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ABSTRACT
While the use of reconfigurable computing for tasks such as
packet header processing or deep packet-inspection in high-
speed networks has been widely studied, efforts to extend
the technology to application-level processing have only re-
cently been made. One issue that has prevented wider use
of reconfigurable platforms in that context is the unfamiliar
programming environment: Such systems commonly require
expertise in computer architecture and digital logic design
generally foreign to networking experts. To make the tech-
nology more accessible to potential users, we present the
high-level domain-specific language Malacoda for applicati-
on-level network processing and an associated compiler that
automatically translates Malacoda descriptions into high-
performance hardware blocks for insertion into an FPGA-
based processing platform. We evaluate our approach on
the use-case of a hardware-accelerated secure honeypot-in-
a-box, programmed in Malacoda, and implemented on the
NetFPGA 10G board. Results from a live-test of the system
connected to a 10G Internet uplink complete the evaluation.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids—Automatic Synthesis; C.2.0
[Computer Communication Networks]: General—Se-
curity

General Terms
Design, Security

1. INTRODUCTION
Modern high-speed networks tax the capabilities of con-

ventional software-based solutions to provide the required
performance. Reconfigurable technology has long been used
for packet-header processing (e.g., switching, routing, fire-
walls etc.) and has also been successfully applied to Deep
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Packet-Inspection (DPI), e.g., to accelerate the Snort Net-
work Intrusion Detection System (NIDS) [21] using dedi-
cated hardware [7].

But high performance is not the only advantage of using
reconfigurable logic for network processing. Especially in the
security domain, the absence of a general-purpose software-
programmable microprocessor, which could be compromised
by an appropriate attack injecting malicious code, can be
exploited to security-harden front-line systems. An appli-
cation that perfectly fits here are honeypot systems. Hon-
eypots emulate vulnerable applications to attract potential
attackers and can be used for various purposes: gathering
information about new attacks, collecting statistics about
propagation of Malware, or even for active network protec-
tion (e.g., [16]). Due to their exposed placement, a common
risk for software-based honeypots is their possible subversion
into attacking other hosts, if the systems are not carefully
monitored. This is even more crucial if the honeypot is par-
ticipating in an active defense scenario.

We exploit both the high processing performance as well
as the improved security of dedicated hardware to showcase
the implementation of MalCoBox, a hardware honeypot-in-
a-box [13]: Following the well-known low-interaction honey-
pot approach [6, 4], the MalCoBox emulates an attack sur-
face of hundreds of thousands of vulnerable hosts executing
applications having security flaws and collects the malicious
attack packets, which can then be studied by security re-
searchers to derive anti-virus signatures or other defenses.
Since the system processes data at wire speed, it cannot be
overwhelmed, e.g., by a distributed denial of service (DDoS)
attack. Furthermore, due to the lack of a compromisable
processor, the honeypot cannot be abused by attackers for
malicious activities.

While a prototype based on our underlying high-speed
network processing platform NetStage has already been pre-
sented previously [15], its practical use was limited due to
the programming requiring experience in hardware design
and the associated tool flows, in addition to networking ex-
pertise. Even with these skills, the low-level implementation
of accelerated protocol handlers in hardware description lan-
guages (HDL) such as VHDL or Verilog still takes significant
effort. This is doubly detrimental for our honeypot use-case.
On one hand, network security researchers will generally lack
the hardware design experience. On the other, with the dy-
namic attack landscape of the Internet, new vulnerability
emulations must be created quickly in order to keep up.



As a solution, the major new contributions of this work
are:

• A specialized high-level language (Malacoda) for con-
cisely describing service emulations and application-
level (ISO / OSI Layer 7) vulnerabilities for the hon-
eypot.

• An associated compiler for creating fast hardware units
executing on NetStage.

• A fully functional implementation of the described hon-
eypot system on the NetFPGA 10G card, programmed
in Malacoda, and stress-tested in a real data center en-
vironment.

A brief overview of the NetStage platform is given in Sec-
tion 3. Section 4 covers the Malacoda language for program-
ming in the honeypot domain, followed by a description of
the current prototype compiler in Section 5. We evaluate
our approach using it for an implementation of the hardware
honeypot-in-a-box on the NetFPGA 10G board and discuss
the results of a long-term live evaluation run in Section 6,
before we conclude and look forward to further research.

2. RELATED WORK
Making reconfigurable network processing platforms more

accessible for non-hardware designers has been the subject
of considerable research. This has ranged from focused (but
very effective) approaches such as compiling the Snort pay-
load signature ruleset (regular expressions) into hardware
accelerators [7] to more general-purpose solutions such as G
[3] and Chimpp [22].

G is a general-purpose language, but specialized for pac-
ket-header processing. It allows users to flexibly specify the
packet format (fields and positions) and conditional rules for
modifying these fields depending on packet contents. The
programs are then compiled into hardware units to be in-
tegrated into a larger system (not described in [3]). While
capable of payload processing, G lacks regular expression
handling and extended support for protocols above the level
of processing individual incoming packets. The focus on
header processing in G is also emphasized by the example
applications, which deal with switching or MPLS routing
[3].

Chimpp is more general framework in that it relies on an
XML description for the composition of arbitrary packet-
handling hardware blocks. These blocks can be of various
granularities (e.g., ARP lookup or simple TTL decrement),
but must be implemented manually in a synthesizable HDL.
Chimpp only supplies the interfacing / composition capabili-
ties. The authors propose a basic library of modules with fo-
cus on routing applications for the NetFPGA platform [11],
which they use to build an IP router and NAT gateway
as sample application. However, modules for higher-level
payload processing are not provided. The packet header-
processing roots of Chimpp are apparent when considering
that it takes it inspiration from Click [8], a popular software
framework for the description of routing operations.

NetThreads [9] uses an alternative approach to improve
the programmability of the reconfigurable network process-
ing system: Instead of generating custom logic, NetThreads
defines specialized 4-way multi-threaded processors on the
NetFPGA platform, which are then software-programmable

in languages such as ANSI C. While this offers networking
experts a familiar programming environment, for complex
tasks the performance of the system does not reach the per-
formance of dedicated hardware accelerators. E.g., for a
sample application that does regular expression matching
to classify HTTP packets, a performance of roughly 2000
Packets/s is given in [9], which is comparable to a through-
put of approx. 16 Mb/s for 1024B packets. Without dedi-
cated hardware accelerators for regular expression or proto-
col processing, it appears questionable that the approach has
performance benefits exceeding those of existing hardwired
network processor ASICs [24, 18].

While it would be possible to support a C programming
environment for custom-generated reconfigurable network
processing units by using one of the commonly available C-
to-Gates compilers (e.g., [12, 23]), Brebner [3] shows a pro-
ductivity gain of more than 6x for using a domain-specific
language such as G versus a similar implementation in hard-
ware-synthesizable C (which also has to take the language
idiosyncrasies of the specific C-to-Gates compiler into ac-
count).

In summary, we are aiming for a system with the flex-
ibility of NetThreads (supporting full protocol interaction
processing) and the conciseness of a domain-specific lan-
guage such as G. To this end, we require not only header,
but more advanced payload processing capabilities such as
regular expression matching and state tracking. The de-
scriptions should be compiled into multi-threaded hardware
units tightly integrated into our high-performance 10G net-
work processing architecture, which provides the underly-
ing general-purpose Internet communication functionality.
None of the prior solutions match these requirements.

In terms of the honeypot application, MalCoBox repre-
sents the first attempt (to our knowledge) to implement such
a system entirely on dedicated hardware. In contrast to the
work of Pejovic et al. [20], where memory table-based state
machine are interpreted to describe the client-server inter-
action, we rely on dedicated hardware accelerators for this
task. Pejovic et al. implemented a prototype on a Virtex-4
FPGA, but unfortunately did not publish any performance
benchmarks. While their table-driven approach is easier to
implement in hardware, we expect memory bandwidth to
become a bottleneck when network speeds of 10+ Gb/s are
considered. Also, they propose the use of a PowerPC CPU
to implement parts of the higher-level protocols, which we
strictly avoid on our architecture for security reasons.

3. PLATFORM ARCHITECTURE
Figure 1 shows the current architecture of NetStage [15]

for the NetFPGA 10G card, which meets the requirements
of a basic network server application. Core features include
a specialized implementation of the basic Internet protocols
(IP, ARP, ICMP, UDP, TCP) as well as facilities for routing
packets, scheduling time-based events (e.g., for packet re-
transmissions), and per-thread state (context) storage. An
external management interface allows the monitoring and
control of the system independently of the production net-
work.

The network communication core (Fig. 1.a) implements
the low- and mid-level Internet protocols. All of the modules
have separate 128b wide transmit/receive datapaths, allow-
ing full-duplex operation and reach 20 Gb/s throughput at
the nominal 156.25 MHz clock frequency of the network in-
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Figure 1: Core architecture of NetStage

terfaces (note that higher speeds of the core are possible,
see Section 6). All of the processing stages are decoupled
using buffer queues to limit the impact of throughput vari-
ations (e.g., during dynamic partial reconfiguration of new
Handlers into Handler Slots, Fig 1.e).

While the core provides all communication facilities, it
does not deal with the actual application-level protocol pro-
cessing, which is provided in the form of dedicated hardware
Handlers. These are attached to the packet routing layer in
pre-defined Slots, allowing them to be easily replaced (in-
cluding by partial reconfiguration). The automatic creation
of these Handlers as part of the honeypot application forms
the main subject of this work. While some of the platform
features relevant for that discussion will also be presented
here, the platform architecture and capabilities are described
in greater detail in [15].

The base NetStage architecture is highly portable: Ini-
tially, it has been evaluated on the BEE3 hardware platform
[2], fully exploiting the four Virtex 5 devices. For the cur-
rent research, it was ported to the NetFPGA 10G board [17],
trading reconfigurable area for access to fast FPGA-external
QDRII SRAMs to provide more context storage and timed
events. Additionally, remote management of the complete
system is simplified since the NetFPGA 10G card is easily
plugged into a standard 2U rackmount server.

3.1 Reconfigurable Protocol Handlers
Protocol Handlers (Fig 1.e) are responsible for the actual

application-level processing of network data. In the honey-
pot scenario, each protocol Handler emulates a certain ser-
vice and/or one or more application vulnerabilities. Specif-
ically, the Handlers react to incoming packets and generate
response packets according to predefined rules that can also
track per-session state. However, the handler hardware units

themselves do not have a direct access to a long-term mem-
ory storing application-level session information for multiple
connections. Instead, all context data is stored externally in
the Global State Memory (see Section 3.3) and provided
to the Handler along with the session packets. This allows
multi-threaded processing in each Handler, where packets of
different sessions are processed on the same hardware in an
interleaved manner.

Figure 2 shows the architecture of a Handler. It consists of
the actual protocol state machine, an (optional) regular ex-
pression matching engine, and an (optional) set of response
packets described as stored templates. These three compo-
nents need to be customized for each application, which pre-
viously required writing RTL HDL, but is now automatically
performed using our new compiler (Section 5). A Slot“wrap-
per” acts as standardized interface, which provides buffering
(implemented as ring buffer) of incoming and outgoing mes-
sages and simplifies the attachment of Handlers to the core
system.

3.2 Message-based Communication
Core stages and Handlers use a message-based communi-

cation scheme for data exchange. Generally, messages en-
capsulate packet payloads by prefixing them with an Inter-
nal Control Header (ICH, see Figure 3). Additionally, the
system uses ICH-only messages to transport control data
independent of network traffic.

The routing of messages between the core and the Han-
dlers is determined by a Packet Matching Rules Table (Fig.
1.d) that selects a target Slot considering the protocol, port,
and IP address of an incoming packet. The use of netmask-
based prefix matching allows to bind a Handler to an en-
tire subnet of addresses, which is essential for the honeypot
to span large address ranges. Slot lookup is efficiently im-
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plemented using a content-addressable memory (CAM) and
fully pipelined. The rules are configured using the manage-
ment interface. In contrast to [15], the routing layer has
been separated from the core in the NetFPGA implementa-
tion to allow for efficient handling of more application state
data without burdening the core.

3.3 Global State Memory
Instead of storing per-session state locally in the Handler,

this is done centrally in the Global State Memory (Fig. 1.b).
This simplifies Handler design as well as swapping in and
out Handlers in a dynamic partial reconfiguration (DPR)
scenario [15].

The state data is transported as part of the ICH to and
from the Handlers. The routing layer manages reading and
writing state data from an external QDRII SRAM. Memory
addresses are given by the packet source-address / protocol /
port combination (hashed together). The SWR control flag
in the ICH is used to request that the ICH Application Data
Region is written back to the Global State Memory. The
size of the state data required for each Handler is defined at
design time, stored together with the routing rules, retrieved
when performing a Slot lookup, and entered in an ICH field.

Access to the state data itself is pipelined between the
core and the routing layer. To further improve platform effi-
ciency, the routing layer contains two queues: one for packets
requiring state data, a second one for packets without state
data. The latter can then be processed without waiting for
state data to become available.

The NetFPGA 10G implementation of the platform sup-
ports up to fifteen 128b data words of per-session state (240
bytes), which is generally sufficient for our honeypot use-
case to hold passwords, session IDs, or session states.

3.4 Notification Timer
Each Handler can produce response packets at least at

line speed. While this is advantageous for high-speed envi-
ronments, scenarios are conceivable where a client would be
overwhelmed with packets at these rates, leading to packet
loss or failing communication. Therefore, the platform can

Application State Data from Global State Memory (up to 15 x 16 Bytes)
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throttle the data transfer by letting the producer thread on
the Handler sleep before sending the next packet.

This mode of operation is supported by the Notification
Timer (Fig 1.c), which allows a connection (thread) on a
Handler to sleep, freeing the Handler for the next connec-
tion, and waking up the sleeping thread after the required
time (selectable from two globally configured time intervals)
has passed. The thread desiring to sleep sends an appropri-
ate control message as internal message (with the ITP flag
set) holding both its internal state as well as a selector for
the desired timer to the core for requesting a later wake-up.
On wake-up, the Notification Timer sends an internal wake-
up message to the Handler, restoring the state (context) of
the original thread and allowing it to continue execution.

The same functionality is also used for implementing TCP
retransmission of unacknowledged packets. Instead of stor-
ing the previously crafted response packet each time it is
sent out (which would waste external memory), the Han-
dler creates a notification packet. This allows it to rebuild
the packet after a certain time period, if the packet has not
been acknowledged in the meantime. For the honeypot ap-
plication, a useful sleep time is 50µs for throttling and the
retransmission timer is set to 200ms.

4. PROGRAMMING IN MALACODA
Many of the solutions to simplify FPGA programming

(see Section 2) are achieving good results when focusing on
particular problems, e.g., by introducing a Domain Specific
Language (DSL). Such a DSL has advantages both for the
programmer as well as the compiler. A DSL allows the
programmer to describe a specific problem in his domain,
while the compiler can generate highly efficient hardware
circuits due to its more precise knowledge about language
use and the target architecture. Furthermore, by using a
DSL, characteristics of the target hardware platform (e.g.,
multi-threading etc.) can be reflected already in the lan-
guage specification, and need not be retrofitted as pragmas
or library calls.

Together, these aspects make a very strong point for using
a DSL to allow network engineers to describe new Handlers
in their traditional application domain. An automatic com-
piler can then generate high-performance hardware blocks
matching the execution model of the NetStage architecture
(see Section 3.1). This approach has initially been presented
at the conceptual level in [14]. The resulting feedback from
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domain experts has since led to the creation of the Malacoda
DSL and its compiler, both presented here for the first time.

4.1 Background
Service emulations in current software honeypots [6, 4]

are generally described in the implementation language of
the core honeypot system (commonly, script languages such
as Tcl/Tk or Perl), there is no unified way of describing
such emulations. Furthermore, such general-purpose pro-
gramming languages are difficult to efficiently compile into
hardware. On the other hand, to lower the barrier of en-
try for Malacoda, its syntax was inspired by Perl, which
should be familiar to most network engineers and security
researchers.

In contrast to a general-purpose processor, the complexity
and performance of dedicated hardware is highly dependent
on the current task to be executed. There are limiting fac-
tors, e.g., available FPGA resources, that often require a
trade-off between resource use and performance. Based on
an analysis of existing honeypot scripts and service emula-
tions, we have designed Malacoda with a balancing of these
trade-offs firmly in mind. The analysis has shown the fol-
lowing major operations to be essential for modeling a wide
range of service Handlers for the honeypot scenario:

• Describe states and transitions that reflect the com-
munication session.

• Evaluate the incoming request packet and craft a pro-
per response packet by filling-in static template data
and inserting parts from the original request packet,
based on certain rules.

• Notify an administration station about certain proto-
col stages of a client conversation.

We will focus both language specification as well as com-
piler construction on these crucial base functionalities.

4.2 Syntax
Malacoda describes the sequential operations processed

in a single NetStage thread. Parallel operations are exe-
cuted by the automatic multi-threading performed by the
NetStage core. Listing 1 shows a sample Malacoda descrip-
tion emulating a Telnet login into a shell.

A Malacoda description starts with a name, followed by
an optional section to define state variables. The basic tem-
plate of a Malacoda description is a protocol dialogue that
contains multiple states and (conditional) transitions. A
dialogue models the communication session required for em-
ulating a certain service or vulnerability. Each state is iden-
tified by an assigned name, with DEFAULT indicating the
initial state. That state is entered on a newly opened TCP
connection or for any arriving UDP packet.

The body of a state description consists of actions (com-
mands and assignments). An assignment to the reserved
variable state indicates a transition to the indicated state
after processing the current packet. State actions include
the sending and receiving of packets, while conditional exe-
cution is expressed as if/elsif/else constructs. Additionally,
the language supports regular expression matching using a
subset of the Perl operators.

Listing 1: Sample Malacoda program
// Emulate l og in to a root s h e l l
TELNET {

// de f ine va r i a b l e s
dynamic username [ 1 4 ] ;
// main fsm
d ia logue {

// de f au l t and i n i t i a l s t a t e for a new
connection

DEFAULT:
addresponse ( ” l o g i n : ”) ;
$state = LOGIN;

// next s t a t e
LOGIN:

// ex t rac t user name
$username = chomp($INPKG) ;
addresponse ( ”password : ”) ;
log ( ”TELNET: Login attempt detected ”) ;

. . .
SHELL:

// emulate Unix uname command
i f ($INPKG =˜ /ˆuname −a /) {

// send the system i d en t i f i c a t i o n
addresponse ( ”Linux myhost 2 . 6 . 3 5 . 6 . . . ”) ;
addresponse ( ”\n”) ;
addresponse ( ” [ l o c a l h o s t ]# ”) ;

}
. . .

}
}

4.3 Malacoda Commands
Malacoda allows the following commands in state actions

currently. SOURCE can be either a string (of ASCII char-
acters or byte values, expressed by prefixing two hex digits
with \\), or a variable name (reserved or user-defined). Note
that a response packet may be incrementally constructed
with multiple commands. It will only be sent once all actions
have been processed for a state. Furthermore, all commands
implicitly operate on the output buffer.

• addresponse(SOURCE): Append a byte sequence to
the response packet buffer.

• addresponse(SOURCE, s, n): Copy n bytes starting
at index s from SOURCE to the response packet.

• addresponse(file:STRING): Send a given byte se-
quence defined at compile-time in an external file (use-
ful for larger responses that would make the Malacoda
program hard to read if embedded into the Malacoda
source).



• log (SOURCE): Send log packet with the given byte
sequence to management interface.

• if/elsif/else (expression): Conditionally execute com-
mands depending on the value of expression.

• replace(s, SOURCE): Replace a single byte or a byte
sequence of the response packet with the value given
by SOURCE starting at index s.

• close: Send a close connection notification with this
response packet to the client (only available for TCP
connections).

Beyond the special commands, the Perl command chomp
is supported to remove any newline character from a byte
string.

4.4 Expressions
Malacoda supports arithmetic, regular expression, and

comparison operators in expressions. The current version
of the language uses unsigned byte sequences as the funda-
mental data type. The reserved variable $INPKG indicates
the entire payload of the current input packet.

Sub-ranges of a variable may be selected by the [ ] opera-
tor: $VARIABLE[n] selects an individual byte of a variable,
while $VARIABLE[a,b] selects the given byte sub-sequence
of a variable (from index a to index b, inclusive). Individ-
ual bits of a byte (e.g., required to set a flag in a custom
application protocol), are accessed with $VARIABLE[n][p],
where p is the index of the bit.

4.5 User-Defined Variables
For advanced emulations, Malacoda allows the explicit

storage of per-session state in user-defined variables. These
are held in the Global State Memory (see Section 3.3) for
the duration of the entire client session. Variables store un-
structured byte sequences that are interpreted in context of
their current operator. However, they can be declared dif-
ferently depending on whether they have a variable length
(up to a static upper limit ≤ 255) or a fixed length (Listing
2). In the first case, an additional byte of storage is used to
track the length of the variable. Longer values will simply
be truncated to the maximum variable at the fixed length.

Listing 2: User-defined Variables

// var i ab l e with dynamic l eng th ( in by tes )
dynamic va r i ab l e 1 [ 8 ] ;
// var i ab l e with f i x ed l eng th ( in by tes )
fixed va r i ab l e 2 [ 4 ] ;

5. COMPILING MALACODA
The Malacoda compiler has the following design goals:

• Make the MalCoBox hardware honeypot accessible to
security and network engineers without hardware de-
sign expertise.

• Enable hardware-experienced engineers to quickly gen-
erate template code for Handlers that can be later
manually optimized for more complex under-the-hood
operations.

The resulting compile flow is organized as shown in Fig-
ure 4 and produces synthesizable VHDL descriptions. Each
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VHDL module implements a single Handler and can be com-
piled into a bitstream using the standard FPGA develop-
ment tools (e.g., Xilinx ISE [27]). Experienced hardware
engineers can easily add custom code to the VHDL han-
dler representation (e.g., for handling special-cases such as
handler-local calculations), while non-hardware developers
can rely on automatic scripts to generate the FPGA bit-
stream. Note that our support for dynamic partial recon-
figuration on the Xilinx platform requires the use of the
PlanAhead [26] floorplanning tool in addition to the usual
logic synthesis and FPGA mapping steps.

5.1 Compiler Design
The construction of the Malacoda compiler is shown in

Figure 5. Due to the highly specialized nature of Malacoda,
much of the complexity of general-purpose high-level lan-
guage compilers can be avoided. Most of the basic compiler
operations are performed using Java code automatically gen-
erated by the ANTLR v3 compiler-construction tool [19]. It
not only generated the lexer and parser from a formal repre-
sentation of Malacoda, but also the creation of the Abstract
Syntax Tree (AST) used as intermediate representation.

During the semantic analysis pass, the AST is traversed
to build a symbol table of states, variables, and regular ex-
pressions. Furthermore, the pass discovers the basic blocks
and their control predicates, storing this data by annotating
the AST. That information is exploited in the code gener-
ation pass, which expands a pre-defined Handler template
in VHDL by replacing placeholders with the actual signal
declarations, output assignments etc. The template already



contains the buffered interface to the NetStage core and a
skeleton FSM for receiving and sending messages, which is
then extended with the Handler-specific processing.

5.2 Handler Execution Model
The execution model of a compiled Handler is split into

two phases: reading an input packet and writing an output
packet, word by word. At run-time, the generated hardware
initially evaluates all conditions in the handler in parallel by
reading the entire incoming packet. This is possible, since
Handler state is only updated atomically on a state tran-
sition. Malacoda assignment semantics are thus similar to
the non-blocking assignments in VHDL and Verilog. After
reading the entire packet, the condition results are evaluated
in program order, selecting a state and predicating the exe-
cution of the state actions, which are then executed sequen-
tially in the second phase. To reduce Handler complexity,
the compiler does not yet optimize to stop reading packet
data if no conditions remain that could potentially match.
E.g., if a Handler checks a single condition in the first 128b
of the packet, the remaining words of the packet could be
skipped (if no other command requires reading them).

However, the current lack of this optimization will not lead
to major slowdowns, since the majority of the processing
time is often spent constructing output packets by copying
the data from the Handler-internal template storage to the
output queue in the second phase. In this phase, the genera-
tion of the output packet defines the state sequence. Actions
are reordered to execute in the order their output occurs in
the response packet. This avoids idle cycles by continually
streaming data to the packet-under-construction.

If the packet-under-construction has grown to the MTU
size, it is transmitted (performing a segmentation-like op-
eration). The building of the response then continues in a
new packet. Depending on the user-defined policy, this next
packet is either constructed and sent out immediately, or ex-
plicitly delayed using an internal timer notification request
message. For TCP connections, an internal timer notifi-
cation request message is always generated to schedule a
possible retransmission of the constructed packet after the
appropriate time-interval. Finally, if any log packet has been
assembled, it is now output to the management interface.

5.3 Regular Expression Matching
The compiler generates a dedicated matching engine for

each regular expression in a Malacoda program. Currently,
these engines are implemented as simple FSMs with maxi-
mally parallel comparators to ensure that a result is available
immediately after the last word of a packet has been read.
While this approach is feasible for the current prototype
which focuses on basic character and string matching (e.g.,
the compiler currently does not support character classes),
it would be worthwhile to integrate more refined matching
architectures that are both smaller and support a larger set
of regular expression operators (e.g., [5, 25]).

5.4 Packet Construction
Response packets can be generated by copying data from

stored templates which are modified on-the-fly using Mala-
coda commands (e.g., replace) at run-time. The compiler
can implement these template ROMs (which are also 128b
wide) either as LUTs (for small templates) or BRAMs (for
larger ones). Depending on the amount of template data,

Variable 1Variable 2
184

Free
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Application Data Region Word 
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Dialogue State Data (Fixed)User-Defined Variables

Dynamic Length Identified for Variable 1

Figure 7: Variable allocation in Global State Mem-
ory

the compiler decides which model fits better. Based on the
synthesis results (see Section 6.3), the upper limit for a LUT-
based implementation has been set to 1 KB of static data.

For some protocols (e.g., DNS), the response packet con-
tains much of the data received in the request packet. The
compiler optimizes this special case by detecting if an ad-
dresponse($INPKG) command (that copies from the in-
put buffer to the output buffer) occurs in the Malacoda pro-
gram. In that case, dedicated wiring is generated to perform
this copying of data in parallel hardware while the packet
is read during the condition evaluation phase. Note that
this operation is speculative: If a control condition would
actually select a different execution path at run-time, the
copied packet is removed from the output buffer simply by
resetting its write pointer.

Similarly, the replace operations in the program are not
mapped to byte-wise copy-and-select steps when reading a
template. Instead, they too are turned into a dedicated
wiring/logic network that modifies all bytes of a 128b tem-
plate ROM data word in parallel (e.g., by permutation, in-
sertion, deletion, replacement) to achieve a high throughput.
To this end, the compiler needs to differentiate between fixed
and variable length output packets, shown in Figure 6: If the
length of the output packet is fixed (e.g., when always copy-
ing a fixed number of bytes from the input packet or by
sending only data from a response template), the compiler
can create the logic required to route data into the output
packet to address fixed write offsets.

This task is more difficult for variable packet sizes (see
Fig. 6-b). If data from a template should be appended
to a response packet that already contains a variable-length
variable, the byte offset of 128b word of template data in the
output buffer depends on the number of bytes previously
written to the buffer. If this case is detected at compile-
time, the compiler generates a wide barrel-shifter that can
move the template data to the appropriate offset within the
output buffer within a single cycle. Since the barrel-shifter
requires many FPGA resources, it is only created if required
by the current Malacoda program.

Log packets to the management console are generated in
a similar fashion, but they will always be tagged with the
IP source and destination address/port information of the
original packet, as well as a system-wide 128b time-stamp
for better correlation of log messages with traffic dumps.

5.5 Global State Memory Allocation
The compiler also allocates proper space in the Global

State Memory (see Section 3.3), both for the reserved in-
ternal (e.g., state), as well as for the user-defined variables
(Figure 7). Dynamic variables occupy their maximum length
plus a byte tracking their current length, static variables al-
ways have a fixed size. After allocating all variables, the
compiler reports the number of state words required for this
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Figure 6: Construction of output packet for fixed and variable-sized response

particular Handler. This information is later required when
configuring the routing rules (see Section 3.3).

The state variable is always used automatically if more
than the DEFAULT state exists within a dialogue. Symbolic
state names are binary-encoded into integers.

6. EXPERIMENTAL RESULTS

6.1 Hardware and Environment
The system has been implemented on the NetFPGA 10G

board [17]. It uses two 10G Ethernet interfaces, a Xilinx
Virtex-5 TX240 FPGA, and three 72 Mb QDRII SRAMs
(holding the Global State Memory, the Notification Timer
event queues, and the TCP connection state). A MicroBlaze
CPU is present in the system, but only configures the Eth-
ernet SFP+ link parameters, it does not have any contact
with network data.

For the honeypot live-test, the NetFPGA card has been
placed in a 2U Linux server, equipped with an additional
10G network card that connects to the management inter-
face. For analysis, we implemented a monitoring option for
NetStage that copies every packet received from the public
interface to the management port. These packets are then
captured on the Linux host using the standard tcpdump com-
mand. Separation between actual management traffic and
this mirroring traffic is achieved by considering the different
MAC addresses.

The entire project has been synthesized with Xilinx ISE
/ EDK 13.3 [27] and mapped with PlanAhead 13.3 [26]. We
have configured our platform with six Handler Slots, each
with a maximum of 6080 LUTs and 8 BRAMs of FPGA
resources. The network core runs at a target frequency of
175 MHz, giving a raw internal throughput of 22.4 Gb/s.

6.2 Synthesis Results
Table 1 shows area results for the portable NetStage core

and the board-specific interface and control logic. We then
list the FPGA areas required when building the system for
dynamic reconfiguration using six Handler Slots, or alter-
natively, when statically compiling our six sample Handlers
(see next Section) into the design.

Note that the platform itself, including the message rout-
ing network for six Handlers, requires only 22% of the LUTs
in the TX240 FPGA. However, the heavy use of buffers im-
poses a high demand for BRAMs. Even when reserving
space for dynamic reconfiguration in the form of six Slots,
the total design requires less than 50% of the TX240 LUTs,

Table 1: Synthesis results for system and compo-
nents

Module LUT FF BRAM

NetStage core 23,278 29,512 156
(w/o Handler)
Infrastructure 9,504 11,029 28

Platform w/o 32,782 40,541 184
Handlers

+ 6 Slots 69,262 77,021 232

+ 6 Handlers 46,372 46,066 182

leaving ample space for more or larger Handler Slots, or ad-
ditional core functionality. The statically configured version
does not suffer from Slot-internal fragmentation and is even
smaller, but no longer has the self-adaptation capability us-
ing DPR.

6.3 Handlers
For our evaluation, we have selected six different Handlers

for the emulation of typical network services or actual vul-
nerabilities:

• Web server: Imitates a webmail service running on
a vulnerable web server (identified by a correspond-
ing version header), collecting information about web
server attacks.

• Telnet: Emulates a faux system administration CLI
accepting any login / password to gather data about
what combinations attackers try and commands being
executed after login.

• Mail server: Pretends to be an open relay simply ac-
cepting every mail (SMTP protocol) to gather infor-
mation about spam attempts.

• MSSQL Slammer detection: Responds to MSSQL Ping
and detects a malicious packet as sent by the Slammer
[10] worm.

• SMB login detection: Emulates the first steps of the
protocol until client login. Used to gather information
about attack attempts on the SMB service.

• DNS server: Emulates a DNS server that resolves a
single domain. Used to collect information about DNS
attacks.



Table 2: Synthesis results for compiled Handler
modules

Handler Opt. LUT FF BRAM Max
Freq.
MHz

SMB LUT 3,383 1,624 0 185
DNS LUT 2,864 1,447 0 223

MSSQL LUT 1,894 1,288 0 212
Telnet LUT 3,921 1,643 0 175

Mail LUT 2,460 1,543 0 193
Web BRAM 2,285 1,355 4 203

Mail BRAM 2,432 1,584 4 183
Web LUT 5,796 1,346 0 193

Each Handler has been programmed in Malacoda and
compiled into hardware using the developed compiler. Ta-
ble 2 shows the required resources for each of them. For
Mail and Web, we also list alternate results when manually
choosing a different LUT / BRAM implementation option
for the Template ROMs (see Section 5.4).

Compared to the other Handlers, the MSSQL emulation
requires only few LUTs. The size of response templates has
a major impact on the Handler size. E.g., the Telnet Han-
dler has 570 B of replies in 18 templates, while the MSSQL
Handler has only one, since it just detects an attack and
logs its occurrence. Furthermore, the Web server Handler
demonstrates that implementing large portions of response
templates (in that case, 7 KB) in BRAM instead of LUTs
has a significant advantage in terms of resource usage. In
terms of code complexity, the Malacoda Handler descrip-
tions have 16 . . . 80 lines of code, while the resulting VHDL
modules have 625 . . . 2220.

To evaluate the efficiency of the compiler, we compare an
automatically compiled Handler to a manually developed
one. We cannot use the previous Handlers originally devel-
oped for [15], since the new features introduced with the
NetFPGA port cause changes in the Handler-internal struc-
ture. Thus, we created a special Malacoda description for
the Web (HTTP) Handler of [15] and stripped from the com-
piled VHDL code the functionality specifically required for
the NetFPGA version of NetStage, thus leaving a version
comparable to the original one (which targeted the BEE3
platform). This compiled version of the Web Handler is
slightly larger (1,570 LUTs, 665 FFs) compared to the orig-
inal manual implementation (1,026 LUTs and 586 FFs), but
both achieve nearly the same performance when creating re-
sponse packets (the compiled version needs two additional
cycles). The overhead in LUTs is due to a more complex
regular expression matching implementation and additional
logic in the generic implementation of output packet gener-
ation. Since the compiler has been optimized for generating
high-performance hardware, the increased use of resources is
acceptable here, since the Handlers are still relatively small
compared to the overall FPGA capacity.

6.3.1 Performance
The latency of an individual Handler consists of a fixed

number of clock cycles for administrative functions (process-
ing header data, register notifications), and a variable num-
ber of clock cycles depending on the size of the packet for

Table 3: Latency for selected operations

Handler Operation Latency [Cycles]

Web 120 B Request 8 + d120 B/16 Be
1024 B Response 11 + d1024 B/16 Be

Mail 14 B Request 9 + d14 B/16 Be
16 B Response 8 + d16 B/16 Be

DNS 33 B Request 8 + d33 B/16 Be
99 B Response 5 + d99 B/16 Be

content-related activities (as the compiler generates hard-
ware that processes an entire 16 B input / output word in
one clock cycle). Table 3 shows performance data for ex-
ample packets processed by the Web, Mail and DNS Han-
dler. Note that these latency limits are maintained up to
the throughput limit, as the Handlers are implemented us-
ing dedicated (non-shared) resources that do not depend on
the system load. The maximum throughput can be calcu-
lated from the current core target frequency of 175 MHz.

Here, the Web Handler achieves a raw data throughput of
14.5 Gb/s including administrative messages (but excluding
packet header processed by the core), which would be suf-
ficient to saturate the 10G link. Administrative messages
(e.g., TCP retransmission notification) are transmitted us-
ing the same channel as network data, thus reducing the core
network throughput for outgoing packets. Handlers which
generate a smaller volume of output data are affected more
by the administrative overhead: At 175 MHz, the Mail Han-
dler could reply to SMTP HELO messages with an external
throughput of only 5 Gb/s (including the 54 B of proto-
col headers added by the core). This could be improved
by an additional pipeline stage inside the Handler (leading
to a throughput of 11 Gb/s in the Mail example). Note
that the Mail Handler requires an extra cycle of latency for
the administrative operation of accessing the global appli-
cation state memory, but completely avoids TCP throttling
notifications, as current response packets always fit in one
network packet.

The UDP-based DNS service does not need any notifica-
tion messages at all. Therefore, the number of fixed clock
cycles for response generation is further reduced. In this
example, the DNS Handler achieves an external throughput
(including the 42 B of protocol headers) of 10.6 Gb/s.

6.4 Live Test
For the live test, the NetFPGA 10G card has been con-

nected to a 10G data center uplink at a major German uni-
versity, with two dedicated /25 subnets (= 256 IPs) assigned
to the honeypot. The public network traffic for the honeypot
was dumped for later analysis on the management server.
The Handlers were configured to listen on all IP addresses
and the test was run for one month. During that time, 1.74
Million connection requests were reaching the honeypot. Ta-
ble 4 lists the Top-10 services requested, as well as numbers
for the remaining services for which the honeypot has active
Handlers (active Handlers are shaded gray).

With a connection rate of more than 50%, the Microsoft
SMB protocol is leading the list. This is unsurprising, since
due to its widespread use and various known vulnerabilities,
SMB is a promising target for attackers. In total, our four



Table 4: Number of connections by service

Nr. # Conn. Port Service

1. 977,549 445/TCP MS-DS (SMB)
2. 167,430 80/TCP HTTP
3. 82,882 139/TCP NETBIOS Session
4. 36,167 3389/TCP MS WBT Server
5. 31,093 1433/TCP MS SQL Server
6. 30,966 8080/TCP HTTP Alternate
7. 27,063 22/TCP SSH
8. 20,118 23/TCP Telnet
9. 15,618 210/TCP Z39.50

10. 13,627 25/TCP SMTP

44. 1838 1434/UDP MS SQL Monitor
189. 243 53/UDP DNS

Table 5: Number of monitoring events

Event # Occurrences

Webserver: GET URL 118,384
MSSQL: Slammer Worm 1,588
SMB: Login Attempt 24,566
Mailserver: Mail Queued 3,778
Telnet: Login 11,438

TCP-based Handlers are among the Top-10, such that the
honeypot had a good coverage of network traffic.

In addition to counting the raw connections, we also im-
plemented monitoring points inside the Handlers, using the
Malacoda log command to log when a certain step has been
reached. The occurrence of these events is given in Table
5. While some portion of the connections from Table 4 was
coming from simple portscans, many of the clients actually
interacted with our honeypot. We discuss these results in
the following subsections.

6.4.1 Web Server
Around 70% of the clients were requesting a particular

URL. The majority of these were attempts to reach a vul-
nerable service (e.g., phpMyAdmin). On the other hand,
we did not observe clients trying to log into the webmail
facade served by the Handler. It appears that automatic
attack tools do not try to take advantage of a login form,
and that human attackers did not interact with this part of
the honeypot.

In addition to the HTTP web service, we also observed
many TCP SYN ACK requests (362,381) hitting our sys-
tem. These packets were not initiated by our honeypot
(since we never sent out SYN request), but instead originate
from SYN flooding attacks to real web servers by attackers
using spoofed IP addresses belonging to our darknet. This
is a well known procedure; commercial service providers ex-
ist that detect DDoS attacks by monitoring such darknets
using distributed sensors [1].

6.4.2 Mail Server
Around 25% of the connecting clients actually tried to

send a mail. The contents of these mails appear to be initial
identification messages from spam engines, checking whether
a server that looks like an open relay actually does deliver

the mails. The mails were addressed to cryptic recipient
addresses hosted at public webmail services. However, we
refrained from actually delivering these messages to avoid
impacting the owner institution of our darknet IP range. In
a later test, these probe mails could be selectively forwarded
to induce the attackers to send real spam to the honeypot,
and allow it to collect any attached malware.

6.4.3 DNS Server
Attackers only had limited interest in the DNS server emu-

lation. All requests indicate coming from automatic vulnera-
bility scanners and simply request arbitrary domain names.
However, we observed spoofed response packets similar to
those hitting the web server. We received 13,804 DNS re-
sponses from real DNS servers, despite our system never
requesting a lookup.

6.4.4 MSSQL Slammer Detection
Even nine years after the large outbreak and the mas-

sive effort to remove the worm from infected systems, we
count 20-40 Slammer requests per day trying to infect the
honeypot. They originate from other infected systems or
automatic scripts all over the world (60% from China, 19%
from India and 5% from the United States). This shows the
difficulty of eradicating a worm such as Slammer once it has
been released on a large scale.

6.4.5 Telnet Shell Emulation
More than 50% of all connecting clients tried to log in.

The majority used the username / password combination
root / admin or simply root with no password. The com-
mands that were executed after the client has logged in were,
e.g., echo test or echo connectioncheck, most likely coming
from automatic scripts looking for open Telnet servers.

6.4.6 SMB Login Detection
This Handler was the most frequently accessed service of

our honeypot setup. While the majority of requests were
simple port scans, some of the clients were actually follow-
ing the protocol interaction and tried an anonymous login
without password.

We did not perform more detailed analysis, as the SMB
protocol with its many variable field lengths and partial
encryption is not handled very efficiently by the current
Malacoda compiler prototype. These limitations will be ad-
dressed in future revision of the system.

6.5 Summary
Summing up, the results from the compiler and the live

evaluation clearly show the feasibility of the described ar-
chitecture. The hardware honeypot can be operated just as
any low-interaction software honeypot, collecting data unat-
tended for long time periods, but without the risk of the
system becoming compromised. The implementation on the
NetFPGA 10G has proven its stability and the Internet pro-
tocol implementation of the NetStage communication core
demonstrated its ability to establish communication sessions
with many different clients on the Internet. Due to the sim-
plified programming interface offered by Malacoda, the sys-
tem has a high potential in research, education, and produc-
tion environments. The compiled Handlers have a similar
performance to manually optimized ones, but a significantly
reduced development effort.



7. CONCLUSION AND FUTURE WORK
With NetStage, we have already demonstrated the high

potential of reconfigurable computing beyond the commonly
used switching, routing, and deep packet-inspection applica-
tions. Using MalCoBox, our honeypot-in-a-box, as a demon-
strator, we exploit hardware-accelerated operations not only
for higher performance, but also for hardened security.

This work has begun to address a common problem limit-
ing the use of reconfigurable technology for data processing
purposes, namely the lack of high-level design tools. We
have approached this issue by defining Malacoda, a domain-
specific language focused on network processing, specifically
for active security applications such as honeypots. It allows
networking experts not proficient in hardware design to eas-
ily and concisely describe the protocol interactions typical
for the emulated network services of a honeypot.

The associated compiler, even though it is just a pro-
totype, has already succeeded in compiling Malacoda pro-
grams into high-performance Handlers for execution on the
platform, fully exploiting its capabilities for multi-threading,
parallel execution, and deep pipelining. The evaluation of
the actual implementation on the NetFPGA 10G platform
and the long-term live test not only demonstrate the prac-
tical feasibility of the developed architecture, but also show
directions for future research.

The focus will be on improving the compiler, e.g., by in-
tegrating more efficient regular expression matching hard-
ware, better optimization during condition evaluation, and
optional optimization for single connection throughput by
deeper pipelining. Beyond these issues, support for crypto-
graphic operations, more arithmetic and logic computations,
as well as the ability to seamlessly access manually designed
IP blocks from Malacoda code, are already planned.
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