A Scalable Multi-FPGA Platform for Complex Networking Applications

Sascha Miihlbach
Secure Things Group
Center for Advanced Security
Research Darmstadt (CASED)
sascha.muehlbach @ cased.de

Abstract—Ballooning traffic volumes and increasing link-
speeds require ever high compute power to perform complex
real-time processing of network packets. FPGAs have already
been successfully employed in the past to accelerate network
infrastructure-operations at these line-speed processing rates.
However, much of the prior work concentrated on single-
FPGA platforms. To this end, we have studied how to extend
an architecture for 10G application-level network processing
into a scalable multi-device system. We present a ring-based
approach, of which a quad-FPGA implementation will be
evaluated on the BEEcube BEE3 computing platform.

I. INTRODUCTION

With the great success of the Internet, network devices
have become widespread in both business and personal
settings, and their number has grown dramatically in the
past years. New services such real-time video and audio
and cloud-based computing and storage, combined with the
increasing number of users, have lead to ballooning traffic
volumes and more tighter quality-of-service requirements.

Since the required performance (e.g., throughput and
latency) has proven difficult to achieve by software run-
ning on conventional processors, a common solution is to
offload operations to dedicated hardware accelerators. This
approach has been realized using both programmable fixed-
architectures (e.g., network processors, TCP offload en-
gines), as well as reconfigurable architectures (often FPGA-
based).

Motivated by advances in FPGA technology and the
availability of faster and larger devices, we will show that
modern FPGAs have become sufficiently powerful to not
only act as partial accelerators, but instead can be used
to independently perform even application-level network
operations. In case of extremely high performance require-
ments, as an alternative to using a very large, expensive
device, this work demonstrates the scalability of multi-chip
implementations composed from smaller, more economical
FPGAs. We will employ the platform for application-level
network processing to realize the use-case of a honeynet-in-
a-box for malware (attack code) collection [1].

The work is organized as follows: After briefly surveying
related work, the base architecture and its components
are described in Section II. Section III presents specific

Andreas Koch
Embedded Systems and Applications
Dept. of Computer Science
Technische Universitdt Darmstadt
koch@esa.cs.tu-darmstadt.de

implementation aspects, followed by evaluation results on
the BEEcube BEE3 platform in Section IV. Finally, we close
with a conclusion and an outlook towards further research
in the last Section.

A. Related Work

Popular research projects for FPGA-based networking are
NetFPGA [2] and DynaCORE [3]. In contrast to these often
packet-oriented approaches, our own research has always
been aiming at higher-level Internet (e.g., TCP, UDP) and
application protocol communication. To this end, we created
a novel platform [4] optimized for this area. Similar to
NetFPGA, our platform also provides a flexible framework
for “plugging-in” processing elements (called Handlers) for
different purposes. It is not organized as a simple linear
datapath, though, but also follows the hierarchy of the
Internet protocol stack, with upper-level handlers building
on the functionality of the lower-level ones.

Top-level handlers realize application protocols such as
HTTP or SMTP to the degree required by the different use-
cases. Our system [4], which has been realized as a single-
chip solution so far, is capable of sustained 10G processing
and can actually run critical parts of the infrastructure in a
20G burst mode to quickly catch-up after handler-local stalls.
This is achieved by pipeline- and task-level parallelism, as
well as a flexible, but specialized interconnect scheme more
efficient than the general NoC used, e.g., in DynaCORE.

In context of the network security domain, a purely
hardware-based approach such as ours has the additional
advantage, that no general-purpose software programmable
processor is present that could be subverted if the honeypot
itself is being attacked.

II. ARCHITECTURE

As an alternative to the monolithic single-chip system, we
now examine how the architecture can be implemented in a
scalable manner distributed across multiple devices.

One way to partition the system is to draw the boundaries
between the core network processing functionality (basic
Ethernet and Internet protocol), which will remain static, and
the application-level handlers, which will be more dynamic.
Since all handlers will need to both receive and transmit

NODE 3 NODE 2
[| [|
[| [|
[| [|
O O
Ring
Direction
MASTER NODE 1
[| m
10G .
cx4 D =
@) @)

—

Figure 1. Multi-FPGA network processor in ring topology

data, all of them must be able to communicate with the
Ethernet endpoint. One way to achieve this with limited
I/O pin requirements (our current constraint is the available
connectivity on the BEE3 platform) is a ring structure.
Figure 1 shows an example for such a topology, and also
indicates how it could map to the four-chip BEE3 platform.

In this ring topology, the FPGA holding the network core
and providing the external 10G interface will be referred
to as the Master node. It also includes the management
interface and controls the operation of the entire system
(initialization and destination addressing). The Handlers will
be placed into the other FPGAs, referred to as Handler
nodes, with each node holding multiple handlers.

The communication ring is unidirectional, packets being
forwarded from node to node until they reach their desti-
nation. This applies to both incoming as well as outgoing
packets, they enter and exit the system at the Master node.

A. Master Node

The Master node has three major parts (see Figure 2): the
network core (Fig. 2-a), the management section (Fig. 2-b),
and the ring interface (Fig. 2-c). The network core consists
of hardware modules, implementing all required protocols
to enable autonomous communication in the Internet. Cur-
rently, this includes ARP, ICMP, IP, and UDP modules, as
well as a specialized high-speed implementation of TCP. The
network core is structured as an easily extensible hierarchical
design following the actual protocol layers. For further
details, please refer to [1], [4].

Header information of incoming network packets is re-
moved inside the core, so that the Handlers have direct
access to the application level packet data. Incoming header
information required for further processing of the packet
(e.g., to create appropriate response headers) is stored within
a custom internal control header (ICH). We use this ICH to
also carry the internal packet-to-handler routing information
of a message on the ring. The addressing is based on the

Receive and Send B

Packet Data Bus u
From % Hsalnctil1er
previous & o
FPGA f " B Local 1 [T LE
> Rlna;euri:we U Packet
F Distributor
B
¥ —\y
data not targeted for this 'L Handler
FPGA is directly forwarded L 5 Slot 2
| [T LF
TCcw
Handler Section
A 4
. B Local B
Ring Send - —N\
= Vodule y Pt V| | Handler
To Next F Aggregator 5 Slotn
FPGA u
F
Figure 3. Handler node architecture

target FPGA and the ID of the Handler slot within that
FPGA.

To support flexible configurations, the routing information
is stored within a table (Fig. 2-d) that can be managed
through the management interface (a network interface that
can be accessed over a system-specific protocol we de-
veloped for that purpose). The routing table contains the
assignment between sockets (packet destination Protocol, IP
and Port information) and the corresponding target Handler
(FPGA and Slot ID).

B. Handler Node

The Handler nodes (see Figure 3) contain the Handler
sections with the different Handlers. All Handlers share
the same message-based interface for the reception and
transmission of packets. Each Handler has a separate buffer
for incoming and outgoing messages. Together with the
actual Handler logic, these buffers make up a “Handler slot”.
This flexible structure also allows us to easily add partial
reconfiguration capabilities to the architecture for replacing
Handlers without the need to reconfigure the whole FPGA
(which would interrupt the ring communication for short
time intervals).

The ring receive module of each Handler Node checks
the destination address field in the ICH. If the message is
targeted for this FPGA, it is forwarded to the packet distrib-
utor module, which forwards the packet to the corresponding
Handler slot buffer. If the message is not addressed to the
current FPGA, it is directly put into the forward queue and
sent to the next FPGA on the ring. The destination address
is within the first word of a message, so that this decision
can be made immediately when receiving the first bytes of
a new packet on the ring.

Response packets of Handlers that need to be transmitted
back to clients are put into the corresponding output buffer,
where they are picked up by the packet aggregator. Both
local data buses (for receiving and sending of messages)

Destination FPGA and Slot Routing Table

O S— MATCHING DATA TARGET
anagement Rule
Network Management Updates || TCP:0.0.0.0/0:80 - 1-1 N Destination
Interface TCP:1.2.3.4/32:25 2-5 "] Lookup Process
@ /
IP, Protocol and
Port information for
current packet BesretEn
NZ{\?VFSFK e FPGA / Slot
Lookup FIFO
Interface | || Network gi@ Bl .| ARP Protocol ICMP Protocol
P Frame /| | U L
n Module Module i
Receiver | D F add destination
to control header
based on B UDP / TCP B tg;GeZt
. C C ‘l "
- Header u IPM'-\;Zﬁge || Receive i [AU R:ngslj:d <
olRaeed ' F D Module | Dl F
Assignment * i —\9
Read DataI 1Address ' i
Global short ;:.)alh for
- — — — — — — — — -+ Application |[—i— — — —directrespons¢ — — — — — — — — — -
State RAM (e.g., TCP ACK)

To Write DataI 1Address from
INet\:f/ork : Py i ———(©) previous
nterface Network ¢ B UDP / TCP 4 B . . FPGA

IPSend |[C CI Ring Receive
- Frame /| | u Module Send L | - u l\ngduIe -
Transmiifer | D F D Module | D4+ F
based on 5 5
~ Priority u AR'I\"/I Pl;oltccol ¢ ICM"IZ Zroltocol P4
- Availability F cee oduie
Selection Legend)
: Control Signal
(a C: Control Signal
Network Core D: Data

Figure 2.

VALID END

CONTROL ~ START

Message Data (128b)

Ring Transmission Word (132b)

Figure 4. Structure of the ring data word

have a capacity of 16 Gb/s in the current implementation.
Handlers can be therefore designed to support operation at
10 Gb/s or higher.

C. Ring Communication

For the communication on the ring we use 66 of the inter-
FPGA data lines available on our BEE3. They are run in
DDR mode, so that we can transmit 132 bits of data per
clock cycle. 128 of them are used as data word for the
message and four as status bits (see Figure 4). As data is
sent continuously on the ring, a valid flag is used to label
valid data words. Two further flags signal the first and the
last word of a message. The fourth flag is reserved for future
use to denote special ring control messages.

For reliably transmitting data on the 250 MHz inter-chip
buses, we perform clock synchronization using [5]. During
initialization, each node continuously sends a known training
sequence to the next FPGA and this FPGA adjusts its delay
until it receives stable data from the previous FPGA.

Master node architecture

III. IMPLEMENTATION

The described architecture has been implemented on the
BEE3 custom reconfigurable computing platform, which is
in our case equipped with four Xilinx Virtex 5 FPGAs: 2x
LX155T, 2x SX95T. As all the FPGAs have 10G connec-
tions, we decided to place the Master node inside one of the
SX95Ts to have the larger LX155Ts available for Handlers.

For evaluating our platform under real conditions, we
implemented two example handlers (a simple web- and
mail-server emulation) that emulate certain network server
functionalities. These emulations allow us to test the func-
tionality and compatibility of our platform using standard
networking tools.

The web server emulation contains a ROM with pre-
defined HTML pages to be served to clients. For now,
we do not support options such as HTTP keepalive, so
after each response the TCP connection is closed. The mail
server implements the basic SMTP commands and pretends
to be an open relay server (however, it does not actually
forward the mails anywhere). In contrast to the web server
Handler, the responses of the mail server Handler are small
(consisting only of the status code). Therefore by sending
data to both Handlers, we can generate a good mixture of
small and large packets on our ring. Additionally, the TCP
connection of the SMTP handler remains open for multiple

Table I
SYNTHESIS RESULTS FOR MASTER NODE COMPONENTS

Module LUT Reg. Bits BRAM Slices
Network Core 7,138 5,269 68

Ring Interface 556 1,190 8
Management 3,823 2,674 19
Mapped incl. MAC,

XAUI and Clocks 14,735 12,044 111 6,723
in % of SX95T 25 20 45 45

Table 1T

SYNTHESIS RESULTS FOR HANDLER NODE COMPONENTS

Module LUT Reg. Bits BRAM Slices
Ring Interface 624 1,455 12

Handler Section for

32 Slots (w/o Handler) 8,928 8,388 160

Web Server Handler 842 330 0

Mail Server Handler 742 363 0

Mapped 34,557 20,485 174 13,015
in % of LX155T 35 21 82 53

request / response packets.

The design was synthesized and mapped using Xilinx
ISE 12.4. Each Handler node was configured to include 16
instances of the two example Handlers mentioned above. As
every node has a different address and the routing of packets
to the Handler slots is configured dynamically, Handlers
which are present but not active do not slow-down the
system.

IV. RESULTS

The synthesis results for all components are given in
Table I and II. For the Handler nodes we give results only
for the LX155T, as the results for the SX95T are very
similar (in terms of resource requirements). Together with
the ring interface and the management functions, the master
architecture occupies around 20% of the LUT and 39% of
the BRAM resources. This still leaves enough free space to
add further functionalities to the network core.

Inside the handler nodes, the logic required to implement
the ring interface and the Handler section is negligible. This
is not surprising, as the logic of these modules consists
of simple state machines that forward messages without
performing complex modifications. This leaves nearly the
full FPGA available for the actual Handler implementations.

Taking these results, the total number of slots per FPGA
is limited by the amount of available BRAMs. Currently, we
could have 40 Handler slots per FPGA on both the LX155T
and SX95T. Of course, the final number of Handlers is also
affected by the sizes of the actual implementations and can
vary between 1 and the upper limit.

We used the Ping utility as well as Firefox and Thun-
derbird to verify the functionality of the core platform and

the implemented Handlers. Performance measurements have
been done with a 1000B request packet that generates a
1000B response packet. The latency induced by the ring
is only around 1.4us when assuming empty buffers. In the
average case, we expect this latency to be between 10—20us,
depending on the current load.

V. CONCLUSION

With our multi-FPGA platform built around a high-speed
hardware implementation of basic Internet communication
protocols, we have presented a flexible and extendable en-
vironment for the implementation of even complex network
applications.

In comparison to our single-chip implementation [4], the
multi-FPGA approach is a great improvement of the total
processing power of our platform. When using all three
Handler node FPGAs completely, we now can have up
to 120 Handlers “active” at the same time, which should
suffice even for very complex scenarios. While the current
implementation uses four FPGAs, the architecture itself
supports systems with even more FPGAs acting as Handler
nodes (they simply can be plugged-in into the ring). This
allows the architecture to scale without the need to fit the
entire application on a large and expensive single FPGA.

We will extend the capabilities of the network core by
adding new functionalities such as IPv6 compatibility and
HTTPS encryption support. Additionally, we will combine
our multi-FPGA approach with dynamic partial reconfigura-
tion capabilities into an integrated systems that offers a very
high flexibility to the user.

REFERENCES

[1] S. Miihlbach, M. Brunner, C. Roblee, and A. Koch, ‘“Mal-
CoBox: Designing a 10 Gb/s Malware Collection Honey-
pot using Reconfigurable Technology,” in Proc. of the 20th
International Conference on Field Programmable Logic and
Applications. 1EEE Computer Society, 2010, pp. 592-595.

[2] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo, “NetFPGA—An Open
Platform for Gigabit-Rate Network Switching and Routing,”
in Proc. of the 2007 IEEE International Conference on Micro-
electronic Systems Education, ser. MSE *07. IEEE Computer
Society, 2007, pp. 160-161.

[3] C. Albrecht, R. Koch, and E. Maehle, “DynaCORE: A Dynam-
ically Reconfigurable Coprocessor Architecture for Network
Processors,” in Proc. of the 14th Euromicro International
Conference on Parallel, Distributed, and Network-Based Pro-
cessing. 1EEE Computer Society, 2006, pp. 101-108.

[4] S. Miihlbach and A. Koch, “An fpga-based scalable platform
for high-speed malware collection in large ip networks,” in
Proc. of the 2010 International Conference on Field Pro-
grammable Technology. 1EEE Computer Society, 2010, pp.
474-478.

[5] C. Thacker, “DDR2 SDRAM Controller for BEE3,” Microsoft
Research, 2008.

