware design languages. Only very few software developers actually have
these skills. Thus, the power of reconfigurable computing remains unavailable to
most potential users.

Andreas Koch
Embedded Systems and Applications Group, Dept. of Computer Science, Technische Universität
Darmstadt, Germany, e-mail: koch@esa.cs.tu-darmstadt.de

1

2 Andreas Koch

In recent years, many attempts have been made to close this gap and lift the
abstraction level of reconfigurable computer programming to that of conventional
software-programmable processors.

To this end, we have been working on Comrade, a compiler for automatically
translating general-purpose ANSI C programs for computers containing both a con-
ventional and a reconfigurable processor. As we will describe below, the choice of
C with its pointers and possibly irregular control flow has significant effects on both
the compile flow as well as the target computer architecture and its operating system.

Our DFG-funded project “Adaptive Computing Systems and their Design Tools”
was initiated prior to the DFG Priority Programme 1148, but has been associated
with the Programme right from the start due to the thematic closeness. Since the
schedules of our on-going project and the concluding Priority Program are thus out-
of-phase, this report will concentrate on the major results achieved during the era of
the SPP. Sect. 1.7 will give some perspective on the issues we are addressing in our
current research.

1.2 Execution Model

In contrast to traditional research on High-Level Synthesis (HLS) [10] our target ar-
chitecture is assumed to always contain a conventional software-programmable pro-
cessor (SPP) in addition to a reconfigurable processor. While the compute-intensive
parts of a program can be implemented in a spatially distributed fashion for high-
performance, other parts of the program that are either unsuitable (e.g., I/O using
printf or similar functions) or that are only used rarely and would not justify the
permanent allocation of computing area (e.g., error handling) are left in software on
the SPP.

This target architecture also avoids a basic problem of High-Level Synthesis,
which aimed to translate the entire program into hardware: If the input program
contained a construct (e.g., function calls, irregular control flow, dynamic memory
allocation, etc.) that the specific HLS algorithm could not handle, the translation
was aborted completely. While we also intend to translate our input language to
the widest practical degree, our flow can always fall back to the SPP to execute
program parts that the flow cannot process yet due to implementation limitations, or
that would exceed the capacity of the reconfigurable device. This allows incremental
development of the compiler, with increasing parts of the profitable computations
of a program being moved for acceleration to the reconfigurable device.

We call such an architecture an adaptive computer system (ACS). To be more
precise, we differentiate between the underlying reconfigurable device (RD), which
can be an either an FPGA or a coarse-grained reconfigurable array (CGRA), and the
reconfigurable compute unit(s) (RCU) that can be mapped to it.

When combining multiple processing elements (such as the SPP and RCU of
an ACS), the manner of their interaction must be specified. This is done by the
execution model (discussed in greater detail in [24]).

1 Adaptive Computing Systems and their Design Tools 3

Different ACS compilers employ different models, which differ mainly in the
granularity of the SPP/RCU partitioning.

CPU

Sample code

Hardware
Accelerator

g() {
 ...
 h();

}
 ...

h() {
 ...
}

f() {
 ...
 g();

}
 ...

f() { ... g(); ...}
g() { ... h(); ...}
h() { ... }

4.

2.

3.

1.

Fig. 1.1 ASH Execution Model [24]

The ASH system [3] can switch between the SPP and a hardware accelerator
(note: not an RCU, ASH targets ASICs) only at procedure boundaries shown in
Fig. 1.1). This rather coarse granularity leads to an entire procedure being ineligible
for hardware acceleration even if only a single non-compilable construct is present.
ASH exceeds classic High-Level Synthesis by allowing software functions to be
called from the hardware accelerator, however.

Other systems, such as GarpCC [4], Nimble [29] and our own Comrade, allow a
finer-grained partitioning within of functions. For the following discussion, consider
the sample program shown in Fig. 1.2.

...
u = (int) sqrt(a + b);
v = c - d;
for (n=0; n<1000; ++n, p=p->next) {

v += u;
if (v > 10000) {

printf("too large, rescaling");
v *= 0.271844;

}
p->val = v;

}
w = 53 * v;
...

Fig. 1.2 Sample program with RCU-infeasible statements

The program contains a typical hardware kernel (a loop) which is surrounded by
code with a low degree of instruction level parallelism (ILP) statements. For this
example, we assume that the functions sqrt and printf are not efficiently compilable
to an RCU. Thus, they, as well as the rest of the low-ILP code, should be left on the
SPP.

All three of these finer-partitioning compilers can successfully perform this op-
eration. However, they differ in their handling of the RCU-unsuitable code within

4 Andreas Koch

SW Exception Handler

HW/SW Decision at Runtime

if (useRCU())
 startRCU();
else
 // stay in SW;

Executed on SPP Executed on RCU

if (n >= 1000)
 goto loopexit;
v += u;
if (v > 10000) {
 printf("warning: v too large, rescaling");
 v *= 0.271844;
}

p−>val = v;
++n; p=p−>next;

Low−ILP

u,v,n,p

v,n,p

HW kernel

v

Low−ILP

loopexit:

w = 53*v;

u = (int) sqrt(a + b);
v = c − d
n = 0;

if (n >= 1000)
 exitToSW(0)
v += u;
if (v > 10000)
 exitToSW(1);
p−>val = v;

p = p−>next;
++n;

Fig. 1.3 Example in the Nimble execution model [24]

the loop kernel. Using dynamic profiling, they might discover that the condition
v > 10000 occurs only rarely, and thus moving the loop to the RCU is profitable
despite the infrequent switches to the SPP (for the printf and the floating-point mul-
tiplication). Such a switch requires exchanging the live variables between the two
processors and can have a significant overhead. After a switch to the SPP, GarpCC
and Nimble then execute the entire remainder of the current loop iteration in soft-
ware (they generate both hardware and software versions of each kernel), shown in
Fig. 1.3. Only when re-entering the loop for another iteration is the decision made
whether to continue on the SPP or switch back to the RCU.

The model we use in Comrade (shown in Fig. 1.4) is even more fine-grained: We
can now switch between individual statements, moving just the printf and the float
multiplication to the SPP as a so-called software service. After completion of the
service, execution switches back to the RCU immediately. Note that, with the finer
granularity, fewer live variables need to be transferred between the two processors.
In this fashion, a single hardware kernel can access multiple software services, each
with just the code for the requested function.

The exchange of live variables has far-reaching architectural consequences when
pointers are to be supported (as we have to do for C in Comrade). In this case, ad-
dress arithmetic performed on the SPP and RCU must be compatible, and both pro-
cessors must share a coherent view of memory (reads and writes can be performed
by both sides). This will be discussed in greater detail in the next Section.

1 Adaptive Computing Systems and their Design Tools 5

SW Service for Hardware

printf("warning: v too large, rescaling");
v *= 0.271844;

Low−ILP

Low−ILP

Executed on SPP Executed on RCU

HW kernel

u,v,n,p

v

v

v

u = (int) sqrt(a + b);
v = c − d;
n = 0;

w = 53*v;

if (n >= 1000)
 exitToSW(0)
v += u;
if (v > 10000)
 exitToSW(1);
p−>val = v;
++n;
p = p−>next;

Fig. 1.4 Example in the Comrade execution model [24]

1.3 ACS Architecture

The Comrade model of execution requires a number of capabilities from its under-
lying computing platform to be practical. As explained above, our model requires
low-latency SPP-RCU communication for the exchange of the live variables. Note
that this does not have to be a high-bandwidth link, since generally only very few
variables have to be exchanged (due to the small scope of our software services).
Pointer addresses must be freely exchangeable across the SPP-RCU boundary, and
both processors must have high-throughput access to a shared main memory, possi-
bly in the presence of virtual memory (e.g., when running the ACS under a full-scale
Linux OS). For security reasons, the RCU must of course respect the access permis-
sions imposed by memory protection. If these apply at the process level (the general
case for Unix variants), the code of the SPP software within the hybrid SPP/RCU
process should also be inaccessible to a possibly rogue RCU. Furthermore, the RCU
must be prevented from interfering with OS scheduling decisions, e.g., by denying
other processes (or the OS itself) access to main memory. Finally, the software part
of a hybrid SPP/RCU process should execute at full speed, without slow-down due
to the RCU.

A much more detailed discussion of these aspects can be found in [23, 24, 25].

6 Andreas Koch

1.3.1 Reconfigurable System-on-Chip Architecture

To achieve these goals and actually make the Comrade execution model feasible
on real hardware, we implemented suitable ACS architectures as reconfigurable
systems-on-chip (rSoC), at first using the Xilinx Virtex II Pro-based ML310 plat-
form. The II Pro FPGAs embed SPPs (300 MHz PowerPC 405 CPUs) into a recon-
figurable logic array suitable as RCU. Since the interfaces, both between SPP and
RCU as well as the rest of the system (memory, I/O, etc.) are mainly realized us-
ing reconfigurable logic, they can be changed to fit the requirements we formulated
above.

������
�����	��

RCU

��

���

���
���

���
�������

�������
���
�����

���

���

(a) via PLB [24]

������
�����	��

�
�

��

��

���
���

���
�����

���

���

�������

�
�
�
��

�
�
�
�

�
�
�
��

��

 �!

 ∀! #!

(b) via FastLane+ [25]

Fig. 1.5 RCU integration techniques

The default system-on-chip architecture supported by Xilinx EDK design tools
is shown in Fig. 5(a). Note that both SPP-RCU communication as well as memory
accesses from the RCU have to pass through the single Processor Local Bus (PLB).
While the multi-purpose use of such standard busses allows the flexible composition
of SoC architectures, the performance suffers: The standard approach achieves a
transfer rate of just 213 MB/s (of the theoretically possible 1600 MB/s) for RCU
memory accesses while the SPP executes a (mostly idle) Linux.

To improve RCU-to-memory bandwidth, we developed the FastLane+ architec-
ture (Fig. 5(b)): Now, the RCU is attached directly to main memory using a ded-
icated 128b wide bus. This increases the bandwidth available to the RCU signifi-
cantly (now to 1424 MB/s, again, while Linux is idling on the SPP), fulfilling one
our requirements stated above. But in addition, FastLane+ ensures that the SPP has
override priority when accessing memory and can even terminate RCU-initiated
transfers. This guarantees that the OS (and programs chosen by the OS scheduler)
are never starved by lack of memory bandwidth (a critical aspect for OS operations
such as interrupt handling or time-critical disk or network I/O).

Since the RCU, acting as a slave, can be accessed from the SPP via the PLB,
SPP-RCU transfers (such as the live variable exchange required when starting the
RCU, or performing a software service on the SPP) can also be performed quite
quickly (just 20ns/40ns per 32b variable read/written).

1 Adaptive Computing Systems and their Design Tools 7

Fig. 1.6 RCU-SPP Signalling
[25]

User program

SPP

Kernel

RCU

IRQ

start

live variables

sema-
phore

handler main
thread

FastPath

normal path

Registers

1.3.2 Operating System Integration

Improving the data transfer between SPP, RCU and memory is necessary to imple-
ment our execution model in a real system, but does not suffice on its own. To also
operate securely under a protected virtual memory scheme while exchanging point-
ers, running software applications at full speed (unhindered by the presence of an
RCU), and allowing low-latency RCU-SPP switches (for performing software ser-
vices), the purely hardware architectural measures described above are inadequate:
We now need support from the operating system. To demonstrate the feasibility of
our approach even when running a full-scale OS, we chose Linux (which continues
to grow market share in the embedded systems area) over a less demanding, but
functionally more limited real-time kernel.

1.3.2.1 RCU-SPP Signalling

Normally, the RCU raises an interrupt to get the attention of the SPP (e.g., to provide
a software service). Even in a Linux version patched for low-latency responses, the
processing of such an interrupt takes 62 µs on the ML310 platform. The normal
path (labeled as such in Fig. 1.6) sketches how an interrupt passes through numerous
layers in the Linux kernel, before it finally reaches the handler in the software main
thread of the hybrid HW/SW user program.

Our FastPath approach takes a number of measures to improve the interrupt re-
sponse latency. First, a dedicated interrupt vector on the PowerPC 405 is assigned
the RCU, allowing the bypassing of the kernel interrupt processing layers. Then,
instead of handling the interrupt in a device driver and using mechanisms such as
file descriptors or similar to forward it to the user program, FastPath can jump di-
rectly to a previously registered callback function which executes in context of the
user program (has access to global variables and is subject to access limitations).
The callback is executed in a separate thread in parallel to the existing threads of the
user program. As usual, execution can be synchronized using a semaphore. But in
FastPath, this semaphore is realized using a dedicated special SPP register (instead
of an in-memory data structure that would also cause bus traffic). By proceeding in

8 Andreas Koch

this fashion, we can reduce software service latency down to the 9.6. . . 2.7 µs, an
improvement of 6.5x to 23x over the original implementation. The FastPath latency
on the comparatively slow 300 MHz PowerPC 405 outperforms even special sub-
kernel facilities (such as RTAI and LXRT) running on multi-GHz desktop CPUs
[28].

toverhead = 2.7 µs
toverhead = 9.6 µs
toverhead = 62.0 µs

 0
 2

 4
 6

 8
 10

HWaccel
0 20 40 60 80 100 120 140

tSSW (µs)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

effective speedup factor

Fig. 1.7 Effective speed-up vs. RCU-SPP signalling delay [25]

The accelerated RCU-SPP signalling has a tremendous effect on the practical
partitioning granularity for SPP-RCU execution (shown in Fig. 1.7). To give an
example interpretation: Assuming the RCU executes an algorithm HWaccel = 10
times faster than the SPP, requires an average toverhead = 6.15µs for the RCU-SPP
signalling, and disregarding the time for the software service itself (which would
also need to be executed when running only on the SPP), we can accept a switch
to a software service every tSSW = 55.4µs and still achieve an effective accelera-
tion of 9x over the SPP. With FastPath, the quick SPP-RCU switches required by
our execution model are demonstrated to be achievable on real hardware/software
platform.

1.3.2.2 Shared Virtual Memory

Fast SPP/RCU accesses to a shared physical memory (as described in Sect. 1.3.1)
can be implemented purely in hardware. But for safety and security reasons [34],
protected virtual memory is becoming more common even in traditional embed-
ded OS such as LynxOS, VxWorks, and of course embedded Linux. To support our
model of execution even when running the ACS under such an OS, RCU memory
addressing and accessing must be coordinate with the SPP-side memory manage-
ment unit (MMU). We have implemented and evaluated two significantly different
solutions to this problem.

1 Adaptive Computing Systems and their Design Tools 9

.text .data .bss .heap
.ext
heap heap

.ext
.stack

.stack
.ext
heapheap

.ext
.text .data .bss .heap

DMA Buffer

(a) Conventional program layout on Linux

(b) AISLE program layout with reorganized section order

Fig. 1.8 Conventional and AISLE Program Layouts [24]

Figure 1.8 shows the simpler of the two approaches, the Accelerator-Integrating
Shared Layout for Executables (AISLE) [24]. In this model, we map all data regions
(uninitialized, initialized, heap, and stack) into a so-called DMA buffer by modify-
ing the ELF program loader [1]. A DMA buffer is a contiguous address range ac-
cessible to the RCU that is locked into physical memory (not subject to being paged
to and from disk). This also ensures that the same virtual address will always map
to the same physical address. Thus, virtual↔ physical address translation consists
of just adding/subtracting constant offsets. Analogously, addresses generated by the
RCU can easily be constrained by a simple bounds check to always lie within the
buffer, protecting other processes from a potentially rogue RCU. AISLE also pro-
tects the executable code (the so-called .text segment) of the user program itself
from the RCU by keeping it outside the buffer. In this fashion, both SPP and RCU
operate on the same virtual addresses and can transparently process data stored in
the shared memory (no inefficient copying between SPP- and RCU-accessible mem-
ories is required). Reference [24] explains AISLE in greater detail, also covering
topics such as cache coherency between SPP and RCU, and size management of the
DMA buffer.

Page Frame

Page Frame

addr

Page Fault

Resolved

read/
write

addr

SPP RCU

TLB TLB

load

+

...=a[i]

Page Global Dir

Page Table}SW

addr
4K

4K

read

...
...

addr MMU

FSM

MMU

Fig. 1.9 SPP-RCU shared virtual addressing with PHASE/V [25]

10 Andreas Koch

While AISLE provides the desired functionality in a very efficient fashion (as
will be shown below), it does have a number of limitations: Once the DMA buffer
is allocated, it can be resized only with considerable overhead. In many cases, this
will lead to the maximal size buffer being allocated to the RCU. Since, by its very
nature, the DMA buffer does not participate in paging, it will always occupy its full
size in physical memory.

As a second, potentially more flexible approach, we implemented the Processor-
Hardware Accelerator Shared Environment with Virtual addressing (PHASE/V,
shown in Fig. 1.9) [25]. Here, the RCU fully participates in all virtual memory
operations, including demand paging, variable virtual-physical mappings, and dis-
contiguous physical memory ranges. With demand paging now supported, physical
memory is only allocated when needed and released when required otherwise (in
contrast to the statically pre-allocated DMA buffer of AISLE). Analogously to the
SPP, the RCU uses a translation-lookaside buffer (TLB) to cache virtual-physical
translations (taking only a single clock cycle for a translation), but is fully capable
of performing a walk of the page mapping tables itself to determine as-yet unknown
mappings on a TLB miss. If no physical page is found, the RCU uses the FastPath
signalling scheme to request the SPP to handle the page fault (e.g., load the missing
page from disk). In the reverse direction, the OS on the SPP informs the RCU when
it alters the mappings (e.g., when a memory page is swapped out to disk), causing
the RCU to synchronize its TLB with the one in the SPP.

1.3.3 Evaluation

To stress-test the performance of the different schemes, we use the traversal of a
linked-list, randomly distributed in memory [25]. AISLE and PHASE/V have sim-
ilar performance, until the number of virtual pages in the working set exceeds the
RCU-TLB capacities (which occurs between 16K and 32K list elements). Then,
PHASE/V begins to slow down (e.g., taking 2.3x the time of AISLE at 128K list
elements). However, even in this extreme case, the RCU remains 23% faster than a
pure-software version running of the SPP. Thus, the often quoted maxim that recon-
figurable computing is mainly useful for stream processing has been invalidated by
our research: RCUs can also be faster than SPPs even for highly irregular pointer-
chasing applications. In such scenarios, performance will be limited by the memory
bandwidth, which we can fully exploit with FastLane+ on the RCU.

More detailed evaluations are presented in [24, 25]. On of the experiments also
demonstrates that an active RCU only marginally slows the pure software processes
scheduled by the OS to execute on the SPP. In summary, by taking the appropriate
architecture and OS measures, we have now created an environment which enables
the practical use of the compute model of Sect. 1.2.

1 Adaptive Computing Systems and their Design Tools 11

1.4 Hardware/Software Co-Compilation Flow

Now that we have defined and implemented a suitable reconfigurable target architec-
ture, we can examine the programming tools we developed to make the technology
accessible to software developers.

1.4.1 Overview

The heart of the flow is the Comrade compiler. As usual for modern compilers, it is
organized in a multi-pass manner. First, common compiler operations are performed
(lexing, parsing, machine independent optimization). At this step, the intermediate
representation (IR) of the compiler front- and middle-end is exported from the sys-
tem (as a C program) and subjected to dynamic profiling. As a result, actual execu-
tion frequencies can now be back annotated into the IR to guide further processing.

Based on the profiling data, program is partitioned for SPP and RCU execution
(see Sect. 1.4.2 for more details). The software part destined for the SPP is en-
riched with interface code (to exchange the live variables at SPP/RCU execution
boundaries and start the RCU), exported as a C program and fed into a conventional
software C compiler.

The part to be executed on the RCU needs to be processed further by Comrade.
It is first transformed into a control flow graph (CFG) in Static Single Assignment
form, which forms the base of Comrades hardware-centric intermediate representa-
tion, the Control Memory Data Flow Graph (CMDFG, see Sect. 1.4.3). Hardware-
specific optimizations (e.g., parallelizing memory accesses) are then performed by
transforming the CMDFG. The hardware for the RCU is finally generated from the
optimized CMDFG as separate data path and dynamically scheduled controller (see
Sect. 1.4.4) in the form of RTL Verilog netlists. These are then synthesized together
with the fixed rSoC architecture of the ACS (Sect. 1.3.1), and handed to the FPGA
vendor tools for implementation (map, place, route, bitstream generation).

1.4.2 Profile-based Inlining and Partitioning

Dynamic profiling data is gathered early in the compile process after some machine
independent optimizations (e.g., goto removal) have already been performed. This
profile is first used to inline only the most heavily used functions. In this way, we
avoid the code size explosion (specifically, the associated area requirements on the
RCU) that can occur when inlining indiscriminately.

For partitioning, multiple versions of the loops making up the potential RCU
kernels are created. This is done in an inside-out fashion, starting with just the in-
nermost loop(s) and then widening the scope (possibly merging formerly separate
loops into one kernel candidate) until the RCU area is exceeded. Figure 1.10 shows

12 Andreas Koch

Node 2

Node 3 Node 4

Node 5

Node 6

loop 2

loop 1

(a)
Node 1 Node 1

(b)

Node 2

Node 3

Node 4

Node 5

Node 6

loop 2

loop 1 Node 4’’

Node 5’’

loop 2’’

Node 10

Node 9

Node 7

Node 2’

Node 3’ Node 4’

Node 5’

Node 6’

loop 2’

loop 1’

Node 8

Candidate for

as Software

Execution on RCU

RCU−SPP Switch

Executable on SPP

Fig. 1.10 Generating alternate SPP-RCU partitionings [15]

an example of this for two loops: The CFG shown in (a) is expanded into a CFG that
has the entire loop nest executing on the SPP (left), the outer loop on the SPP and
the inner on the RCU (middle), and the entire nest executing on the RCU (right).

Line thickness indicates

execution frequency

RCU

RCU−feasible

RCU−infeasible

R
C

U
−

S
P

P
 M

o
d

e
 S

w
itc

h

R
C

U
−

S
P

P
 M

o
d

e
 S

w
itc

h

Software on SPP

Fig. 1.11 RCU path construction [15]

We then examine each of these candidate RCU kernels by building valid paths of
operations that can be natively executed on the RCU. These will generally bypass
external I/O and all functions which were not inlined (either due to adverse profiling
data or lack of source code). Such operations will be marked as potential software
services. Valid means for path that it will pass through the candidate region (enter
and leave it). Path construction first constructs a valid path and then expands it,
adding rejoining sub-paths in order of decreasing execution frequency. This is done
until the entire candidate is covered by RCU-suitable paths and software services, or
the RCU area is exhausted. More details on these steps can be found in [13, 14]. As
examples, 80% of the instructions of the Versatility wavelet image [33] compressor
and the ADPCM audio coder can potentially be moved to on the RCU in this fashion.

1 Adaptive Computing Systems and their Design Tools 13

1.4.3 CMDFG Intermediate Representation

We experimented with a number of intermediate representations for hardware/software
co-compilation. This included various SSA forms, such as plain SSA [6], array SSA
[18], and our own initial attempt for a data-flow controlled form heavily emphasiz-
ing parallel execution [16] (DFC-SSA, which later proved too difficult to schedule).
None of these proved sufficiently expressive.

To fill this need, we developed Control Memory Data Flow Graphs (CMDFG),
described in greater detail in [8, 9]. The CMDFG expresses control flow (extracted
from the intermediate SSA-CFG created during compilation), inter-operator data
flow (as a classical data flow graph) and memory dependencies (such as those com-
puted by alias analysis). It is somewhat similar to the Program Dependence Web
[5] and Program Dependence Graph [7], which are also low-level fine-grained in-
termediate representations. However, they do not express memory dependencies at
all and rely on constructs such as γ and β functions or data-flow switches to guide
computation. The CMDFG is closer to the actual hardware: It employs distributed
multiplexers for this purpose, with control edges running from a condition to the
multiplexer input nodes to determining the selected data.

Fig. 1.12 (a) Sample program, (b) SSA-CFG, (c) CMDFG [8]

14 Andreas Koch

Figure 1.12 shows a very simple example of such a CMDFG (for simplicity,
without memory edges). For the source code shown in (a), the SSA-CFG is shown
in (b). The body of the loop is represented by the CMDFG shown in (c). For clarity,
this omits the increment of the index variable and the test of the loop condition.
Note that the true condition of n13 controls both the nested if statement as well
as the assignment to s at the same level. In contrast to many previous hardware
compilers, Comrade can easily handle even complex nested control structures in
loops (including other loops!) using the CMDFG.

Fig. 1.13 (a) Sample program, (b) CDFG, (c) CMDFG

Figure 1.13 shows a simple example how memory edges explicitly express mem-
ory dependencies. In the CDFG without memory edges (b), the load and store of
the sample program (a) could execute in arbitrary order and potentially violate the
write-after-read requirement. The CMDFG (c) enforces correct execution, with the
aid of two additional constructs: A Memory Forwarder (MF) executes if allowed
by the incoming control edge, and allows execution of its successor memory nodes.
The memory merge node allows execution of its successor memory nodes if at least
one of its direct memory predecessors was executed. In this fashion, the write a[i]=0
will only execute if c was true, and the load in x=a[i]+2 has already completed, or
c was false, and the MF node executed, leading to the execution of the memory
merge node, which in turn allows the store node to execute.

By selectively modifying the memory dependence graph, we can easily express
parallel memory accesses once we have proven their independence, e.g., by alias
analysis methods. The memory aspects of the CMDFG are discussed in greater de-
tail in [9].

1.4.4 CoCoMa Controller Model

Another core result of our research was creation of new dynamic scheduling se-
mantics for the CMDFG. Beyond the capabilities of traditional dependency graphs
(e.g., control data flow graphs), which have a node execute and produce a result as
soon as all of its operands are available (and a possibly incoming control edge is

1 Adaptive Computing Systems and their Design Tools 15

also valid), we can now express the deletion of results. This can extend to stopping
a calculation already in progress once it has been determined that the result will not
be needed. Since this relation is transitive, an entire chain of unneeded calculations
can be stopped, and the operators be made available for the next set of operands.

These semantics are defined by the Comrade Controller Micro-architecture (Co-
CoMa), which also describes their mapping into hardware. At the abstract level, we
now a structure similar to a Petri net with two kinds of tokens: Activate Tokens (AT)
indicate the presence of data at the source of an edge, Cancel Tokens (CT) erase
an AT (and its associated data item) when they meet. ATs generally move in the
direction of data flow, while CTs move in the opposite direction.

Fig. 1.14 Interaction of Activate and Cancel Tokens [8]

A simple example for the inner if of the Fig. 1.12.a is shown in Fig. 1.14 for three
successive clock cycles (assuming the addition operator has a latency of one cycle,
and the division takes longer). In cycle 0, the values for s 2 0 and i 2 0 have been
computed (both of this happens in block N2 of the SSA-CFG). Thus, ATs are present
on all outgoing edges of the associated multiplexers n6 and n2. Both the addition
and division operators in CMDFG nodes n29 and n19 now start to compute (since
all of their operands are available). But the condition i == 5 is assumed to have
evaluated to false in this example. Thus, only the operator associated with this state,
namely the addition, is allowed to complete (an AT travels along the control edge
labeled false to node n29). On completion, the operator consumes its operands (and
their associated ATs) on the incoming data edges from n6 and n2, and produces
the result and an AT at its output in cycle 1. The other branch of the condition
i == 5 is handled as follows: The division node at the destination of the control
edge also receives an AT in cycle 0. However, since the condition state false does
not match the true requirement on the control edge, the AT is turned into a CT
at the output of the unneeded division operator in cycle 1. Note that the division
has been started in cycle 0 (the same as the addition), but is now canceled in cycle
1. In cycle 2, the addition result and its AT travel downward through n21 for use
in further computation. The CT at the division operator has now traveled upwards

16 Andreas Koch

and erases the incoming operands (and their ATs) which were not consumed by the
terminated division. Thus, the entire CMDFG subgraph is now available for the next
loop iteration. In static scheduling, this would only happen after the division could
be completed (even though its result would not be needed).

From this basic scheme, more complex behaviors can be derived. For example,
the CMDFG memory dependencies (described in Sect. 1.4.3) are also modelled as
ATs travelling along memory edges. Also, more complex transition rules are re-
quired when describing deeply nested structures, especially loops. The best formu-
lation of these is still the subject of active research.

Despite its complexity, CoCoMa scheduling, which described in greater detail in
[8], can lead to significant speedups, even when compared with other more advanced
dynamic schemes such as lenient execution [3]. It does have additional cost when
compiled into hardware, though: Each data register now requires an additional two
bits to hold an AT and CT each. Furthermore, the token transition rules need to
be implemented as logic networks, also requiring RCU area. As shown in [9], the
CoCoMa overhead for realistic applications is in the range of 600-1700 slices, which
should be considered acceptable given current RCU device sizes.

1.5 Infrastructure

Beyond the execution model, an appropriate practically realizable ACS architecture
and the core compile flow, we developed a number of adjunct technologies.

1.5.1 Parametrized Module Library

Fig. 1.15 GLACE Library and FLAME API [15]

Synthesis

Floorplanning

Place&Route

FLAME

Manager

FLAME

Interface

FLAME

Interface

Design Data

Module Generator Library

Replies

Main Design Flow

add

mult

logic

abs

Queries

Many steps of the Comrade compile flow need target hardware-specific data.
This ranges from area/delay estimates for specific operations to information about
their physical and logical interfaces down to (possibly pre-placed) structural netlists.

1 Adaptive Computing Systems and their Design Tools 17

All of these aspects are encapsulated in the Generic Library for Adaptive Computer
Environments (GLACE), which we introduced in [32].

GLACE provides all of the basic operators (arithmetic, logic, memory) as well
as the system interfaces (I/O registers, SPP-RCU signalling) we need for C-to-
hardware compilation in a parametrized fashion [21]. For example, we can retrieve
from GLACE data about a 27x18 bit unsigned multiplier. The underlying data is
organized and accessed by the Flexible API for Module-based Environments [20]
(FLAME, shown in Fig. 1.15), which defines both passive (design data model) and
active components (query/reply scheme for interacting with the module library). The
data model is organized into different views, each representing a subset of aspects
relevant for a specific stage of the compile flow. Examples include behavior (which
lists operator semantics), synthesis (giving are/delay and interface data), topology
(holding placement information), and place (which encompasses pre-placed EDIF
netlists).

GLACE data, accessed via FLAME, is used in Comrade e.g., for the hard-
ware/software partitioning step. It guides both the expansion of nested kernels from
pure software to pure hardware as well as the construction of RCU-executable paths
through the candidate kernels. It also provides the pre-placed operator netlists for
the datapath, which are then combined with the CoCoMa controller and the system
interface into a single RCU configuration.

GLACE has been continuously updated for the duration of the project, including
adding support for new hardware blocks on target FPGAs (e.g., hardwired multiplier
blocks). Due to the generality of the FLAME API [20] and the Library Specification
[21], such extensions are completely transparent to the core compile flow. Further-
more, the development environment for new modules, which is based on Brigham
Young University’s JHDL [2], has also been updated to support all basic blocks of
XIlinx Virtex 5 devices (new memories, digital signal processing, etc.) [31].

1.5.2 Physical Design Aspects

We have always also considered the physical design aspects of reconfigurable
computing. This began with Structured Design Implementation methodology [19],
which described how to assemble regular datapaths from pre-placed and pre-routed
parametrized modules. We have carried forward this intent into the topology and
placed views of FLAME.

As an example, Fig. 1.16 shows the regular layout of an 8 bit unsigned mul-
tiplier on a Xilinx Virtex FPGA and the associated FLAME topology view. This
describes the extent of the layout (separating regular and irregular parts) as well
as the locations of external ports (which are organized here at a pitch of two bits
per CLB height). The regular parts of a module have a consistent horizontal data
flow, consisting of regularly spaced bits. Above and below this regular area, irregu-
lar components (such as module-local controllers and overflow computation) can be
arranged. A purely-module based approach is inefficient, however, when compos-

18 Andreas Koch

(TECHNOLOGY "Xilinx" "Virtex" "XCV50PQ240I" "−4"

 (STATUS QUERYOK "technology ok. area unit is ’CLB’s...")

 (MATRIX

 (SHAPE

)

 (PORTLOC

 (PORTS

 (("a" 7 0) ("b" 7 0) ("start" 0 0) ("out" 7 0) ("done" 0 0))

 (PITCH 2 1)

 (COORD 0 0)

 (FOLDING LINEAR)

)

)

)

 ("CLB" (RECT 4 6 1))
extending 1 unit below baseline

Layout is a single 4x6 CLB rectangle

Layout is not folded

Port spacing for busses is 2 bits per CLB

Datapath baseline

Target device has matrix architecture

Fig. 1.16 Pre-placed 8-bit multiplier and FLAME description [32]

ing more complex logic expressions from individual modules: Each operator would
be mapped to its own separate module (which would at least be one LUT column
long), even though multiple operators could conceivably be mapped together into
a single LUT column (as long as the number of LUT inputs is not exceeded). To
solve this problem, we have developed a universal generator for logic modules that
accepts arbitrarily complex logic expressions and performs inter-operator logic op-
timization and mapping to generate a single regularly pre-placed module for the
entire expression [37, 22].

� � �
� � �

� � �

� � �

� � �
	 � �

	 � �

� � �
� � �

 � �

 � �
	 � �

� � �

� � �

 � �

� � �

� � �
� � �

� � �
� � �

 � �

 � �

 � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �
� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �
� � �

� � �

� � �
� � �

� � �

� � �
� � �

� � �

� � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�
�

�
�
�

�
��

�
�
�

�
��

�
��

�
�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�
�

�
��

�
��

�
�
�

�
�
�

�
��

(a) Purely horizontal

��
��

��
��

��
��

��
��

��
�� �

��
��

��
��

��
�	

��
�

��
��

��
���

��
���

��
���

��
���

��
���

��
���

��
�� 	

��
��

��
���

��
���

��
���

��
��

���� ���

���� �����
������ �����

������ ���

��� �"!

(b) Clustered horizontal sub-datapaths

Fig. 1.17 Regular placement of Wavelet datapath [36]

For high performance, the regular layout style also should be preserved when
assembling an RCU datapath from multiple modules. This requires custom tools,
since the vendor CAD tools are not specialized for datapath layout. An easy way to
achieve regular inter-module placement is a linear arrangement of modules, this is
an approach that has already been used in earlier projects [29]. An example of such
a linear layout for a kernel of a Wavelet image compression algorithm [33] is shown
in Fig. 17(a).

1 Adaptive Computing Systems and their Design Tools 19

However, this technique obviously does not scale with increasing datapath com-
plexity: At some point, the linear distances become excessive and the performance
decreases (despite the regular linear layout). To this end, we have developed a com-
bined approach ClaP [36] that partitions the datapath into clusters of linear sub-
datapaths (shown in Fig. 17(b) for the same circuit). Within each cluster, a strictly
horizontal data flow is preserved, but less tightly connected modules can be placed
in different clusters, allowing the exploitation of the vertical dimension. The core of
ClaP is a simulated annealing algorithm with different moves (inter-cluster, intra-
cluster, move entire clusters, . . .). For the given example, this vertical stacking of
horizontally arranged clusters leads to a delay reduction of ca. 20% over the purely
linear solution.

1.5.3 Reconfiguration Scheduling

The kernels currently extracted by Comrade from real C applications (without ex-
ploiting alias or loop iteration space analysis) have a maximum size of a few hundred
operators and often take up just 3000. . . 6000 cells (4-LUT + flip-flop) of RCU area.
Considering that even medium-sized commodity FPGAs have more than 17,000
cells, a study of how to use all of this space has much potential.

Memory Address Bus

I/O Address Bus

I/O Data

Memory Data Bus

Controller

Memory
System
(master)

Control
(slave)

Datapath1 2 3 4 5 6 7 8 9 10

E
x

it
 S

ta
tu

s

Data

Addr

Interrupt

ExitToSW

RCU

From/To SPP

From/To Memory

(a) One kernel per configuration

Addr

Data

Interrupt

From/To SPP

From/To Memory

RCU

Memory Bus

I/O Bus

I/O Bus

I/O Bus

Memory Bus

Memory Bus

Controller 3

Controller 2

Controller 1

Datapath 2

Datapath 1

Datapath 3

Cache 2

Stream 1

Cache 1

I/O Bus

K
e
rn

e
l
B

u
s
 M

u
x

SelectKernel

ExitToSW

MARC
(master)

Control
(slave)

(b) Multiple kernels per configuration

Fig. 1.18 (a) Initial and (b) new on-chip architecture

Figure 18(a) shows the initial RCU architecture generated by Comrade. It con-
sists of interfaces to the rest of the system (a slave to exchange live variables with
the SPP and a master to perform independent memory accesses) and the controller /
datapath for one kernel.

Orthogonally to trying to extract more complex kernels from the C programs (see
Sect. 1.7), we can employ the unallocated RCU area to hold the controllers/datapaths
for different kernels on the RCU. In this manner, we avoid potentially very slow
reconfigurations and simply switch between kernels that have been merged into a

20 Andreas Koch

single configuration. Such an architecture is shown in Fig. 18(b). The SPP can now
initiate an appropriate switching of the kernel bus multiplexer by performing a slave
mode write to the RCU. Thus, a switch between different kernels requires just a
single clock cycle instead of the many milliseconds of a reconfiguration.

While Comrade does not yet exploit this scheme, we have already developed the
algorithms for computing how the kernels should be merged into configurations so
that the number of reconfigurations is minimized over the entire program execution
[17]. For rapid calculation of an estimated solution (independent of the detailed
execution trace of the program), we use a heuristic that constructively builds clusters
of configurations following the nested loop structure of the program. To evaluate the
quality of the heuristic and to compute the optimal solution when algorithm run-time
is less critical, an alternate exact approach using dynamic programming was also
designed. Since the exact approach evaluates the complete trace of kernel execution
order during a program run, its own run-time can be lengthier for more complex
programs. In general, the heuristic computed results close to the optimal solution for
our experiments, but required less than 1/10 s execution time. The optimal algorithm
generally had run-times between 1/10 s and 100 s.

The results of configuration merging are extremely promising. From the Wavelet
image compression application Versatility [33], we can extract eight kernels. When
using separate configurations for these kernels, the execution of the hybrid hard-
ware/software application will require 5381 reconfigurations. After performing con-
figuration merging, the heuristic will reduce that to five reconfigurations, while the
optimal solution can even get it down to just four reconfigurations. Given that re-
configuration times in many cases dominate the entire application run-time, config-
uration merging will be an essential part of a refined compile flow.

1.6 Lessons Learned

The sheer implementation complexity of a compile flow from a high-level language
down to hardware is tremendous. Even for pure software compilers, the significant
infrastructure requirements to get a flow working at all (not innovating yet) are con-
sidered serious impediments to current research by notable compiler experts [12].
The efforts to bring up a software compiler are dwarfed by the additional hard-
ware architecture and design tasks necessary for a hardware/software co-compiler
such as Comrade. The compiler part alone of Comrade currently consists of more
than 300,000 lines of C++ and Java code, excluding the Stanford SUIF2 compiler
framework [35] which is used as the front-end. Also not included are the system
interfaces (SPP, memory, including caching and streaming) that were formulated in
Verilog and VHDL and the operating system modifications (see Sect. 1.3). Our re-
search continues to be significantly hampered by our unfortunate choice of SUIF2
as the base for the compiler. While SUIF2 was being hailed as a future-proof succes-
sor of the earlier SUIF1 system, which was successfully used in the Nimble project
[29], SUIF2 development quickly faltered and even today the system does not have

1 Adaptive Computing Systems and their Design Tools 21

all of the capabilities of its less modular predecessor. In retrospect, we should have
chosen the much more capable Open64 system [11], which was already available
at the project’s start, but was discarded due to its convoluted implementation and
steep learning curve Today, more alternatives are available: Open64 continues to be
developed and is very powerful especially in the area of parallelizing loop transfor-
mations. While the more recent LLVM [27] is not yet as advanced as Open64 in that
area, it offers a cleaner internal structure and a well-integrated compile flow encom-
passing many scalar optimizations and even just-in-time compilation. Especially the
later would allow for interesting research in just-in-time hardware generation.

The choice of a suitable intermediate representation for the RCU part of the com-
pile flow also turned out to be pivotal for the project. Existing representations, both
for pure software (e.g., SSA-CFG) or pure hardware (e.g., DFG and CDFG) lacked
the expressive power to handle the complex RCUs capable of accessing memory in
their own, which were our aim with Comrade. While the CMDFG has fulfilled that
role admirably (we have yet to discover practical limitations), it took much exper-
imentation (e.g., with DFC-SSA and Array-SSA forms) to develop it. For similar
research, we highly recommended to spend significant effort developing an IR suit-
able for all phases of the project before beginning to work on individual passes.

Analogously, the CMDFG execution semantics and their realization in the dy-
namic CoCoMa controller have also advanced the project significantly. In contrast
to pure DSP or scientific computing C code, the general purpose C code we are
aiming to compile is not amenable to efficient static scheduling: In much practical
code, simply too many data, control and (possibly hidden) memory dependencies
exist. Modern out-of-order SPPs handle such temporally distributed programs by
discovering these dependencies at run-time and re-ordering execution around them.
The CMDFG model allows a similar approach for our spatially distributed compu-
tations: The CoCoMa dynamic scheduling resolves dependencies at run-time (but
see Sect. 1.7).

As described in the preceding Sections, our core focus is still the compiler and
the ACS architectures supporting its execution model. However, when compiling
more complex programs potentially containing many RCU kernels (something we
have not done yet), it is obvious that the reconfiguration overhead on current re-
configurable devices (generally FPGAs without configuration caches etc.) will be-
come excessive and most likely negate any possible speed-up actually achievable by
RCU execution. At this stage, our currently under-utilized work on reconfiguration
scheduling will become crucial for high performance.

Over the course of the project, we have worked predominantly with Xilinx
FPGAs. Starting with the XC4085XL in 1998, we progressed through the Virtex
XCV1000 (our long-time work horse), Virtex II Pro and now Virtex 5 FX FPGAs.
Up to and including the Virtex device, we managed to keep our physical design tools
(floorplanning, pre-placed module generation) synchronized with the latest FPGA
features. However, with FPGA complexity increasing (more and more special pur-
pose blocks becoming available), and the quality of conventional logic synthesis
and design implementation tools finally improving (e.g., good support for physical
synthesis), we believe that it is no longer practical for academic research to cover

22 Andreas Koch

the entire flow from high-level input language down to layout generation within a
single project. We have thus downsized our own efforts in the physical design area
(which achieved speed-ups in the 20. . . 30% range) to focus on the compiler’s op-
timization and hardware-generation stages (where we often see speed-ups of 2x or
more). In practice, this means that the compiler will no longer generate pre-placed
floorplanned EDIF netlists for the RCU (datapath, controller, system interface), but
instead stop at a RTL description that is exported to a commercial logic synthesis
system for actual mapping.

1.7 Future Work

Now that the compile flow and the associated ACS architecture are fully operational,
we can let the initial results of front-to-back compilation experiments guide our
future research (some of which has already started).

First, it becomes obvious that we should move larger parts of an input program
to the RCU in order to profit from acceleration. While our fine-grained execution
model does support this already, the scope of the current SPP/RCU partitioner turns
out to be to restrictive. Instead of the current profile-based inlining / profile-based
path construction, we are currently implementing full-scale path profiling to dis-
cover critical paths flowing through multiple functions [26] without the need for
inlining. These whole-program paths can then be used as the basis for RCU kernels.

Second, we need to improve the degree of ILP in the generated hardware. While
our current CMDFG-to-CoCoMa translation does support speculation within loop
iterations, we do not yet speculate across iteration boundaries. To resolve this, we
can introduce token queues that allow the computation of predecessor nodes (e.g.,
the loop index calculation) to re-start in a new iteration even though not all of their
successors have consumed their tokens (and the associated data items) yet. Different
branches of the CMDFG can thus execute different loop iterations. Other techniques
which will be investigated are loop transformations for increased parallelism (using
the different cost models of spatial computation, e.g., availability of many registers
compared to SPP) and speculative memory accesses (both read and write). The lat-
ter capability does require active support from the memory system. Thus, we will
continue our research in ACS architecture issues.

1.8 Conclusions

With the Comrade compiler, our DFG project demonstrates the feasibility of com-
piling from general-purpose ANSI C into hybrid applications, executing both in
software on a conventional processor and hardware-accelerated kernels on a re-
configurable compute unit. The flow draws on our advances in compiler construc-
tion, high-level synthesis, computer architecture and physical design automation to

1 Adaptive Computing Systems and their Design Tools 23

achieve this goal. Now that the system is functional and can be evaluated on real
hardware fully supporting its execution model, we can proceed to actually improve
the quality of results. We have already discovered a number of research areas, ripe
with potential for significant improvements, that will be tackled in the next stage of
work.

Acknowledgements This work was supported by DFG grant Ko 1721/1-2, project Adaptive
Rechensysteme und ihre Entwurfswerkzeuge, associated with the Priority Programme 1148, Re-
configurable Computing Systems.

References

1. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification Version
1.2. TIS Committee (1995)

2. Bellows, P., Hutchings, B.: Jhdl - an hdl for reconfigurable systems. In: FCCM ’98: Pro-
ceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, p. 175. IEEE
Computer Society, Washington, DC, USA (1998)

3. Budiu, M.: Spatial computation. Ph.D. thesis, Carnegie Mellon University, Computer Science
Department (2003). Technical report CMU-CS-03-217

4. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The Garp architecture and C compiler. Computer
33(4), 62–69 (2000). DOI http://dx.doi.org/10.1109/2.839323

5. Campbell, P.L., Krishna, K., Ballance, R.A.: Refining and defining the program dependence
web. Cs93-6, University of New Mexico, Albuquerque (1993)

6. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst. 13(4), 451–490 (1991). DOI http://doi.acm.org/10.1145/115372.115320

7. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

8. Gädke, H., Koch, A.: Accelerating speculative execution in high-level synthesis with cancel
tokens. In: Proc. Intl. Workshop on Applied Reconfigurable Computing (ARC) (2008)

9. Gädke, H., Stock, F., Koch, A.: Memory access parallelization in high-level language com-
pilation for reconfigurable adaptive computers. In: (Proc. Intl. Conf. on Field Programmable
Logic and Applications (FPL) (2008)

10. Gajski, D.D., Ramachandran, L.: Introduction to high-level synthesis. IEEE Design and Test
11(4), 44–54 (1994). DOI http://dx.doi.org/10.1109/54.329454

11. Group, O.S.: Open64 – the open research compiler. URL http://www.open64.net/
12. Hall, M., Padua, D., Pingali, K.: Compiler research: the next 50 years. Commun. ACM 52(2),

60–67 (2009). DOI http://doi.acm.org/10.1145/1461928.1461946
13. Kasprzyk, N.: COMRADE – Ein Hochsprachen-Compiler für Adaptive Computersysteme.

Ph.D. thesis, Technische Universität Braunschweig (Germany) (2005)
14. Kasprzyk, N., Koch, A.: Verbesserte Hardware-Software Partitionierung für Adaptive Com-

puter. In: Proc. Conference on Architecture of Computing Systems (ARCS) (2004)
15. Kasprzyk, N., Koch, A.: High-level-language compilation for reconfigurable computers. In:

Proc. Intl. Conf. on Reconfigurable Communication-centric SoCs (ReCoSoC) (2005)
16. Kasprzyk, N., Koch, A., Golze, U., Rock, M.: An improved intermediate representation for

datapath generation. In: Proc. International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA) (2003)

17. Kasprzyk, N., van der Veen, J., Koch, A.: Configuration merging for adaptive computer appli-
cations. In: Proc. Intl. Conf. On Field-Programmable Logic (FPL) (2005)

24 Andreas Koch

18. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
107–120 (1998). URL http://doi.acm.org/10.1145/268946.268956

19. Koch, A.: Regular datapaths on field-programmable gate arrays. Ph.D. thesis, Tech. Univ.
Braunschweig (Germany) (1997)

20. Koch, A.: FLAME: A flexible API for module-based environments (EIS TR 2004-01). Tech.
rep., Tech. Univ. Braunschweig, Dept. of Integrated Circuit Design (E.I.S.) (2004)

21. Koch, A.: FLAME library specification (EIS TR 2004-02). Tech. rep., Tech. Univ. Braun-
schweig (2004)

22. Kunz, J.: Eine placer-modul-erweiterung für den ,,universal generator for logic circuits on
fpgas”. Master’s thesis, Tech. Univ. Darmstadt (2007)

23. Lange, H., Koch, A.: Design and system level evaluation of a high performance memory sys-
tem for reconfigurable SoCi platforms. In: Proc. HiPEAC Workshop on Reconfigurable Com-
puting (2007)

24. Lange, H., Koch, A.: An execution model for hardware/software compilation and its system-
level realization. In: Proc. Intl. Conf. on Field Programmable Logic and Applications (FPL)
(2007)

25. Lange, H., Koch, A.: Low-latency high-bandwidth hw/sw communication in a virtual memory
environment. In: Proc. Intl. Conf. on Field Programmable Logic and Applications (FPL)
(2008)

26. Larus, J.R.: Whole program paths. SIGPLAN Not. 34(5), 259–269 (1999)
27. Lattner, C.: Llvm: An infrastructure for multi-stage optimization. Master’s thesis, University

of Illinois at Urbana-Champaign (USA) (2002). URL http://www.llvm.org/
28. Laurich, P.: A comparison of hard real-time linux alternatives (2004). URL

http://www.linuxdevices.com/articles/AT3479098230.html
29. Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., Stockwood, J.: Hardware-software

co-design of embedded reconfigurable architectures. In: DAC ’00: Proceedings of the 37th
conference on Design automation, pp. 507–512. ACM, New York, NY, USA (2000)

30. Lysaght, P., Rosenstiel, W. (eds.): New Algorithms, Architectures and Applications for Re-
configurable Computing. New Algorithms, Architectures and Applications for Reconfigurable
Computing (2005)

31. Mitlehner, S.: Portierung eines java-frameworks zur erzeugung von paramterisierten
hardware-strukturen auf eine neue generation von rekonfigurierbaren logikbausteinen. Mas-
ter’s thesis, Tech. Univ. Darmstadt (Germany) (2008)

32. Neumann, T., Koch, A.: A generic library for adaptive computing environments. In: Interna-
tional Conference on Field Programmable Logic and Applications (FPL) (2001)

33. Ponnuswamy, K.P., Kumar, S., Pires, L., Ponnuswamy, S., Nanavati, C., Golusky, J., Vojta, M.,
Wadi, S.: A benchmark suite for evaluating configurable computing systems - status, reflec-
tions, and future directions. In: in Proc. ACM/SIGDA Int. Symposium on Field Programmable
Gate Arrays (FPGA’00, pp. 126–134 (2000)

34. Rose, G.: Using the microprocessor MMU for software protection in real-time systems. Tech.
rep., LynuxWorks, Inc. (2009)

35. Stanford: The SUIF2 compiler system. URL http://suif.stanford.edu/suif/suif2/
36. Thorns, F.: ClaPi – clustering and placement. Master’s thesis, Tech. Univ. Braunschweig

(Germany) (2002)
37. Wewetzer, C.: A universal generator for logic circuits on FPGAs. Master’s thesis, Tech. Univ.

Braunschweig (2005)

