MARC II: A Parametrized Speculative Multi-Ported
Memory Subsystem for Reconfigurable Computers

Holger Lange, Thorsten Wink, Andreas Koch
Embedded Systems and Applications Group
Technische Universitidt Darmstadt, Germany

E-Mail: {lange, wink, koch}@esa.cs.tu-darmstadt.de

Abstract—We describe a parameterized memory system suit-
able as target for automatic high-level language to hardware
compilers for reconfigurable computers. It fully supports the
spatial computation paradigm by allowing the realization of each
memory operator by a dedicated hardware memory port. Inter-
port coherency is maintained only for those ports that actually
require it, and efficient speculative execution is enabled by a
dynamic scheme for arbitrating access to shared resources (such
as main memory), relying on techniques inspired by the branch
prediction of conventional software-programmable processors.

I. INTRODUCTION

Adaptive computing systems (ACS) combine the potential
performance of a reconfigurable computing unit (RCU), re-
alizing hardware accelerators (HA), with the flexibility of
a conventional general-purpose processor (GPP) to handle
administrative tasks (e.g., I/O, operating system, etc.) [14].

In order to simplify the ACS programming, high-level-
language to ACS compilers have received much attention. In
contrast to a human designer, these automatic flows always
generate a system according to a predefined architecture
template. This template often encompasses the usual model
of separate control units (statically or dynamically scheduled)
and data paths, but also has to include an interface between
RCU and GPP, and, for systems aiming for high performance,
directly between RCU and memory. By exploiting the recon-
figurability of the platform, however, we can now also adapt
the characteristics of the memory system to the specific needs
of each ACS application.

Thus, the memory system itself should be highly parame-
terizable. Customizable characteristics include, e.g., the nature
of accesses (random or sequential), architecture parameters
(cache organization, streaming buffer size, prefetch policy),
but also the number of parallel memory ports. The latter is
especially crucial to fully support the paradigm of spatially
distributed computation, which distinguishes algorithm exe-
cution in hardware on the RCU from that of the temporally
distributed one of software on the GPP.

Building on our experience with the Memory Architecture
for Reconfigurable Computers (MARC I) [15], in this work we
present the significantly extended and refined solution MARC
II.

II. SYSTEM OVERVIEW

Fig. 1 gives an overview of the architecture and system
integration. MARC II sits between the data path and the actual
SoC infrastructure including the DRAM memory controller
(n) and the processor bus (M). The details of this latter
interface are encapsulated in a so-called technology module
(TechMod, I), which isolates the higher abstraction levels
of the memory system from the low-level hardware details.
MARC II can be moved to a new platform by just providing an
appropriate TechMod. The data path (a, which we anticipate
to be generated by automatic compilers, but which can as
well be manually implemented) accesses MARC 1II through
so-called front-ends. We currently provide two kinds of front-
ends, which differ in the semantics of data access: Cache Ports
support random accesses and will be discussed in greater detail
in Sec. IV, Stream Ports (not discussed here, but see [7]) have
DMA-engine like programmability to implement various kinds
of streaming accesses (e.g., non-unit stride, prefetched, etc.).

Internally, all Cache Ports are partitioned into Coherence
Clusters (CC). Each CC may have at most one Write (d)
and one or more Read Ports (c). All Ports in a cluster can
potentially affect memory in overlapping address ranges and
are kept coherent using a cluster-wide Coherency Bus (CB, f)
and its associated protocols. Each Port is backed by its own
dedicated cache memory (e), resulting in improved scalability
over MARC I. MARC 1 enforced coherency by sharing the
actual cache data lines between all Cache Ports, a setup in
which the physical ports on the FPGA-internal memory blocks
quickly became a bottleneck.

Ports which have been proven to access non-overlapping
address ranges using compiler analysis [9] are handled by
separate CCs, reducing the amount of intra-cluster coherency
traffic. All CCs share a back-end memory bus (MB, i) to
the TechMod providing the connection to the physical main
memory resources.

MARC II also supports parameterizable support for specu-
lative memory operations in the data path on a per-port basis.
Enabling these features uses an approach similar to branch
prediction (b) on a conventional processor, but employed here
to efficiently allocate the access (g,h,j,K) to shared resources
(the intra- and inter-cluster buses, and the single main memory
shared with the GPP).

978-3-9810801-7-9/DATE11/(©2011 EDAA

Coherence Cluster 1

Coherence Cluster n ’_

(m) PowerPC
—/ Cache 440
(b) (e) fm— Shared
(©) Read Port(1,1) Coherence
| Bus - CB
(f)
<:i\/ Read Port(1,n)
- o - *b’ - *d;
1 Ce
b \ Write Port(1) if (%a < 5)
::; Shared *d = *a + *xb;
P Memory Bus — else
Ve *d = *xa - *c;

(n

%)
=)
2
>
<

Controller

g

external
DDR2-

SDRAM-

Memory

Fig. 2. C sample for data path
in Fig. 3

(0)

Fig. 1. Overview of the MARC 11

III. SUPPORT FOR SPECULATIVE MEMORY ACCESSES

In a typical SW program, about 20% of the instructions are
memory accesses which take up to 100x as much execution
time as a simple non-memory instruction [13].

To alleviate this in the spatial computing paradigm used
for reconfigurable computing, we propose memory access
speculation as a novel technique. Memory speculation aims
to start executing memory accesses as soon as possible, each
on a dedicated memory port. The version presented here
specifically relies on control speculation, launching accesses
as soon as their addresses (for load and store) and data (for
stores only) are available, but control conditions have not been
evaluated yet. This is similar to branch prediction in GPPs,
where instructions are fetched and started from the predicted
execution path, to be squashed later in case of a mis-prediction.

We go beyond this approach, which in the memory domain
could be seen as a kind of prefetching, and also use specu-
lation statistics to give more likely accesses a higher priority
route to shared resources (e.g., CB and MB in MARC II).
Our approach collects all required statistics at run-time and
does not require compiler support (e.g., execution probability
annotations or similar). Since we aim at small hardware areas,
we do not exploit yet data speculation or speculative writes
(which would require complex hardware, e.g., Load Store
Queues).

A. Speculation in Temporal and Spatial Compute Models

While explored mostly for GPPs [13], [17], [21], speculative
execution is not limited to that domain [3] and can also be used
in the parallel paradigms used for HAs [16].

In contrast to the conventional CPU-only architectures, an
ACS executes highly parallel calculations on the HA, both
in the spatial (e.g., by unrolling) and temporal (pipelining)

system

domains. Here, the parallel data paths rely on equally paral-
lelized memory ports, which feed and drain data to and from
the pipelines. The granularity of the memory ports can be as
fine as one port per memory operation node in the data path.

While a typical ACS application aims to use as many
memory ports as possible to optimally exploit parallelism, such
bijective mapping is not mandatory. Multiple operations can
also share a single memory port if required due to limited HA
resources.

Any hardware architecture aiming to support these highly
parallel capabilities has to scale significantly better than the
2 or 3 parallel memory ports of current high-performance
GPPs [12]. We achieve this by a distributed architecture,
associating speculation features with each individual MARC
IT Port, instead of relying on a central authority.

Thus, each port is its own speculation domain, allowing
both the collection of statistical information as well as the
actual speculation-based prioritization on a per-operation basis
(assuming a 1:1 mapping of memory operations to Ports).

For Fig. 2, assume software execution on a super-scalar out-
of-order GPP: The *a would be loaded, then branch prediction
would come in to predict that the resulting value would be less
than 5 (assumed here in the example), resulting in starting the
load of *b. Once both values arrived, the addition and the store
of the result to *d would be launched.

On the RCU with a fully spatial execution model with
speculation (Fig. 3), the non-speculative load of *a would be
started. In parallel, the speculative loads of *b and *¢ would
also be initiated. After the speculative loads complete, both
results (the sum and the product) would be computed, and the
control condition (once it becomes available) decides, which
value to store to *d.

This approach of speculatively executing all branches of a

memory
port 2

memory
port 3

memory
port 4

Fig. 3. Parallel data path - speculative execution of memory accesses

conditional in parallel works well, if fully spatial execution
on dedicated hardware operators is possible in practice. How-
ever, once these dedicated operators actually access a shared
resource (a single main memory, in this case), the efficiency
deteriorates: On the GPP, the access to *¢ would never have
happened due to branch prediction, resulting in less memory
traffic / cache pollution than in the spatial model on the RCU.

B. Lightweight Non-destructive Speculation

Our lightweight approach aims to reach two goals: pro-
viding satisfactory speculation speedups while using a min-
imum of HA resources. By avoiding complex HW structures
such as a speculation buffer, which would be required to
resolve destructive speculative write operations, significant
HW resources can be saved while still providing most of
the functionality. Our non-destructive speculation relies on
control speculation for all read operations, including intelligent
prefetching.

The speculation system, which can be activated for each
MARC II Port separately, relies on memory operations to
either be canceled or committed once the control condition has
been evaluated. The statistics for each operation’s individual
behavior is tracked in its associated MARC II port. When
speculation support is enabled for a Port, two additional signals
are made available to the data path (beyond the usual address
and data etc. connections [15]): Output Prepare OP initiates
a cached read access from an address, but the data is not
finally delivered. If OP is reset at any time, the associated
read is canceled (releasing, or possibly not even acquiring the
shared resources). On the other hand, if the conventional read
signal OE (Output Enable) is set in addition to an active OP,
the read eventually completes and is thus committed. In all
cases, the per-port statistics are appropriately updated. If the
Prepare signals are not used, the associated access is handled
by MARC 1I in the usual non-speculative manner.

The individual commit/cancel statistics are fed into one two-
level GAg predictor [26], which consists of a Global pattern
history, and a global pattern-history table (PHT) containing
multiple Adaptive N-bit predictors. Since the speculative mem-
ory system is optionally inserted between the data path and a
conventional MARC II Cache Port, it should have only limited
impact on the critical path. To this end, the GAg predictor
was chosen as the simplest form of a two-level predictor with

a single global history and table. Nevertheless, it yields a
prediction accuracy of approximately 75% [18] in the SPEC
CPU2006 benchmark [22] with 4 bits pattern history length, 2
bits predictor width, and a single memory port for all accesses
(CPU).

In the context of the speculative memory system, the value
of the predictor represents the probability of actually commit-
ting a memory access. After the outcome of the predicted event
is known, in this case whether an access was committed or
canceled, the N-bit predictor is updated in saturated arithmetic
by adding one for a commit and subtracting one for a cancel,
and subsequently writing the value back to its place in the
PHT.

C. Dynamic Prioritization

The predicted probability of a memory access being actually
committed is then used to set the dynamic priority of that
access for acquiring the shared resources. Instead of the
fixed priority scheme used in MARC I, in the speculation-
enabled MARC I, all accesses in-flight are sorted by the
predicted probabilities by a bitonic sorting network [2]. This
combinational parallel circuit determines the order by which
accesses travel on the CB and MB.

Note that the priority arrangement of the memory ports
may now change dynamically from access to access. Thus,
speculative accesses that are unlikely to commit have to
wait until speculations with higher commit probability have
completed. As the lower-probability accesses have probably
been canceled by then, no precious architectural memory
bandwidth is wasted on canceled accesses, and high-priority
computations are only subject to short delays.

D. Dynamic Prefetching

Dynamic prefetching relies on the predictions, too, but
uses them to prefetch lines into the caches of Ports with
high commit probabilities prior to the actual execution of the
memory operation.

Prefetching also depends on the non-speculative/speculative
nature of accesses as indicated by the Prepare signals (see
Sec. III-B). Whenever a speculative access is initiated, the
corresponding cache line is prefetched, subject to the priority
determined by the GAg predictors described in the previous
Sec.. Hence, a cache line is only prefetched if no other
pending accesses (speculative, non-speculative, and prefetch)
with higher priority would be hindered. On the other hand,
a high-priority prefetch may supersede a low-priority access,
which again, by early prefetching, expedites accesses with
a high commit probability over those which are unlikely to
commit.

If an access leading to a prefetch is canceled by the data path
(e.g., once a control condition has been evaluated), and the
actual data transfer has already begun, the transfer is cleanly
aborted to make the shared buses available to more urgent
requests as soon as possible (generally only delaying the new
access by an average of just one clock cycle).

IV. CLUSTER-COHERENT MULTI-PORT CACHE
A. Overview

Providing each MARC II Cache Port with its own un-
derlying cache has a number of advantages in our usage
scenario. Not only does it allow better scalability (avoiding
the bottleneck of actual multi-ported memories), but also
interacts better with the speculation mechanism described
above (misspeculations on one Port cannot evict correct data
held in another Port). The distributed scheme also fits better
with the spatial computation paradigm and allows a higher
degree of parallelism than the MARC I approach of physically
sharing the cache lines between the Ports.

B. Cache Architecture

The caches themselves are implemented using BlockRAMs,
with the parametrized line length being a multiple of 256b
(eight 32b words). This is due to the 128b wide external
memory interface (see Sec. V), running at double-data rate
relative to MARC II. In the minimal configuration, eight 32b
wide BlockRAMs are used per Cache Port. Based on our
experience with MARC I, the MARC II caches are direct
mapped instead of fully associative: While direct mapping
has a lower efficiency than higher-degree caches [8], the
abundance of BlockRAMs on modern FPGAs allows better
scaling than implementing the larger CAMs required for
higher associativity.

C. Coherency Mechanisms

Coherency among the distributed caches is managed in two
ways: If static points-to-analysis can prove that two accesses
will not affect the same address ranges, these independent
accesses will be assigned to Cache Ports in different CCs.
No explicit coherency management between them is required.
Potentially dependent accesses are assigned to Cache Ports
in the same Cluster, with explicit coherency mechanisms (in
contrast to, e.g., [19], which provided only incoherent caches).

We make design decisions to reduce the coherency-
maintaining intra-cluster traffic (and simplify the underlying
hardware): First, since we aim to use one Port per access,
we have separate Ports for loading and storing. Second, we
allow only one Write Port per CC. This reflects that even in
sequential code, e.g., for SPECint 2000, more than double the
number of loads than stores is performed. If more dependent
stores occur, these are processed either sequentially on the
single Write Port, or by realizing one CC using a MARC I-
like shared cache (which realistically scales-up to four parallel
accesses of any kind, e.g., three Write and one Read Ports).

With these choices, we can now replace the potentially slow
MSI, MESI, or MOESI coherence protocols [1], [11] with the
simpler approach shown in Fig. 4. Cache lines in a Read Port
are either valid or invalid, requiring just 1b of state. Write
Ports are either invalid (the cache line is not present), shared
(the cache line is present, and also present in at least one other
Write Cache), exclusive (the cache line is present and no other
cache has it), and partially exclusive (the cache line is only
partially present). Note that the last state is only needed for

b,
— i T~

load cache line from
other cache over CB-

% 070\\/ bus

/ \invalid / /- T shared /
/ CB-miss, ~—

load cache line / ,77//<

/‘ CB-miss, from memory

write direct
‘ without loading
cache line

\/ 01 //

| partially \/

\\cluswe

deliver cache line |
to other read cache

\ exclusw/

Fig. 4. Cache line state transitions in a Write Port

_~"deliver cache line
to other read
cache, before

loading complete
cache line from
memory

the write-without-allocate policy (Sec. IV-D). In Fig. 4, we do
not show the back-edges from all states to invalid, which are
taken whenever a cache is flushed or invalidated. Note that the
usual modified state is not required here, since a Write Port’s
cache only holds modified lines at all.

The intra-CC Coherency Bus (CB) is used to update states
and cache lines between Ports. It consists of a cache line
address (e.g., 10b for a configuration of 1024 lines of 8 32b
words each) and a tag (17b, in the same case), 256b of data,
as well as data and address valid signals. Access to the CB
is managed by the CB Arbiter using request/grant signals
(optionally guided by Dynamic Prioritization, Sec. III-C).

The way the states are used can be set for each CC sepa-
rately: For a CC in invalidate mode, the Write Port notifies the
Read Ports holding an affected shared cache line to invalidate
it. If the Read Ports later require the cache line again, it will
be retrieved over the CB from the Write Port. In update mode,
the Write Port immediately sends out its altered shared cache
line over the CB to all Read Ports holding old versions. The
best configuration can be chosen at compile time, using either
static analysis or by evaluating dynamic memory traces.

D. Write-without-Allocate

The Memory Bus (MB), having a 32b address and 256b data
component, is shared between all CCs. To avoid it becoming a
bottleneck, the cache in the Write Port can accept a write, but
does not fetch (allocate) the corresponding cache line. Instead,
it keeps track of the specific words written in the cache line.
Only the words actually modified will be written back to main
memory (selected using the 32 byte enable signals on the MB).
When a Read Port requests a cache line partially modified by
the Write Port, the original contents from main memory are
merged on-the-fly with the Write Port’s modifications without
incurring additional latency. For the common use-case of the
HA writing results to memory, which are read later only by
software on the GPP (but not using Read Ports in the HA),
this approach reduces pressure on the MB.

E. Priority-based Bus Arbitration

When enabling control speculation for a Port, both the CB
and MB bus arbiters are controlled using the dynamic priority

Name %Writes | Ran- 1-CC 2-CC

dom? || Update | Inval. || (Update)
L1 0 N 3.758 | 3.758 5.695
L2 50 N 4.495 | 4.732 6.053
L3 100 N 5.104 | 5.705 6.605
L4 0 Y 5.642 | 5.642 11.193
L5 50 Y 6.196 | 6.200 10.338
L6 100 Y 6.569 | 6.509 10914

TABLE 1

LINKED LIST: MILLION EXECUTION CLOCK CYCLES

appropriate for the specific access (see Sec. III-C). Very likely
accesses will thus acquire the shared resources quicker than
unlikely accesses.

F. Canceling Misspeculated Accesses

Misspeculated accesses, indicated at the Port interface using
the Prepare signals (see Sec. III-B), are recalled as quickly
as possible to keep them from loading the shared resources:
If an access has requested, but not yet acquired CB, access,
the request is withdrawn. MB access is handled similarly.
The capability also extends to the TechMod interface to main
memory: Instead of waiting for the reply to a misspeculated
read to arrive, the reply is marked to be discarded in the
TechMod and the next potentially useful access is forwarded
immediately to the main memory controller.

V. IMPLEMENTATION

An initial implementation of MARC II was done on the
Xilinx ML507 platform [25]. The Virtex 5 FX FPGA realizes
a single-chip ACS architecture, combining the embedded
PowerPC 440 GPP with HA(s) on the reconfigurable fabric.
We modified the Reference Design by inserting the TechMod
into the MCI bus between PowerPC and external 200 MHz
DDR2-SDRAM main memory. The GPP can thus access the
HA in a simple memory mapped fashion, while the 100 MHz
HA can directly access main memory, following our FastLane
architecture [16] of giving the GPP priority over the HA to
ensure stable system operation. The system was implemented
using Xilinx EDK and ISE 10.3, and Synplify Premier DP
9.6.1.

VI. EXPERIMENTAL EVALUATION

To evaluate the effects of the different mechanisms, we used
a number of micro-benchmarks to examine the interaction
of specific features. Once we have targeted our high-level-
language to ACS compiler to MARC II (see Sec. VIII), we
will be able to run full application-level benchmarks.

A. Cache Operations

Table I shows the result of processing a linked list of
128K four-word elements using one Write Ports (WP) and
three Read Ports (RP). The list is laid out either sequentially
and randomly in memory. The processing is varied from just
reading to also writing in every iteration, with a mix in
between. Furthermore, we run the operation both with just
one CC, and then with two CCs processing different lists

Name Addra | Addrb | Addrc partial | inval/ # cycles
write? | update
AO01 0x0000 | 0x1000 | 0x2000 Y - 3507
A02 0x0000 | 0x1000 | 0x2000 N — 4309
A03 0x1000 | 0x1000 | 0x0000 Y - 2446
A04 0x1000 | 0x1000 | 0x0000 N - 3469
A05 0x0000 | 0x0000 | 0x0000 - I 4072
A06 0x0000 | 0x0000 | 0x0000 — U 2866
A07 0x0000 | 0x1000 | 0x0000 - I 3612
A08 0x0000 | 0x1000 | 0x0000 - U 2887
A09 0x0000 | 0x0000 | 0x0000 - I 1251
A10 0x0000 | 0x0000 | 0x0000 — U 1291
TABLE II

ARRAY PROCESSING: OVERLAPPING/NON-OVERLAPPING

in parallel. The coherency strategy varies between Update
and Invalidate modes. While increasing randomness (=cache
misses) and writes (=more coherency traffic) grow the run-
time, the performance degrades only slowly. Also, note that
when only reading, the coherency strategy is irrelevant. For
mostly sequential accesses with writes (L2,3), Update is
better (=allows many cache hits). This advantage shrinks
with increasing randomness (L5), both Invalidate and Update
have nearly the same performance then. With even more
writes (L6) and randomized layout, the efforts of Update are
wasted (since the updated cache lines will not be read again
soon), and Invalidate performs better. Furthermore, running
the application on two CCs in parallel leads to a net speed-up
(despite sharing the MB, the execution times do not double).

A second benchmark examines operations in overlap-
ping (=requiring coherency handling within a CC) and non-
overlapping (=executable in independent CCs) array ranges.
Each of the arrays is assumed to contain 256 32b elements
(thus running entirely out of cache, to disregard main memory
latency) and is processed using the operation c[i] = a[i] +
bli — 1], requiring one WP and two RPs. The benchmark
examines different overlaps between the read and written
arrays, as well as combinations of the partial write feature and
the Invalidate/Update coherency strategies. In AO1 to A04 we
show the benefits of the partial write feature. It can save up
to 41% (AO03 vs. A04) if the written data is not read again.
A03,A04 are faster than AO1,A02 since the overlapping read
arrays are handled using cache-to-cache transfers. Note that
we have yet to find an application where partial writes are
not beneficial, we thus suggest enabling it as default. A0S to
A10 compare the Invalidate/Update coherence strategies: If the
written and read arrays overlap, Update allows the sequential
reads to also hit the caches more often. AO9 and A10 are
altered to have index stride of eight to examine reducing this
locality, provoking more misses. For such cases, the Invalidate
strategy is a slightly better choice. For reference, this entire
HA requires 8536 LUTs and 26 BlockRAMs on the Virtex 5
FPGA.

B. Speculation

To test the effect of speculation, we consider four micro-
benchmarks, see Table III, all in a single CC. First, we examine
the impact of speculation on the L5 Linked List benchmark.

Name w/ w/o | speed-up
spec. Spec.
Linked List (3RP 1WP) 6.196 6.402 1.03x
Tree Search (2RP) 10.011 | 11.087 1.11x
Merge Sort (2RP 1WP) 10.266 | 59.498 5.80x
COMRADE Sample (2RP) 0.356 0.598 1.67x
TABLE III

SPECULATION: MILLION EXECUTION CLOCK CYCLES

Due to the random nature, only limited gains are achievable
(mostly due to dynamic prefetching) with speculation enabled.
Tree Search searches for random keys in a 16,384-element
binary tree. It uses two RPs, simultaneously speculatively
reading both the left and right successors of a node. The actual
control condition is assumed to require 16 clock cycles for
evaluation (e.g., a string comparison). The speculation allows
the hiding of the main memory latencies, but is limited to
just 10% improvement when searching for random keys. Note
that this will significantly improve when ordered sequences of
keys are being searched for. In that case, the PHT predictors
precompute the correct path through the tree and lead to the
prioritization of the correct memory accesses. Merge Sort is
the inner loop of the CoreMark MergeSort benchmark [5],
which sorts a list of 139807 elements by merging the sorted
sub-lists in-place. This control-intensive code profits much
more from speculation, specifically from dynamic prefetching,
which again hides the 16 cycles latency of the element-wise
comparison. Finally, COMRADE Sample sums values from
two arrays: Every third number is taken from one array, the
two others from the second array. This benchmark has actually
been automatically compiled from C by the COMRADE ACS
compiler [6] into a HA, which was then manually fitted with
the MARC II system. COMRADE already supports powerful
speculation mechanisms, but currently targets MARC I, thus
the need for manual intervention.

VII. RELATED WORK

Shared memory parallel processing on FPGAs is still rel-
atively uncommon. [19] used distributed caches, but did not
address coherency at all. This was treated in [23], but with
more complex hardware (due to combined read/write ports),
and lack of separate coherence clusters and cache-to-cache
transfers. More work has been performed on keeping multiple
soft-processor cores coherent [10], but this used relatively slow
software synchronization. To our knowledge, no prior attempts
at using prediction techniques to optimize memory accesses
in spatial computing exist. For superscalar GPPs, the distantly
related use of branch prediction data to optimize loads on
misspeculated paths has been proposed in [20] [4].

VIII. CONCLUSION AND FUTURE WORK

MARC 1I considerably enhances the capability of both
our own as well as other memory systems for reconfigurable
computers. It is the first one to combine support for control
speculation, distributed memories, and clustered coherence

mechanisms, with the FastLane system interface to GPP and
main memory.

Our next research will proceed in two directions: First, we
will enhance our high-level language to ACS compilers to
target MARC II and automatically configure it as appropriate
for the current application (e.g., assignment of Ports to CCs,
select coherence strategy, etc.). Second, we will extend MARC
IT itself, both using local improvements (e.g., low-degree
associativity, victim line handling, etc.) as well as providing
full support for speculative writes.

REFERENCES

[1] AMD Inc., “AMD64 Architecture Programmer’s Manual Vol 2: System
Programming”, 2007.

[2] Batcher K. E., “Sorting networks and their applications”, AFIPS Conf.
Proc. 32, 1968.

[3] Bobba J., Goyal N., Hill M. D., Swift M. M., Wood D. A., “TokenTM:
Efficient Execution of Large Transactions with Hardware Transactional
Memory”, Proc. 35th Intl. Symp. on Comp. Arch., 2008

[4] Ebrahimi E., et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems”, Proc. Intl. Symp.
on High-Perf. Comp. Arch., 2009

[5] EEMBC, “What is CoreMark?”, www.coremark.org, 2009

[6] Gidke, H., Stock, F., Koch, A., “Memory Access Parallelization in High-
Level Language Compilation for Reconfigurable Adaptive Computers”,
Proc. Intl. Conf. on Field Programmable Logic, 2008

[7] Gidke-Liitjens, H., Thielmann, B., Koch, A., “A Flexible Compute and
Memory Infrastructure for High-Language to Hardware Compilation”,
Proc. Intl. Conf. on Field-Programmable Logic, 2010.

[8] Hennessy, J.L., Patterson, D.A., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufimann, 2006

[9] Hind, M., Pioli, A., “Which pointer analysis should I use?”, Proc. Intl.
Symp. on SW Testing and Analysis, 2000

[10] Hung, A. et al., “Symmetric Multiprocessing on Programmable Chips
Made Easy”, Proc. DATE, 2005

[11] Intel Corp, “Intel 64 and IA-32 Architectures Optimization Reference
Manual”, March 2009.

[12] Intel Corp., “First the Tick, Now the Tock: Intel Microarchitecture
(Nehalem)”, White Paper No. 319724, 2009.

[13] Kaeli D. R., Yew P.-C., “Speculative execution in high-performance
computer architectures”, Chapman & Hall/CRC, 2005.

[14] Koch, A., “Advances in Adaptive Computer Technology”, habilitation
thesis, TU Braunschweig (Germany), 2004

[15] Lange, H., Koch, A., “Memory Access Schemes for Configurable
Processors”, Proc. Intl. Conf. on Field-Programmable Logic, 2000

[16] Lange H., Koch A., “Architectures and Execution Models for Hardware/-
Software Compilation and their System-Level Realization”, IEEE Trans.
on Computers, IEEE Digital Lib., 12-2009.

[17] Marcuello P, Gonzalez A., Tubella J., “Speculative multithreaded pro-
cessors”, Proc. 12th Intl. Conf. on Supercomputing,1998

[18] Martynus M., “Branch Predictor Simulator”, Bachelor Thesis, TU Darm-
stadt (Germany), 2007.

[19] Putnam, A., et al., “CHiMPS: A C-level compilation flow for hybrid
CPU-FPGA architectures”, Proc. Intl. Conf. on Field-Programmable
Logic, 2008

[20] Sendag, R., et al., “Exploiting the Prefetching Effect Provided by
Executing Mispredicted Load Instructions”, Proc. Euro-Par Conf., 2002

[21] Shen J. P, Lipasti M., “Modern Processor Design”, McGraw-Hill, 2005.

[22] SPEC CPU Subcommittee, original program authors, “SPEC CPU2006
Benchmark Descriptions”, SPEC - Standard Performance Evaluation
Corp., 2006

[23] Woods, D. “Coherent Shared Memories for FPGAs”, Master Thesis, U
Toronto, 2009

[24] XILINX Inc, “LogiCORE IP DDR2 Memory Controller for PowerPC
4407, 2010

[25] XILINX Inc, “ML505/ML506/ML507 Reference Design User Guide”,
UG 349, 2009

[26] Yeh T. Y, Patt Y. N., “Alternative Implementations of Two-Level
Adaptive Branch Prediction”, Proc. 19th Intl. Symp. on Comp. Arch.
(ISCA), 1992.

