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Abstract: Control design for active damping of a smart structure can in principal be tackled using optimal feed-
back theory which requires a model of the plant that is to be controlled. The main problem when applying modern
multichannel feedback control techniques to flexible mechanical structures is the high sensitivity to model uncer-
tainties. This is because of the very low inherent plant damping and the high interactivity of the multiple-input
multiple-output (MIMO) systems. Therefore, accurate plant uncertainty descriptions are crucial in order to arrive
at robust but not overly conservative control designs. We briefly review a method developed by the authors to
derive a non-parametric uncertainty description of the plant model as part of the overall model identification pro-
cess. Using this method, which is immediately suitable for optimal control design and robust stability analysis,
we design a robustly stabilizing Ho optimal controller running on highly power-efficient FPGA hardware using
fixed-point arithmetic. The main focus of this contribution is the wordlength optimization for the fixed-point im-
plementation. For this optimization problem, we employ an optimality metric that reflects the discrepancy between
the frequency response of the floating-point and the fixed-point controller implementations. Experimental results

show the validity of our approach.
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1 Introduction

Different control concepts for vibration control have
been proposed in the literature. One approach is to
use feedback control for active damping. The aim is
to devise a control algorithm that effectively mitigates
a desired number of structural resonances. This ap-
proach is known to be effective especially for broad-
band noise-like disturbances, but it raises the issue
of the stability of the feedback loop, unlike feed-
forward concepts. Stable feedback control of flex-
ible mechanical structures is not trivial because of
two main reasons: First, typical modal damping ra-
tios of less then one percent make the controller de-
sign very sensitive to modeling errors. Second, me-
chanical structures are distributed parameter systems
which are naturally described by partial differential
equations but most frequently approximated by finite-
dimensional models. The modal dynamics that are not
incorporated in the finite-dimensional model cause so-
called spillover-effects when excited by external dis-
turbances. This deteriorates control performance and
can even cause spillover instability, see e.g., [3] and
[4]. Despite these difficulties, modern multichannel
feedback control concepts have great potential in the
control of smart structures because they enable the de-

signer to emulate a structure with better inherent vi-
bration and noise emission properties. This can for ex-
ample be done by eigenstructure assignment strategies
that do not only reduce vibration amplitudes but also
taylor vibration mode shapes, see for example [23].

There are several barriers to overcome attempting
to apply MIMO optimal control to smart structures:
The first one, as already elaborated on, is the sensi-
tivity to model errors. This was the main issue of a
recent publication by the first author ([10]). The sec-
ond hurdle is to formulate the task of active damping
as a mathematically tractable optimization problem
resulting in an implementable controller. This con-
troller is usually computed based on the assumption
of infinite precision calculations, which are well ap-
proximated by double-precision floating-point arith-
metic. For volume production, however, it is desir-
able to run on cheap or low-power computing hard-
ware such as ASICs or FPGAs, both of with often rely
on fixed-point arithmetic. When going from floating-
point to fixed-point representation, errors introduced
by finite wordlength effects have to be considered. In
this contribution, we briefly review the first two is-
sues, and then focus on the conversion of the Hs opti-
mal controller from floating-point to fixed-point arith-



metic while maintaining robust stability.

The outline of this paper is as follows: The next
section shows how the nominal and the uncertainty
model of a flexible mechanical structure can be iden-
tified in a form that is immediately suitable for robust
optimal control design. We also formulate the opti-
mal control design problem. The main part in Sec.
3 focuses on the wordlength optimization of the state
space model of the controller for efficient fixed-point
implementation without jeopardizing stability or per-
formance. The last section provides experimental re-
sults for the active damping of a panel structure with
piezoelectric actuator patches and acceleration sen-
sors with a controller running on FPGA hardware.

2 Identification Procedure and Con-
troller Design

This section is a condensed version of Secs. 2 and
3 of the publication [10] from the first author. It es-
tablishes the necessary background for understanding
the design of the robustly stabilizing controller for the
active damping of the smart structure.

2.1 Identification Procedure

It is assumed throughout that the smart structure to be
controlled is stable and can be well described by a lin-
ear model. Non-linear material effects, like piezoelec-
tric hysteresis, can be taken care of by compensation
techniques such as the one presented in [12]. Then,
without loss of generality, the plant to be controlled
can be described by a stable discrete-time state-space
model

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Duk),

where x € IR"™ is the state, u € IR? is the control
input, and y € IR? is the output. The time index k
stands short for k7T with sample time 7. The distur-
bance input is assumed to be unknown and is not part
of the model.

We now present the identification procedure that
will be split into two parts. In the first part, a fre-
quency response function (FRF) G (ej“’"TS) of the
system is computed in combination with its corre-
sponding confidence intervals at each frequency point.
These confidence intervals will be transformed into a
bound AG on the difference between the true plant
Gy and the non-parametric model G. In the second
part, a state-space model will be computed from G
and the additive uncertainty bound AG will be mod-
ified to incorporate deviations of the parametric from
the non-parametric model.

ey

2.1.1 Non-parametric Step

M sets of time domain data each of length 2N are
collected by applying suitable input signals u,, (k) €
IR? and measuring the corresponding output data
ym(k) € RP with k£ = 0,...,2N — 1 and m =
1, ..., M. General considerations on suitable input sig-
nal and experiment design can for example be found
in [17]. In a second step, frequency response func-
tions are computed from the collected data. The DFT
spectra of the input and output signals are given by

2N—-1

U, (jwn) = Ty w,, (k)e 3 kTs (2a)
k=0
2N—1

Yo (jwn) =Ts Y ym(k)e T, (2b)
k=0

with w, = n]\?—;,n =0,...N—l,andm =1, ..., M.
Then, the following input-output relationship holds if
U (jwn) and Y (jw,) are free of leakage and aliasing
effects,

Y (jwn) = Go (ejw"Ts) U(jwn) + V(jwn) (3)

with V (jw,,) being the DFT sequence of the output
measurement noise v(k) € IRP. Estimates of the
cross and auto power spectra of the input and output
signals can be derived from the M experiments by

M
1
Suv(jwn) = 77 D Um(iwn)Up(iwn)  (4a)
m=1
1 M
Syu(jwn) = 77 Y Ym(jwn)Up(iwn).  (4b)
m=1

The so-called H; estimate ([21]) of the transfer func-
tion is then given as

G (%) = Syu (jwn)Syf (jwn)- (5)

With (5), we have a non-parametric nominal model.
We now compute its confidence interval at each fre-
quency point w,. We make the following assumptions
for the noise:

Assumption 1 V (jw,,) satisfies E{V(jw,)} = 0,
E{V () VT (wn)} = 0, BAV (jwn) VE ()} =
02(jwn). Higher order moments are zero. This
amounts to V (jw,) being zero-mean, circular sym-
metric complex normally distributed. In addition, the
Fourier coefficients of the noise sequence are asymp-
totically independent from each other.



It is stated in [22] and proven by Brillinger [5] that
these requirements are asymptotically satisfied for a
wide class of time-domain probability density func-
tions of the noise sequence v(k), see also Theorem
14.25 in [17]. Considerations on a finite number of
samples can be found in [19]. Furthermore, we make
the common assumption that the noise is independent
and identically distributed (i.i.d.) over the M different
experiments and independent of the input.

If this holds, it can be shown that the H; estimator

is unbiased, E{G} = Gy, and its covariance Ué €

RP?*P4 g given by

g (jwn)

= E{VGC {G (eJ“”LT ) E {G (eJ“’"TS) }}

(vee { G (90%) ~E{G (&0 }})H} 6)
)

1
- MSUU(an) ® 0o (wn ,
where ® denotes Kronecker product. In (6), an un-
biased estimate of the noise covariance matrix can be
used which is given by

L9/ M

X (Syy (jwn) — Sy (jwn)Syp (jwn)Suy (jwn))
(7
where Syy and Syry can be calculated in analogy to
(4a) and (4b). The last two results can for example be
found in [21].

The variances of the individual SISO _transfer
functions G5, @ = 1,...,p, j = 1,...,q of G can be
found on the diagonal of O'é and will be termed aé i
with

0%, i (iwn) = E{|Gij(jwn) — E{Gy(jwn)}*}. )

By considering (3), it can by concluded that the
estimate G is also asymptotically circular symmetric
normally distributed. Due to the properties of the cir-
cular symmetric distribution, the variances of the re-

spective real and imaginary parts are

. ) 1 )
Uﬂz%,z'j(an) = U%,ij(JWn) = 50?%3- (jwn). 9

From these variances, additive uncertainty descrip-

tions can be constructed. An additive uncertainty de-
scription for some transfer function G';; states that

G07Z‘j (ejw"TS) € éij (ejw”Ts) + Aé’z‘j (ejw"TS) (10)

where the possible values of A@ij are bounded in
some way. We choose the bounds to be

A : 1 . )
AG;j max (ernTs) = —n(a)aéij (Jwn) (1 +7)

V2
(1)

where n(«) is a real number that is determined by
the desired confidence level a.. The uncertain quantity
Aéij can be any complex number where the absolute
value, taken separately for the real and imaginary part,
takes at most the value of the real or imaginary part of
Aéij7max. The rationale behind equations (9) to (11)
is illustrated in Fig. 1. The variance o2 ~ defines a cir-
]

cle of radius n(a)aéij = ‘Aéij where the true plant

CAJOJ-J- can be expected to be located with confidence
level o,
R{Go,ij — Gis}* + 3{Goj — Gy} < |AGij’2(V1V-2I;-
This circle is approximated by the additive uncer-
tainty description as the square region that touches the
circle, where the side length of the square is given
by 2%{Aéij,max} = 23 {Aéij,max}- Since the
real and imaginary part of some transfer function are
jointly normally distributed and uncorrelated, they are
also statistically independent. Therefore, the state-
ment in (10) is true with probability a2

The elements A@Lmax taken together define an
uncertain complex matrix AG where, again, the ab-
solute value of each entry, taken separately for the real
and imaginary parts, is allowed to take at most the
value defined in (11).

To ensure that all elements of the transfer matrix
Gy are captured by the nominal FRF and its additive
uncertainty description, at least at a desired probabil-
ity level a*, one can make use of Bonferroni’s in-
equality [14]. It states for this case that

Pr (GO G+ AG) Lo > 1-pg(l—a?). (13)

Assume, for example, a system with four inputs and
four outputs using n(«) = 3 standard deviations (a =
99.7 %). One can calculate that (13) is satisfied with a
joint probability of more than 90.4 %.

2.1.2 Parametric Step

In the previous paragraph, we derived a non-
parametric nominal model (5) and a frequency-wise
bound on the difference of true and nominal plant
(11). We now compute a parametric nominal model
that can be utilized for model based controller design.
In principal, any suitable identification algorithm can



Figure 1: Extension of the uncertainty description to
account for the differences of non-parametric model
G and parametric model G

be used. In our numerical example in Sec. 4, we make
use of the frequency-domain ERA-OKID algorithm
presented in [11]. It takes the FRFs (5) as input data
and fits a model of the form (1). The resulting model
G(z) = C(zI- A)"'B+D is a minimal realization,
i.e. the model is controllable and observable.

We now assume that such a nominal state-space
model of desired order is available. In a last step, we
have to account for the differences between the FRFs
of the non-parametric model (5) and the parametric
model G(z). These differences are inevitable in prac-
tice, because extremely high model orders would have
to be used to perfectly fit the FRF data. More impor-
tantly, moderate model orders are desired to alleviate
numerical difficulties in the subsequent computation
of the controller. Usually, the limitation of the model
order leads to a neglect of high frequency dynamics,
because a limited set of model parameters is used to fit
the FRF data as well as possible in the desired control
loop bandwidth. The model will therefore be fairly in-
accurate above the control loop bandwidth which in-
creases the danger of spillover effects.

We propose to incorporate the differences of the
non-parametric and the parametric model by extend-
ing the uncertainty region by the amount of the differ-
ence of the real and imaginary part, respectively,

AGijmax = <‘§R {Gij - G”H + \2%(06)0'&])

([ {os- )+ Jpors,

(14)
for all transfer functions 2 = 1,....,p, 5 = 1,...,q and
all frequencies w, = 0, ..., N N L QT—’ST This is also illus-

trated in Fig. 1.

As a result of the identification procedure, we
derived a nominal parametric model (1) and a non-
parametric additive uncertainty description given by
the uncertain complex matrix AG where the absolute
value of each entry is bounded by (14). We can now

y P

K |

Figure 2: Closed loop with generalized plant and con-
troller
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Figure 3: Generalized plant P

define the set of perturbed plants

IT:= {G*(Z) ‘ G* (ejw”TS) e G (ejw"Ts) +AG (ej“’”TS)}

(15)
This set can be utilized in standard robust control the-
ory as demonstrated in the next section.

2.2 Controller Design

The results of Sec. 2.1 are immediately applicable
for the robust optimal control design to achieve active
damping of a flexible structure. The general goal of
the H o optimal design is to compute a controller K for
some generalized plant P, see Fig. 2, that minimizes
the o norm of the transfer function from some ex-
ogenous input w to the performance variables z. We
propose the generalized plant P displayed in Fig. 3.

Since the input matrix of the disturbance forces
acting on the structure is generally unknown, the dis-
turbance w; is modeled as acting directly on the
states. This is equivalent to setting its input matrix
to the identity matrix. The second exogenous input
Wwo represents measurement noise which is weighted
relatively to wi by Wy. The first performance vari-
able z; is some linear combination of the system states
introduced by the performance weight Wp. The lim-
itation of the controller gain is realized by passing the
control signal u through a suitable weighting function
Wy and defining it as a second performance variable
z5. Instructions for the design of the weighting func-
tions Wp, Wy and Wy can be found in [10].



Once the generalized plant and the weighting
functions are defined, one needs to solve the following
‘Ho optimization problem:

Find an internally stabilizing controller K(z)
for the control-loop configuration in Fig. 2 that
minimizes the performance index ||P,y|2 =

1

2
T

Instructions for the solution to this problem can
be found in standard literature on optimal control the-
ory, e.g., [18]. In our design, we made the additional
restriction that the controller K should be strictly
proper. This has the advantage that a complete sam-
ple period is available for calculation of the controller
output. The controller is represented by a discrete-
time state space model with matrices A, B, and C.
running with a sampling period of 7y = 0.6 millisec-
onds.

In [10], it is also elaborated on how the identi-
fied additive uncertainty AG can be utilized to check
for robust stability via standard tests like Small Gain
Theorem or p-Analysis.

3 Digital Implementation

With the theory of the controller now established, we
continue to examine how it can be efficiently realized
using hardware suitable for volume production. Low-
cost and/or low-power embedded computing gener-
ally replaces floating-point by fixed-point computa-
tion. However, the previously discussed robustness
must still be maintained. Thus, a trade-off must be
found between computation accuracy and device costs
as well as power consumption. Fixed point arith-
metic is often used since its operators (especially ad-
dition) require less transistors than floating point op-
erators of the same bit width. While in floating point
arithmetic, numbers are represented by a fixed num-
ber of digits scaled at run-time using a variable ex-
ponent, fixed point representation uses a fixed ex-
ponent chosen at design time which remains con-
stant at run-time. The latter is considered more ef-
ficient in applications where the high dynamic range
of floating point arithmetic is not required. Hence,
fixed point arithmetic is especially beneficial for sys-
tems implemented as application specific integrated
circuit (ASIC) or in a Field-programmable Gate Array
(FPGA). An FPGA is an integrated circuit designed to
be (re)configured with sequential digital logic func-
tions after the silicon device itself has been manu-
factured . The logic circuits are implemented by the
FPGA fabric using lookup tables (LUTSs) with associ-
ated flip-flops as well as programmable interconnects.
These basic logic structures are complemented with

special function blocks such as multipliers, DSP units,
I/O transceivers, or on-chip memories.

To convert an infinite word length (or floating
point) model to fixed point arithmetic, all operands
must be quantized while limiting the quantization er-
ror to bounds acceptable for the specific application.
The quantization error in the data path of the con-
troller, which basically consists of input (A/D con-
verter), output (D/A converter), and state vector, can
be modeled with white noise injection as long as the
quantization error is small compared to the signal.
The variance of the injected noise o2 is a function of
the fractional bit length np, [16]

o? = L g-ur (16)

12 ‘
On this basis, several analytic and simulation-based
approaches have been developed to identify the opti-
mal word length of data path variables [7] [13] [9]. As
long as the quantization error remains small enough,
their quantization effect on the FRF can be neglected.

Beyond the data path, the coefficients of the con-
troller matrices must be quantized as well. They are
known at design time, but even small changes due to
quantization have direct influence on the frequency re-
sponse. Hence, the FRF change needs to be observed
during quantization of the coefficients. To find the op-
timal quantization, we propose the min+b search algo-
rithm [6] using the mean square frequency response
discrepancy as quality metric.

The min+b algorithm is an heuristic method for
finding (near) optimal fractional word lengths of a set
of fixed point variables. The optimum is defined as
the word length configuration with the smallest sum
of word lengths that still satisfies the quality met-
ric. Common quality metrics aim for a limited mean
square error of system output (compared to infinite
word length system) or a limited quantization noise.
The min+b algorithm uses two passes to determine the
word length. The first pass starts with a near-infinite
world length and estimates a lower bound:

1. Set all variables to the maximum word length
supported by the architecture.

2. Pick one variable not yet optimized and decrease
its word length until the quality measure is vio-
lated.

3. Store the smallest working bit size for this vari-
able and continue with step 1 until all variables
have been optimized.

The second pass subsequently uses the given lower
bound estimates and increases the individual word
lengths to find a working configuration:



1. Setb=1.

2. Check all combinations of additional b bits dis-
tributed over all variables.

3. If a working configuration was found, terminate.
4. If b < bypqq increase b and go back to 2.

5. If b = byae use configuration with best quality
score as new base and go back to step 1.

Smaller values of b,,,; Will reduce the run-time but
result in a higher probability to miss the optimal con-
figuration. Cantin compares the min+b algorithm to
several other methods in [6]. In some cases, these
methods computed small widths than the min+b lower
bound estimates. But min+b remains attractive by pro-
viding a good trade-off between quantization quality
and run-time.

For coefficient quantization, we choose the mean
square frequency response discrepancy as quality met-
ric J:

i

J= Y |G () =G ()2 a7

wnp=0

Due to the MIMO structure of the controller described
in this paper, multiple frequency responses must be
calculated. Two effects, which will be described in
the following paragraphs, need to be considered when
adapting the min+b algorithm for coefficient quantiza-
tion using the frequency response quality metric.

First, when relying on injected noise as qual-
ity metric, only the fractional part is optimized since
reducing the word length starting from the most-
significant bits will not allow the use of white noise
error model (the most-significant bits cannot be con-
sidered white noise). In contrast, when examining the
frequency response, the coefficients can be optimized
at both most- and the least-significant sides. Here,
both quantization effects (saturation and rounding)
will affect the frequency response. Quantization of the
integer part is simplified by the knowledge of coeffi-
cients during optimization. Thus, the required integer
word length can be calculated analytically. If a small
saturation error is acceptable, the most-significant bit
remains for further optimization.

However, in some cases the integer word length
can depend on the fractional word length, i.e., re-
moving bits from the fractional part can cause a
larger error in the integer part. As an example,
assume the optimization of the decimal unsigned
value 1.99 with a maximum allowed error of decimal
0.01. In its original binary 16-bit representation of
0001.111111010111 only one bit is required for the

integer part. However, restricting the integer part’s
word length to one bit before optimization the frac-
tional word length would require six bits for the frac-
tional part, since rounding up to a value of two (which
would take two bits in the integer part) is no longer
possible. To avoid this potential source of suboptimal
word length results for the integer part, Phase 1 of the
min+b algorithm was slightly modified to always op-
timize the fractional part first, and reuse the fractional
result during the optimization of the integer part.

Second, since the less significant bits in the data
path are generally not correlated to each other, in-
jected noise can be modeled as zero mean white noise
as stated earlier. Equation (16) implies that noise in-
tensity is a monotonically decreasing function of word
length of the fractional part . Hence, the first phase of
min+b algorithm stops shrinking the word lengths as
soon as a length fails to satisfy the quality criterion.
No such correlation can be proven for the frequency
response error. In practice, however, we have not ob-
served a single case in numerous experiments where
shrinking the word length lead to a decrease of the fre-
quency response error. Our heuristics thus use the first
violation of frequency response quality constraints as
a termination criterion for shrinking the word lengths.

The algorithm was implemented in MATLAB-
Simulink targeting a high-level hardware synthesis
tool flow for FPGAs. However, it can also be used
for fixed-point software implementations by limiting
the legal word lengths to just 8, 16 or multiples of 32
bit. Due to a limitation in the Simulink gain block
quantization setting, only a single word length can be
specified for all elements of the matrix. This is a lim-
itation acceptable for both software and hardware re-
alizations: In software all coefficients of a matrix will
be stored in a single array, and hence must all have the
same data type. In hardware on the FPGA, our com-
pute performance is sufficiently high that, at the re-
quired sample rate, we can time-multiplex the compu-
tations for a/l matrix elements onto a single hardware-
operator (conserving hardware area), and then just
size the fractional and integer parts for that single op-
erator.

For this application, the tolerable mean square
absolute error in frequency response was defined as
10~° to closely match the FRF of the floating point
controller. The quantization results for the controller
described in this paper can be found in table 1. Com-
pared to the MATLAB default floating point format
(64-bit IEEE-754 double), 49 to 47 bits (74-77%)
could be saved in addition to gaining the performance
benefits of using fixed point arithmetic.



Table 1: Word length (WL) after optimization

| matrix | state Ac | input B¢ | output Cc |
integer WL 2 1 2
fractional WL 15 14 13

\ matlab std. 64 64 64

| reduction | 74% | T1% | T1% |

Figure 4: Layout of the smart panel

4 Experimental Results

This section provides experimental results for the
identification, control design and fixed-point imple-
mentation algorithms presented in the last two sec-
tions.

The smart structure to be considered is a flexible
panel with four bonded piezo patches which are used
as actuators to apply bending moments onto the plate
to counteract disturbance forces. The vibratory mo-
tion of the plate is measured with four piezoelectric
acceleration sensors nearly collocated to the actuators.
The layout of the smart panel can be seen in Fig. 4. In
addition to the actuators and sensors on the frontside,
an electromagnetic shaker with mounted force sensor
excites the plate from the backside with a disturbance
force. There is a fifth acceleration sensor collocated
to the excitation point on the frontside which is used
for test purposes.

A plant model G(z) was identified with the ac-
tuator voltages as inputs and the signals of the col-
located acceleration sensors as outputs. The spectral
density of the logarithmically accelerated swept sine
signal which was used to excite the first 15 modes of
the structure up to 500 Hz is displayed in Fig. 5. The
spectrum of a typical corresponding acceleration sig-
nal is shown in Fig. 6.

The ERA-OKID algorithm was used to fit a
parametric model G(z) of order n = 197 to the
FRF G (ej“’"TS) in the first instance which was sub-
sequently reduced via frequency weighted balanced
truncation to a model of order 100. The magnitude

MO

0 250 500 0 250 500
Frequency in Hz Frequency in H:

Figure 5: Spectrum of the Figure 6: Typical spec-
trum of the output signal

swept sine input signal

0 100 200 300 400 500
Frequency in Hz

Figure 7: Frequency response of the parametric model
from fourth input to first output along with its confi-
dence region for o =99.7 %

of the frequency response of the reduced order model
from the fourth input to the first output (compare Fig.
4) is presented in Fig. 7 along with its 99.7 % confi-
dence band. There is a region of high model uncer-
tainty below 50 Hz, which is caused by the low SNR
of the sensor signals. Model uncertainty is also sig-
nificant above 500 Hz which is due to the drop in the
spectral density of the input signal.

Based on the nominal model, an H5 optimal con-
troller of order 60 was designed according to the pro-
cedure outlined in Sec. 2.2 in order to damp the first
twelve bending modes of the plate. Robust stabil-
ity was checked via p-analysis based on the uncer-
tainty description computed in Sec. 2.1, see Fig. 8.
The maximum value of the structured singular value
w over the relevant frequency band is 1.05, which is

0 100 200 300 400 500
Frequency in Hz

Figure 8: Result of j-analysis



slightly greater than the theoretically allowed maxi-
mum of one. Nevertheless, the controller can be re-
garded to be robustly stable since the bound on the
uncertainty is conservative. Especially, step (14) is
conservative which can be seen in Fig. 1.

To evaluate the performance of the controller, the
frequency responses from the disturbance force to
the collocated acceleration sensor and the four con-
trol sensors are depicted in Fig. 9. It can be seen
that the resonance peaks of the first twelve modes in
the targeted frequency range up to 400 Hz are signifi-
cantly damped. Furthermore, the frequency response
above 400 Hz is unchanged, which shows that there
are neglible spillover effects in the control loop.

To evaluate the impact of our word length opti-
mization procedure and the resulting hardware imple-
mentation, the controller data path was quantized us-
ing the min+b algorithm with injected noise as qual-
ity metric, while the coefficients were word-length
optimized by focusing on the frequency response.
The resulting finite word length controller was then
formulated manually as a high-level hardware de-
scription using the Synphony HLS Block Set [20]
for Simulink and successfully mapped to the Actel
IGLOO M1AGL1000 Low-Power FPGA [1] [8]. This
would not have been possible without our word length
optimizations, since the IGLOO series is a power-
optimized family of small FPGAs without integrated
multiplier units unable to efficiently perform double
precision floating point arithmetic. To compare the
efficiency of the FPGA solution with a pure soft-
ware approach, a software implementation of the con-
troller was generated by exporting the controller as
C code using MATLAB Real-Time Workshop [15],
which was then compiled for an Texas Instruments
TMS320C5515 16-bit Low-Power DSP with all op-
timizations enabled [2]. The power draw and compu-
tation time was measured on both devices to identify
the energy consumption per sample. While the FPGA
requires only 15.7 pJ per sample, the DSP consumes
140 pJ due to much longer calculation times. This
large difference may be due to some word lengths
slightly exceeding the 16 bit architecture of the DSP,
thus requiring inefficient composite 32 bit operations.

5 Conclusion

Model based optimal control techniques were applied
to actively damp a flexible structure. We showed how
an uncertainty description of the plant can be derived,
from the data measurement to the checking for robust
stability of the control loop.

We then introduced a novel world length opti-
mization heuristic to derive an area-efficient fixed-

point computing architecture for the controller. This
could then be mapped to a low-power FPGA using
high-level descriptions, without the need to resort to
low-level digital hardware design languages such as
Verilog or VHDL. The resulting compute unit is con-
siderably more power efficient than even a low-power
DSP and fulfills both the quality and sample rate re-
quirements.

The entire system was evaluated using a lab ex-
periment consisting of a smart panel with four sensors
and four actuators, where it was able to successfully
dampen the resonance peaks below 400 Hz.
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