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ABSTRACT

Distributed structural health monitoring (SHM) using wire-
less sensor nodes (WSN) requires frugal spending of the lim-
ited energy budget. We propose a reconfigurable heteroge-
neous architecture, combining a low-power micro-controller
(MCU) with a Field-Programmable Gate Array (FPGA), as a
means for energy-efficient in-sensor processing. Details cov-
ered include a generic communication interface between both
computing units and several clock-management schemes for
energy efficiency. We evaluate the architecture on the use-
case of a Random Decrement (RD) algorithm and also con-
sider additional pre-filtering to reduce the volume of wire-
lessly transmitted data. Compared to conventional low-power
sensor nodes, we can reduce the energy required for data pro-
cessing by up to 81 %.

Index Terms— wireless sensor network, reconfigurable
computing, structural health monitoring, energy efficiency,
random decrement technique

1. INTRODUCTION

SHM attempts to automatically detect damage to large struc-
tures such as bridges or wind turbines, reducing maintenance
costs by allowing longer intervals between manual inspec-
tions. One SHM algorithm is the RD technique (see Section
3), which determines the free-decay response of the moni-
tored structure for later modal identification. By relying on
natural random excitations, the RD technique does not re-
quire additional actors for explicitly stimulating the structure.
This allows its implementation on energy-constrained wire-
less sensor nodes.

However, accurately capturing the vibration of large struc-
tures requires sampling frequencies on the order of 100 Hz.
This poses two problems considering the wireless sensor
nodes’ limited energy budget: First, the transmission of the
detailed vibration data from the sensor to a central node
actually performing the analysis is energetically expensive.
Instead, local in-sensor preprocessing should be used to ag-
gregate the data. To this end, even a low-power sensor node
has to have sufficient computational capabilities. Second,

when aiming for shorter sampling intervals, which in turn re-
quire more frequent wake-ups of the node from its deep sleep
state, the transition times between sleep and active states
becomes significant.

We propose a heterogeneous node architecture, combin-
ing a radio system on chip (RF-SoC) for the WSN function-
ality, with an FPGA for the energy-efficient realization of
complex computations, to address both of these issues. Using
a proof-of-concept prototype, we will describe how the RD
technique can be implemented on the target architecture and
show under which operating conditions the heterogeneous
platform outperforms a solely MCU-based sensor node. In
addition, we will investigate sophisticated clock generation
schemes to further reduce the overhead induced by the plat-
form power management infrastructure.

In the following section, we will briefly discuss related
work on wireless sensor nodes in structural health monitoring,
followed by an introduction into the RD technique. In Section
4, we introduce our heterogeneous node architecture and pro-
vide details of the RD implementation. Section 5 presents de-
tailed results of the platform energy requirements compared
to an RD implementation on an MSP430 MCU, a processor
commonly used in low-power WSNs. Finally, we conclude
and look out towards future improvements in Section 6.

2. RELATED WORK

The monitoring of large structures using wireless sensors is
the subject of many current research efforts [1–4]. As an ex-
ample of a concrete algorithm for such structural health mon-
itoring, the RD technique is used to extract the modal param-
eters of a monitored structure [5–7].

Commercially available wireless sensor nodes are often
based on low-power MCUs aiming for the lowest quiescent
current [8]. Zimmermann et al. proposed an RD implementa-
tion on such a platform using an 8 bit Atmel MCU and recog-
nized the necessity to improve the energy efficiency of even
that low-power system [7].

Reconfigurable compute units (RCU) using FPGAs can
perform complex computations more efficiently then MCUs



and digital signal processors (DSP) [9]. In time-critical ap-
plications, the use of RCUs often permits computations that
cannot be performed by MCUs or DSPs at all under the given
constraints. FPGAs have thus been employed for mid- to
high-performance computing applications, recent work in-
cludes [10–12]. However, all of these studies utilized FPGAs
relying on static memory (SRAM) for their configuration
storage. While flexible, the use of SRAM precludes the
use of deep-sleep modes powering down most of the device
(which would lose the configuration information).

For low-power applications, FPGAs using the inherently
non-volatile Flash memory are more suitable [13]. To this
end, Vera-Salas et al. [14] combined a Flash-based Microsemi
Igloo nano FPGA with a wireless transceiver. However, de-
spite the power advantages of Flash configuration storage, this
architecture is still sub-optimal in that the FPGA cannot en-
ter device-wide deep sleep since it has to continue to perform
low-intensity management tasks such as time-keeping and -
synchronization.

Our HaLoMote [9] architecture avoids this problem by
combining a Flash-based FPGA not only with a wireless
transceiver, but with a complete RF-SoC that also encom-
passes a low-power processor core. This core has sufficient
performance to handle low-intensity administrative tasks,
even when the RCU is sleeping. The HaLOEWEn reconfig-
urable WSN [15] is the first implementation of the HaLoMote
architecture. In this work, we will analyze its power charac-
teristics and show improvements over the initial version on
the use-case of the RD algorithm for SHM.

3. THE RANDOM DECREMENT TECHNIQUE

The RD technique was developed for damage detection in the
late 1960s [16]. It estimates the free-decay response of large,
potentially damaged structures in the form of so-called RD
signatures Dxx : {0, . . . ,m − 1} 7→ R. These signatures
are defined as the average of n time sequences of a sensor’s
vibration data (xi)i∈N, each sequence having the length m
and starting with the same value a (the trigger level):

Dxx(k) =
1

n

n∑
i=1

xi+k, 0 ≤ k < m, xi = a (1)

The measured displacement xi+k is composed of the struc-
ture’s response to the known initial displacement xi = a, the
structure’s response to the unknown initial velocity ẋi, and
a random component caused by external excitations. Due to
its zero mean, the random component will be extinguished in
Dxx for large n. Assuming a randomly distributed ẋi, which
requires triggering on rising and falling signal edges, the ve-
locity response will also be eliminated. Thus, Dxx converges
toward the structure’s displacement response as indicated in
Figure 1.

As Dxx is proportional to the auto correlation of the sig-
nal x [17], it is called the auto RD signature. Furthermore,
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Fig. 1. Elimination of the random signal fractions by averag-
ing of structural vibration data [2]

the RD technique can be extended to multi-channel measure-
ments [5] by computing the cross RD signature

Dyx(k) =
1

n

n∑
i=1

yi+k, 0 ≤ k < m, xi = a (2)

which is proportional to the cross correlation of the reference
signal x and the response signal y.

The implementation of the RD technique requires select-
ing the sampling frequency, the number of averaging steps,
the length of the RD signatures, and the trigger level. For the
latter, a =

√
2 ·σx is suggested [5], with σx being the stan-

dard deviation of x.

4. PROPOSED SOLUTION

4.1. Heterogeneous reconfigurable sensor node

To efficiently execute the RD technique on an energy-con-
strained embedded system, we propose an improved version
of the Hardware Accelerated Low Energy Wireless Embed-
ded Sensor Node (HaLOEWEn) illustrated in Figure 2. This
heterogeneous WSN platform is the first implementation
of the HaLoMote architecture described in [9] and an en-
hancement of the work presented in [15]. The architecture
combines a TI CC2530 RF-SoC as its MCU for wireless com-
munication and time-management with an Microsemi Igloo
M1AGL1000 FPGA as its RCU for hardware-accelerated
computations. The RCU also controls a single channel
16 bit ADC over a serial interface for data sampling and
a 64k× 16 bit SRAM over a parallel interface to store the
RD signatures. Both peripheral components were chosen
due to their low power draw in standby mode. While the
RCU core operates at a supply voltage of 1.2 V, the other
components require 2.5 V. Both voltage rails are derived
from a 3.7 V source by two LTC3388-1 switching step-down
regulators. This device was specifically chosen for its high
efficiency at small loads to reduce the losses in standby mode.
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Fig. 2. HaLOEWEn Implementation of the HaLoMote archi-
tecture

The reduction of the voltage conversion losses achieved in
this manner is an important improvement compared to the
original HaLOEWEn implementation discussed in [15].

4.2. API for accelerating hardware kernels

In a heterogeneous architecture, the on-chip communication
between the different computing units affects the system-level
performance. As the CC2530 does not expose its memory
bus to the I/O ports, we cannot embed RCU registers into the
MCU memory space or vice versa. An obvious alternative
would utilize the MCU USART controller for serial commu-
nication as proposed in [15]. We avoided the overhead of se-
rial communications by explicitly controlling (“bit banging”)
general-purpose I/O pins to form a parallel bus. However,
due to the limited number of available MCU pins, the bus is
restricted to an 8 bit data, a 3 bit cmd and a clock line as
shown in Figure 3. The bidirectional data line is driven by
either of the two computing units (MCU or RCU) depending
on the current cmd selected by the MCU. The bus transfers
are synchronous to the clock. An additional shutdown signal
is used by the MCU to shutdown (deep sleep) and wake-up
the RCU.

Based upon this physical communication layer, we imple-
mented an application-independent API permitting the MCU
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Fig. 3. Controller for HW kernel execution

cmd data
driver

data interpretation

SWITCH MCU index of HW kernel to select for data
transfers and configuration

START MCU index of HW kernel to start
RESET MCU index of HW kernel to reset
OBSERVE RCU the running states of the HW kernels
READ RCU next sequence of the output data
WRITE MCU next sequence of the input data
CONFIG MCU auto-(re)start configuration bits
SWRSTN MCU ignored (command is used to com-

pletely reset the RCU)

Table 1. HW kernel API for on-chip communication

to control the execution of hardware (HW) kernels on the
RCU. Each HW kernel may have an input, an output and an
internal state. Its data processing is triggered by a start pulse,
completion is signaled by a done pulse. Thus, the typical us-
age of a HW kernel would be writing its input data from the
MCU to the RCU, generating the start pulse, waiting for the
done pulse, and then reading the HW kernel output data back
to the MCU. In a multi-kernel scenario, each data transfer
must be associated with the index of the targeted HW ker-
nel. We propose to separate the HW kernel selection from
the data transfers (similar to virtual circuit switching) to re-
duce the communication overhead in applications with differ-
ing kernel execution frequencies. Another optimization deals
with the automatic start pulse generation. Most HW kernels
may be started when their inputs were completely written.
On the other hand, a HW kernel without explicit inputs (e.g.,
the ADC control module) may be restarted when its output
has been completely read. To reduce the overall communica-
tion demand, we therefore introduced a runtime-configurable
auto-(re)start behavior for each HW kernel.

A HW kernel controller connects the parallel communi-
cations interface with the HW kernels by interpreting the cmd
signal as described in Table 1. It manages the sequencing of
the HW kernel inputs and outputs to the data line, generates
the start flags and keeps track of executing HW kernels. The
latter information is used to delay an RCU shutdown possibly
requested by the MCU until all HW kernels actually finish
their computations.

4.3. HaLOEWEn Implementation of the RD technique

To monitor large structures with the RD technique described
in Section 3, reference and response nodes sampling the ref-
erence and response signals have to be distributed all over
the structure. The accumulations of the response signals to
the corresponding cross RD signatures are initiated by events
representing a reference signal crossing its trigger level. In
a wireless multi-hop network, the complete dissemination



of such events from the originating reference node to all
response nodes within a single sampling period cannot be
guaranteed due to possible packet losses and a transmission
time dependent on the number of hops. This event propa-
gation scheme would not properly scale with the size of the
network and also increase the sensor nodes power consump-
tion as they would have to continuously listen for events.

As an alternative, we use a delayed distribution of events
over the monitoring network: Each event is represented by the
ID of its originating reference node and the age of the event.
The latter starts at zero during event generation and is incre-
mented in every sampling period in all nodes that have re-
ceived and stored the event. The bundled event/age informa-
tion is broadcast over a single hop in every sampling period.
When an event reaches a response node, its age information
is used to properly calculate the cross RD signature. The de-
tails of the network protocol lie outside the scope of this work
and will be discussed in a later article. Here, we focus on the
hardware required to support the delayed event reception.

The core data structures are a sample shift-register and
an event set as depicted in Figure 4. In every sampling pe-
riod, the ADC output is inserted into the shift-register, dis-
placing the oldest buffered sample. All events wirelessly re-
ceived by the MCU are inserted into the event set. In ev-
ery sampling cycle, the ages of all events are incremented.
When the age of an event reaches or exceeds the sample shift-
register depth |Q|, the associated RD signature data in the
external memory is incremented by the current output of the
shift-register. The corresponding memory address is derived
as eventid ·m + eventage − |Q|. When the age of an event
reaches |Q|+m, it is removed from the event set.

This computation synchronizes local samples with remote
trigger events delayed by wireless network transmission. As-
suming the reference signal x crossed the trigger-level thresh-
old a in sampling period i, then the event (x, 0) is generated at
the remote reference node x. At the same time, the response
signal sample yi is inserted into the sample shift-register of
the local response node y. The event, originating in node x
and distributed through the wireless network, reaches node
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Fig. 4. Hardware modules for delayed event processing

y after a variable transmission delay and is inserted into the
event set of the local node. yi reaches the output of the shift-
register in the sampling period i + |Q|, and is now synchro-
nized with the matching event (x, |Q|) held in the response
node event set. The sample yi is then accumulated to the RD
sequence sample Dyx(0) stored at memory address x ·m. In
the following k < m periods, the event is updated to the ages
(x, |Q|+ k) and leads to the accumulation of yi+k to Dyx(k)
located at the memory addresses x ·m+k. After the response
node has received and processed n events from each reference
node, the individual RD signatures Dy0, Dy1, . . . have been
stored in contiguous memory locations. In order to satisfy
Equation 2, the signature values then have to be divided by n,
which is done efficiently by ensuring that n is a power-of-two.

In this manner, |Q| determines the maximum number of
sampling periods an event may be delayed by the network.
The RD technique can thus be scaled to larger networks
just by increasing sample shift-register depth of the response
nodes.

To efficiently implement this scheme on the HaLOEWEn
platform, we identified several hardware kernels. The trigger-
level threshold-crossing check, the update of the sample
queue, and incrementing of the event ages with the corre-
sponding accumulations to the RD signatures are independent
operations and can thus be parallelized. By delaying the ADC
output for one sampling period, the input channel sensing can
also be performed in parallel. This additional delay cycle is
compensated by proper handling of the event age informa-
tion. As all these tasks have to be performed in every sam-
pling cycle, they are handled by a single HW kernel Ksample
without input and the trigger-level threshold-crossing check
as its output. By using the auto-restart–on–read functionality
of the HW kernel API, the MCU-RCU communication for
controlling Ksample can be reduced to a single read command.

Another HW kernel Kinsert handles the insertion of new
events into the event set. This is necessary once an event has
been received from the network or generated locally. Typi-
cally, Kinsert is executed less frequently than Ksample and we
can take advantage of the virtual channel-based communica-
tion mechanism instead of providing each data transfer with
a separate destination kernel ID (which would be similar to
packet-switching).

The resulting RD signature Dy0, Dy1, . . . must be trans-
mitted to a central node for subsequent analysis. If the cen-
tralized damage detection algorithms (not discussed here) re-
quire only parts of the spectral information contained in the
RD signatures, we can locally perform the transformation to
the frequency domain and drop (pre-filter) unnecessary data
before it is transmitted. To this end, an integer-in-place-FFT
has been implemented as an additional HW kernel. It starts
with the 18 most significant bits of the RD signature and per-
forms an automatic scaling by

√
N for overflow avoidance.



4.4. Efficient generation of the RCU clock signal

Each computing unit needs a periodic clock signal to drive
its computations. The CC2530 RF-SoC can be clocked ef-
ficiently by an internal RC-oscillator which is automatically
turned off when the MCU is put to sleep. In contrast, the
M1AGL1000 FPGA generally depends on external compo-
nents to generate its clock. Commonly, an external oscillator
IC is used for this purpose. Unfortunately, when active,
this IC often has a significantly higher power draw than the
standby power of the RCU. Thus, it also has to be power-
managed by being shut-down when the RCU sleeps, and
restarted before the RCU is woken up. The power manage-
ment of the RCU and its clock generation does affect the
entire scheduling of the RD algorithm on the heterogeneous
platform. We have examined three different RCU clocking
schemes (Figure 5) and their impact on the RD algorithm
schedule (Figure 6).

When utilizing an external oscillator IC, we suggest to di-
rectly control it by the RCU (Figure 5a), as this spares the
MCU from observing whether the RCU is currently active.
The M1AGL1000 FPGA supports this scheme as it can pull
an I/O pin to ground when entering deep sleep mode (“flash
freeze”), and to the supply voltage of the I/O banks when
waking up even without a clock signal being present. The
lengthy start-up time of the oscillator IC is the major disad-
vantage of this scheme: If the wake-up time of the RCU can-
not be spent performing useful computations on the MCU, the
MCU must be stalled waiting for the RCU clock to stabilize,
leading to reduced energy efficiency.

Instead of using an additional external oscillator IC, the
serial clock generated by the MCU SPI module can be used
to clock the RCU (Figure 5b). In this set-up, the SPI output
register of the CC2530 is repeatedly filled by a DMA module
to keep the serial clock running (even though no SPI transfers
actually take place). The major disadvantage of this scheme
is the necessity to keep the MCU active until the RCU fin-
ished its computations. As before, the MCU must be stalled
unless useful computations can actually be issued. Thus, the
approach using the serial clock can only do better then the ex-
ternal oscillator IC if the HW kernel execution time is shorter
than the oscillator IC startup time.

Finally, a ring of inverters (Figure 5c) can be used to gen-
erate the clock signal for the RCU inside of the RCU itself
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Fig. 6. Scheduling of the RD algorithm on the HaLOEWEn
platform for the different RCU clocking schemes

[18]. The frequency of this oscillator is controllable by the
length of the inverter ring, but the actual frequency is also sen-
sitive to the RCU core voltage and operating temperature. If
potential frequency inaccuracies are acceptable, this scheme
eliminates the flaws of the previous ones, as the MCU is no
longer involved in the clock management.

5. EXPERIMENTAL EVALUATION

Clocking
scheme

With
FFT

Logic Cells Block
RAMs

Maximum
Frequency

external no 1861 (8 %) 3 (9 %) 21.8 MHz
SPI no 1906 (8 %) 3 (9 %) 21.3 MHz
internal no 1974 (9 %) 3 (9 %) 21.8 MHz
internal yes 11023 (45 %) 19 (59 %) 18.9 MHz

Table 2. Hardware synthesis results for Microsemi
M1AGL1000V2 FPGA

Table 2 summarizes the synthesis results of the four hard-
ware configurations we used to evaluate the HaLOEWEn ar-
chitecture. To obtain these results, we used the Synopsys Syn-



plify Premier DP F-2011.09-1 synthesis tool configured for
auto-constrained clock frequency, resource sharing, and re-
timing. Without the optional FFT HW kernel, less than 10 %
of the RCU area is used. Thus, for even greater energy sav-
ings, a smaller FPGA device from the Microsemi Igloo family
could be used in this case. On the other hand, we will show
that spending more logic for the FFT implementation is an
efficient use of area and energy if the damage detection algo-
rithm profits from frequency-based pre-filtering.

To compare the power consumption of the HaLOEWEn
platform with a typical WSN mote, we also implemented
the RD technique purely in software on two TI MSP430
MCU-based architectures. The first reference implementa-
tion (MSP430-1) utilizes the same ADC and parallel SRAM
as the HaLOEWEn platform. However, most MCUs do not
expose sufficient programmable I/O pins to interface parallel
memories next to other peripherals. Thus, peripherals are
usually connected serially to a single SPI bus. To reflect
this, we replaced the external SRAM by a low-power serial
32k× 8 bit SRAM (23A256) for the second reference im-
plementation (MSP430-2). This also allows us to operate
the entire reference system at just 1.8 V, making it more
competitive with the HaLOEWEn mix of 1.2 V and 2.5 V
supplies.

The power consumption of the architectures depends on
the computational load induced by the RD implementation.
This load is characterized by the number of accumulations
within each sampling cycle and is thus heavily depending on
the vibration data observed at the reference nodes. In a multi-
channel scenario, this load would have to be multiplied by the
number of reference signals the response node has to handle.

For reproducibility of results and evaluating the scalabil-
ity of the HaLOEWEn and MSP430 platforms to increasing
loads, we will be using synthetic input data. However, the
synthetic data was modeled based on an actual 30 s vibration
input signal recorded from a pedestrian bridge while a person
was crossing. Choosing the signal-specific optimum trigger
level according to [5] for this data resulted in a peak load of
30 accumulations per sampling cycle. Our synthetic data will
thus cover a range of zero to 90 events per sampling cycle,
representative of a response node processing three real data
reference signals.

Power measurements were performed using an Agilent
34411A multimeter configured at 100 mA range and an inte-
gration time of 100 NPLC (2 s) to average the current spikes
into the switching regulators. For both platforms, we mea-
sured the current flowing into the 3.7 V rails.

The MSP430-1 (MSP430-2) was operated at 20 MHz
(8 MHz), which is its maximum clock at 2.5 V (1.8 V) sup-
ply voltage. Its firmware was built with TI Code Com-
poser Studio 5.1.0.09000 optimizing for speed. The CC2530
firmware was built with the IAR 8051 Embedded Workbench
7.60, also optimized for execution speed. The CC2530 was
driven by its 16 MHz RC-Oscillator, thus limiting the max-
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imum serial clock to 1 MHz. We used an LTC6930-8.00 as
external 8 MHz oscillator due to its fast start-up time of about
50 µs. For a fair comparison, the RCU internal oscillator was
also configured to 8 MHz. All RD implementations used a
sampling frequency of 128 Hz and 32 bit accumulations to
avoid overflows.

Figure 7 illustrates the resulting load-dependent power
consumption for the MSP430 references and the HaLOEWEn
platforms with the three proposed clocking schemes. The
MSP430-2 clearly outperforms the MSP430-1 mainly due to
the reduced core voltage and operating frequency. Further-
more, the MSP430-2 can utilize the dedicated USCI hardware
module for SRAM communication while the MSP430-1 re-
lies on extensive manipulation of general-purpose I/O. Thus,
the parallel memory is no feasible option for the reference
implementation and will be ignored for further discussion.

With an increasing load (more accumulations per sam-
pling cycle), the HaLOEWEn architecture scales better then
the MSP430 platform. In practice, the MSP430-2 is not even
able to perform more than 100 accumulations in a single sam-
pling cycle, and is thus unusable for scenarios with more then
three reference signals. On the other hand, the MSP430 draws
less power when only very few accumulations have to be per-
formed. However, the break even-point of power drawn be-
tween MSP430-2 and HaLOEWEn lies at just 11. . . 19 accu-
mulations, which is even less than the real bridge signal would
induce in a single-node system. For these realistic cases (es-
pecially involving multiple nodes), HaLOEWEn will be more
power efficient.

Looking at the different RCU clocking schemes, the serial
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clock can outperform the external oscillator for cases with less
then 14 accumulations per sampling cycle. In this case, the
corresponding runtime of the accumulation kernel clocked at
1 MHz is 49 µs, as each accumulation takes 3.5 cycles on
average. This matches the oscillator IC start-up time, thus
confirming the trade-off discussion from Section 4.4.

As expected, the internal oscillator outperforms both other
clocking schemes as it eliminates the necessity to stall the
MCU (see Figure 6). On the other hand, the usage of an inter-
nal oscillator is quite unconventional as its frequency depends
on the operating temperature and the RCU core voltage. As
shown in Figure 8a, a ±10 mV core voltage variation trans-
lates into a ±13 kHz frequency variation for a ring of 400
inverters. Since the LTC3388-1 voltage regulator used on
both platforms is specified to be stable within ±60 mV on
its output voltage, the voltage-dependent frequency variation
will be limited to ±78 kHz or 11 % of the target frequency.
This far exceeds the temperature-dependent frequency varia-
tion, which we observed to be just ±6 kHz or 0.8 % over a
±45 ◦C temperature range (Figure 8b). Thus, the internal os-
cillator is a feasible power-saving design choice if its target
frequency is conservatively configured to be about 15 % to
20 % less than the maximum clock frequency supported by
the specific hardware design (ensuring correct operation even
if voltage variations lead to a faster clock).

For future improvements of the HaLOEWEn platform,
we also measured the per-component current flowing into the
ADC, the SRAM, the MCU, the external oscillator, the RCU
core, and its I/O banks at two different load conditions (idle
and fully loaded). The resulting breakdown of the platforms
power consumption is illustrated in Figure 9. The main in-
sight gained from this data is the inefficiency of the 8051
MCU in the CC2530 RF-SoC: Even when not computing, it
is the major power consumer in the system.

We then examined the execution profile of the 8051 MCU
more closely, specifically for the common case of using an
external clock oscillator IC (Figure 6a). As shown in Table 3,
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Fig. 9. Per-component breakdown of the HaLOEWEn power
consumption at different loads

the MCU is awake for a total of 57.9 µs. However, less than
20 % of the execution time is actually required for controlling
the HW kernel (time interval r), but more than half the total
time is spent waiting for the external oscillator IC to stabilize
its clock signal (time interval d). If it were possible to shut the
MCU down for that time, significant power savings could be
realized. In practice, this will not be achievable, since most
MCUs do not support sleep periods that short.

For higher computational loads, the SRAM also begins to
consume a significant part of the power budget. On the other
hand, the power draw of the RCU is almost independent of
the computational load. Thus, future optimization will focus
on the MCU and SRAM for further power reduction.

Finally, we evaluated the possible energy savings of the
optional in-sensor frequency transformation for data pre-
filtering. Using the FFT HW kernel, the MCU can sleep
while the RCU computes the 2048 point FFT. When driven
by the internal 8 MHz oscillator, this computation requires
69 ms and consumes a total energy of 505 µJ. The resulting
frequency spectrum consists of 1024 36 bit complex num-
bers. Transmitting this data in its entirety would require
52 mJ. If only 1 % of the spectrum could be discarded as
being irrelevant for the central damage detection algorithm (a

computation w t d r e s total
duration [µs] 3.7 6.9 31 11.2 1.2 3.9 57.9

Table 3. MCU execution times for computations of Figure 6a



savings of 520 µJ), the energy expended on the FFT would
already have been more than recovered.

The MSP430 does not carry sufficient internal RAM for
the full 2048 point FFT, and using the serial external SRAM
for the FFT calculation would not be a fair comparison. To
determine the capabilities of the platform, we implemented
a 256 point FFT which did fit in the internal RAM, utiliz-
ing its integrated hardware multiplier with the FFT twiddle
factors defined as constant integer array. This FFT calcula-
tion requires 124 ms of execution time and consumes 259 µJ
of energy. This is more than four times the energy the RCU
would have required for the 256 point FFT.

6. CONCLUSION AND FUTURE WORK

The experimental results confirm the high potential of the pro-
posed heterogeneous architecture for low-power applications
such as the distributed structural health monitoring. Com-
pared to a typical MSP430-based WSN, we have reduced the
energy required to compute RD sequences by up to 81 %.
Furthermore, we demonstrated how the energy-efficient com-
putation realizable on the RCU can further reduce the en-
ergy required by shrinking the transmitted data volume via
in-sensor preprocessing.

The detailed analysis of the power consumed by the
HaLOEWEn node identified the CC2530 as a major power
sink. To eliminate this problem, we are considering to substi-
tute the 8051 MCU by an up-to-date alternative, such as the
MSP430 Wolverine. Beyond that, we will focus on the hard-
ware acceleration of network protocol-specific functionality,
e.g., the time synchronization necessary for simultaneous
sampling of the reference and the response signals.
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