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Abstract—Multiply-add operations form a crucial part of
many digital signal processing and control engineering appli-
cations. Since their performance is crucial for the application-
level speed-up, it is worthwhile to explore a wide spectrum
of implementations alternatives, trading increased area/energy
usage to speed-up units on the critical path of the computation.

This paper examines existing solutions and proposes two new
architectures for floating-point fused multiply-adds, and also
considers the impact of different in-fabric features of recent
FPGA architectures. The units rely on different degrees of
carry-save arithmetic improve performance by up to 2.5x over
the closest state-of-the-art competitor.

They are evaluated at the application level by modifying
an existing high-level synthesis system to automatically insert
the new units for computations on the critical path of three
different convex solvers.

Keywords-FMA; fused; FPGA; multiply-add; carry save;
floating-point;

I. INTRODUCTION

Many signal processing and control engineering appli-
cations have large numbers of floating-point multiply-add
operations at their core. When considering the use of recon-
figurable compute units (RCU) to speed-up these algorithms,
the implementation of fast multiply-add units often becomes
crucial.

Orthogonal to the performance of individual units is the
system-level performance vs. area vs. energy balance. To
make system-level evaluations practical, we also have to
consider the automatic use of the new units by system-
level design tools, such as high-level language to hardware
compilers [1]. In general, realizing all required multiply-add
(MA) operations by very fast (low latency, high throughput)
implementations is not efficient, as the area (and possibly
energy overhead) can quickly become prohibitive. It is thus
worthwhile to employ strategies that only employ the fast
MA units on the critical path.

In this work, we will examine both topics in context
of the highly relevant field of hardware acceleration of
general solvers for convex optimization problems. Such
solvers are used in systems relying on model-based/model-
predictive control rules, which achieve much higher qual-
ity than simple proportional-integral-differential (PID) con-
trollers. Specifically, we are using a tool-flow that accepts

high-level descriptions of convex optimization problems in
the CVXGEN language [2] and automatically generates a
hardware-implementation of the specific solver. As concrete
benchmarks for the system-level speed-up of the new MA
units and the new compiler pass, we will consider three
solvers of increasing complexity for trajectory planning
during collision avoidance of autonomous ground vehicles.

A. Nature of convex solver computations

The solver computations have a high degree of instruction-
level parallelism, but have also long chains of data-
dependent operations (see example in Listing 1).

x[1] = a*b + c*d;
x[2] = e*f + g*x[1];
x[3] = h*i + k*x[2];

Listing 1: Solver computation structure

These dependency chains form (potentially long) path
through the algorithm’s control data flow graph (CDFG),
shown in Fig. 1 for the previous example, with the critical
path is marked by bold red edges. Reducing the computation
latency on this path is crucial for achieving high application-
levle speed-ups.
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Figure 1: Critical path of code in Listing 1
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Figure 3: Normalization and denormalization between
floating-point operations

B. Conventional floating-point representation

The IEEE standard 754 [3] defines the floating-point
representations currently in widespread use.

A finite number R is represented in this format by the
three components named mantissa (M ), exponent (E) and
sign (S), s.t. R = M ∗ 2E−b ∗ (−1)S where the bias b is
a positive integer. The standard defines a number of basic
formats with specified widths of the M and E fields as well
as the bias values.

As an example, Figure 2 shows the structure of the widely
used binary64 format, more commonly known as double-
precision.

The formats specified by the standard also ensure unique
representations of each number, thus avoiding the ambiguity
arising, e.g., from 1.5 ∗ 23 = 0.75 ∗ 24. This is achieved by
scaling the mantissa s.t. its most-significant 1 bit actually
becomes the most significant bit (MSB) of the M field in
the standardized binary representation. Since this leads to
all numbers (with the exception of Zero) having an M field
beginning with a 1 bit, this bit is no longer explicitly stored
(implied 1). Another exception are numbers with a very
small magnitude (having zero as exponent). These so-called
subnormals do not have an implied 1 as MSB.

This scaling process is called normalization. It has to
be performed after every computation for the result to
be in valid IEEE 754 number representation. For high-
performance computation, it can be worthwhile avoid nor-
malization after every step, instead allowing the computa-
tions to be fused together and perform the normalization

only at the end of the fused region (see Fig. 3).
This technique has often been used to increase the per-

formance of MA operations, combining them into fused MA
(FMA) operations. In this manner, the steps ”normalization”,
”rounding”, ”post-normalization”, and in some cases also
”denormalization,” can be avoided. Inside of these fused
operators, non-standard floating-point formats can be used,
generally allowing improved area / latency tradeoffs and
a better match to the target technology of the specific
implementation. Furthermore, if required, the intermediate
results can also be represented in formats providing greater
accuracy than the standard formats.

C. Contributions and structure

In this work, we improve upon the prior art by not only
avoiding normalization between the internal addition and
multiplication subcomputations of FMA operators, but also
selectively, using high-level synthesis, between multiplica-
tion and addition across an entire chain of MA operations
in a critical path of the CDFG.

Section 2 gives a brief overview of related work. Our own
contributions will be presented in Section 3, specifically:
A partial carry-save (PCS) number representation suitable
for mapping to FPGAs, a fast FMA unit based on the PCS
representation, an even faster FMA unit relying full carry-
save (FCS) representation and exploiting features of recent
FPGA architectures for area efficiency, and a high-level
synthesis compiler pass for integrating the FMA units and
the required non-standard↔ IEEE 754 data type conversions
into scheduled CDFGs. Section 4 experimentally evaluates
out approach by comparing it to current academic and
industrial state-of-the-art implementations. Section 5 draws
conclusion and looks out towards further work.

II. RELATED WORK

The multiply-add fused unit, which was later referred
to as fused multiply-add (FMA), was first proposed in
1990 [4]. More recent works introduce improved FMA
architectures, but often target stand-alone ASICs or units
integrated into CPU pipelines. Thus, they use IEEE 754-
conforming representations for all input operands as well as
the result [5, 6, 7]. [8] gives a survey of the wide spectrum
of FMA architectures developed from 1990 to 2007.

The principle of fused operators has also been applied to
other computations, such as fused dot products [9, 10], again
having standard-conforming interfaces.

The application-specific use of non-standard formats for
improved numerical accuracy has been proposed for FPGAs,
e.g., in [11]. The use of non-standard formats to improve
performance is presented in [12] for the use of a multiply-
accumulate (MAC) unit. It uses a PCS representation to
achieve low latency at the addition stage but relies on
application-specific knowledge of the input and output value
ranges. Implementations of Radix 4 and 16 exponents



showed improved addition speed but slower multiplication
[13].

Many existing floating-point libraries for FPGAs omit
subnormals (which only marginally extend the representable
number range) to improve performance [14, 15], an approach
we will also follow. A detailed survey of the fundamentals
of floating-point operations on FPGAs is given in [16].
To our knowledge, we are the first to use heterogeneous
input formats (optimized mix of carry-save and IEEE 754
compliant operands) for FMA units.

In contrast to the publications discussed above, others
focus on the assembly of complete datapaths from individual
operators. FloPoCo [17] exploits a language mixing features
from VHDL and C++ to describe pipelines of floating-
point operators. However, it does not automatically perform
operator fusion. Langhammer et al. developed a floating-
point datapath compiler which can generate fused floating-
point operations from a subset of C. The generated datapaths
have standard IEEE 754 inputs and outputs [18, 19]. Our
approach extends these prior works by the selective use of
(partial) carry save number formats and by the integration
in a C-to-HDL Compiler.

Carry Save Adders (CSA) have long been used for fast
constant-time addition [20], especially inside multiplication
units. Their carry save (CS) number format departs from
conventional binary format by allowing the values 0, 1, 2
for each digit, but encodes this in a binary representation.
The CS format, however, has to deal with non-unique
representations for numbers, complicating, e.g., comparison
operations. Please see Section III-E for a discussion of some
of these details.

Automatic inference of CS arithmetic in synthesis has also
been subject to prior research [21]. However, it has focused
on the general synthesis of CS structures, not their selective
use to accelerate floating-point operations. Other approaches
use CS arithmetic internally to individual operations, but not
between them [12, 22].

III. FAST MULTIPLY-ADD UNITS FOR CRITICAL PATH
ACCELERATION

Entire chains of MA operations are typical for the solver
datapaths we want to compile. For reducing the application-
level latency, we need to reduce the latency through the
complete FMA unit, starting at the multiplier input and
ending at the adder result. This eliminates the MAC unit
proposed in [12] from consideration, as it only exploits low
latency addition. However, the idea of a mantissa in PCS
format, which we exploit in our FMA designs, originates in
that work.

In the following sections, we develop two FMA units
calculating R = A + B ∗ C using CS representations: One
using PCS, portable to older FPGAs (e.g., Xilinx Virtex-
5), and one using FCS, exploiting special capabilities of
recent FPGA generations (e.g., Xilinx Virtex-6 and later).
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Figure 4: Classic FMA architecture [4] with IEEE 754-
compliant operands and result

For brevity, we will be using {C,A,B}M to denote the
mantissas of C, A, and B, respectively. Even though our
architectures are freely parametrizable, we will examine
double-precision operators matching or exceeding IEEE 754
accuracy here for comparison with prior solutions.

A. Reducing normalization latency

Since one of the major means of latency reduction in this
work is the avoidance of unnecessary normalization steps,
we begin the exploration by considering a classic FMA
design [4] following this approach. This architecture, shown
in Fig. 4, is used as a baseline for our own optimizations.

Adder and multiplier are fused into a single operation,
without an intervening normalization step. The multiplier
result is instead provided in CS format (please see Sec-
tion III-E for an introduction to the CS representation).
Furthermore, the performance of the adder is improved by
performing the pre-shifting of the additive input A in parallel
with the multiplication B ∗ C.

Since the output of the classic FMA unit is in IEEE 754
format, the internal CS representation has to be converted
to that plain binary format. This is achieved by a 161b
adder followed by a conditional complement block to handle
negative numbers. The actual normalization (left-shifting
to achieve the implied 1) is guided by a Leading Zero
Anticipator (LZA) [23], which computes the shift-distance
in parallel with the addition. Rounding to the required



precision, followed by a conditional one-bit right shift for
post-normalization (to compensate for rounding overflow),
is performed at the end.

B. Speeding-up post-normalization

Even in its original form (normalization only after the
adder), the classic architecture has potential for improvement
by just slightly deviating from IEEE 754 (still using binary
format, but with modified field widths): By adding an extra
bit at the most significant side of the mantissa, we can safely
skip the post-normalization right shift at the end. Actually,
this requires the use of two additional bits in the custom
representation of the mantissa (now 54b) , as the leading 1
can no longer be just implied. In practice, if targeting FPGAs
with embedded DSP48E blocks (such as the Xilinx Virtex-
5, -6, and -7 devices), the slight widening of the internal
computation (from 53b to 54b, both including the leading 1)
does not require additional DSP blocks. Furthermore, in our
approach of selectively employing custom number formats
just on the critical path, only the C input (which is the
output of the previous FMA unit) needs to be widened. B
can remain in standard format, as there is sufficient time for
its proper post-normalization.

Orthogonal to these optimizations is the integration of
IEEE 754 exception encoding. As already shown in FloPoCo
[14], this can avoided by using two additional wires for
explicitly signalling exceptions instead of encoding them
in the number representation. We will apply the same
technique.

C. More efficient rounding

It is tempting to eliminate the rounding step entirely.
However, while truncation may be acceptable for some
applications, others will suffer from the increased rounding
error, which is the case for our solver accelerators. But
by considering entire chains of FMA units during datapath
assembly in high-level synthesis, we can move the rounding
step from the output of an FMA unit through the C input into
the succeeding unit. While this does not directly improve the
latency, it allows the integration of the rounding for C into
the CSA tree of the multiplier (Fig. 5), adding at most one
logic level to the critical path.

As can be seen in Fig. 1, at most the second operand
C of the multiplier and the first operand A of the adder are
performance-critical and thus need to use the custom number
format. We now add two rounding units: A dedicated one for
A (running in parallel to the pre-shift distance computation),
and a second one for C (integrated into the multiplier CSA
tree). The second unit is on the critical path, however. To
allow its execution in parallel with the multiplication, we
perform the actual multiplication with the unrounded value
of CM and then correct an erroneous result afterwards by
adding BM to the product if rounding would have increased
CM by one (Fig. 6).
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The increase of the mantissa width between operators
depends on the rounding mode. For the case “Round half
away from zero”, only a single additional bit is required
(as shown in Figure 5). Thus, A, C, and R are basically
in IEEE 754 format, but with an extra bit of mantissa to
transfer the original unrounded numbers between operators,
leading to 65b operands and results. However, for other
rounding modes, the transfer of the complete, unrounded
internal mantissa would be required, which is a potentially
expensive operation (162b in the example).

D. Eliminating the variable-distance shift

The final step of normalization is the variable-distance
shifter: The number of leading zeros after the addition of two
signed numbers can be anything from zero to mantissa bit
width plus one. The shifter thus must support distances from
zero to the full width, which makes the MSB of the result
depend on every single bit of its input, that being 162b wide
in the FMA unit. Obviously, a major improvement in latency
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could achieved if this potentially very slow step could be
eliminated.

To simplify the final shift, we propose replacing it with
a multiplexer, which is actually doing a shift in larger
blocks of bits. To determine the block size, we consider the
requirements on the result and then work backwards toward
the width of the adder: In our result, we want to achieve
at least the accuracy of IEEE 754 double precision format
with its 52b mantissa. Since we now explicitly represent
the leading 1, we need one more bit. Similarly, since we
no longer use an explicit sign bit but two’s complement
notation, we need an extra bit in the mantissa. Finally, we
have to add a guard bit to catch a possible overflow in
the mantissa1. This yields a total width of 55b, we thus
convert the addition result (whose width we derive later in
this subsection) into blocks of 55b.

Since the number of leading zeros in the non-normalized
result is unknown and generally not a multiple of 55b, the
first non-zero digit could be positioned anywhere in the
result. When shifting by multiples of 55b, the result mantissa
must thus be composed of at least two 55b blocks, making
it 110b wide in total (see Fig. 7).

After determining the result mantissa width to be 110b, we
have to consider the impact of this decision on the input and
internal widths of the succeeding FMA units. For the first,
we now have to increase the width of our critical A and C
inputs to accommodate a 110b mantissa, while B can remain
in IEEE 754 format (52b mantissa plus implied leading 1).
The latter is highly beneficial, since the number of inputs to
the multiplier CSA tree depends on the width of the smaller
operand (that being BM ). On the other hand, the widths of
the multiplication and addition stages grows significantly:
The multiplier now has a (52+1)b wide multiplicand BM

and a 110b wide multiplicator CM , yielding a total of 163b.
The adder stage grows from 162b to 385b, since, for large
exponent differences, the 110b wide addend AM must be
alignable even completely left or completely right of the

1The reason for the possible overflow in the CS format is discussed in
Sec. III-E.
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Figure 8: Complete floating-point format with PCS mantissa

product CM ∗ BM . This yields 110b+163b+110b = 383b,
rounded up to 385b, the next multiple of 55b as described
in Sec. III-E. The entire multiply/shift/add/mux structure is
shown in Fig. 7.

Looking at these choices from the circuit performance
view, we see that the multiplier latency should be unchanged,
since the height of its CSA tree depends on the number of
inputs, which has remained constant. However, the increased
width of the operands has a detrimental effect on adder
performance: On a Xilinx Virtex 6 FPGA (speed grade -1),
the register-to-register latency of even of single 385b adder
is about 8.95ns, which is far too slow for our performance
requirements. Hence, the increase in bit width due to the
elimination of the variable-distance shifter can no longer
be handled using plain binary format addition. Instead, we
break the excessive carry chains by explicitly representing
carries of smaller addition widths. This leads to a major shift
away from the variations of the IEEE 754 format we have
been using so far (mostly with different mantissa widths)
towards a CS representation of mantissas in floating-point
numbers.

E. Floating-point representation using a PCS mantissa

At first glance, an FCS representation using 110 carry bits
in addition to the 110 binary mantissa bits is not feasible,
since it would again double the size of the multiplier. How-
ever, the latency of the addition can already be improved by
employing just a limited number of explicit carry bits in the
mantissa representation. Such a PCS approach has already
been demonstrated to be efficient for FPGA implementation
[12].

Two constraints need to be considered for optimal carry
bit distribution: To simplify the multiplexing step, the carry
bits should be equally distributed in every 55b mantissa
block. To allow a regular design of the operator, the distance
between all carry bits should be equal. Combined, these two
constraints allow the insertion of a carry bit only for every
5th, 11th or 55th bit of mantissa. When evaluating these
alternatives, we discovered that the delay difference between
a 5b and an 11b adder is so small (1.650ns vs. 1.742ns)
that we can choose the more area efficient 11b distribution
without a significant performance penalty. In this fashion,
we reduce the internal FCS widths of a 385b wide sum
and 384b of carries to the PCS format of 385b sum and
35b of carries (shown as Carry Reduction in Fig. 9). Using
the same distribution for our CS inputs and the result, the
prior 110b two’s complement binary format for the mantissa
(derived in Sec. III-D to match the accuracy of IEEE 754



double precision) is extended with 10b of carries into a PCS
format.

However, rounding becomes more complicated, as CS
does not guarantee unique representations for numbers: The
plain binary representation for the value of 0.5d (decimal)
is always 0.1000b (binary). However, when a CS format is
used, each digit can take the values {0,1,2}. The decimal
value 0.5d could thus be represented in CS format as
0.0200cs or 0.0120cs. Even if the most-significant fractional
digit is zero, values larger than 0.5d (which would need to
be rounded up) can be represented in CS (e.g., 0.75d as
0.0220cs). Thus, it no longer suffices to examine a single
bit to make an exact rounding decision. Instead, all mantissa
bits must be considered, even if in rounding mode “round
half away from zero” and “round to +infinity”.

This would become very expensive for our current 385b
addition result, which could (in the worst case) consist of five
non-zero 55b blocks. Thus, we make the conscious decision
to accept some misrounded numbers by considering only a
narrower part of the mantissa for rounding: We examine
only the single 55b block (with 5b of carries) immediately
to the right of the 110b result chosen by the 6-1 multiplexer
in Fig. 7, which results in a truncation before rounding. With
this choice, an erroneous rounding-down would only occur if
the saved carries would ripple through all 55b from the LSB
to the MSB of the fractional part. In the proposed format,
the largest number that would be erroneously rounded down
is 0.50000000000000083d. This inaccuracy is acceptable for
our use case. If more rounding accuracy is required, a wider
part of the mantissa would need to be considered.

F. PCS-FMA Unit
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Figure 9: Proposed PCS-FMA architecture

Fig. 9 shows the final PCS-FMA unit. It accepts the non-

critical input B in IEEE 754 double precision format, the
time-critical inputs A and C are represented as a mantissa in
110b+10b PCS format, combined with 55b+5b of rounding
data in PCS format, combined with a 12b exponent in
excess-2047 notation. The latter was explicitly chosen to
surpass the range of the 11b exponent specified by IEEE
754. In total, the A and C operands, as well as the FMA
result, are expressed as 192b words.

We have not yet discussed how we actually compute the
select signal of the 6-1 multiplexer in Fig. 7 to choose the
most-significant non-zero 55b block(s) as result, as well as
the 55b block immediately right of the result for subsequent
rounding (Fig. 8). Since we have eliminated the variable-
distance shifter commonly used in prior art, we no longer
need to identify leading zero bits at single-bit granularity
using techniques such as Leading Zero Anticipation (LZA
[23]). Instead, it suffices to detect and disregard entire 55b
blocks of leading zeros using a simple Zero Detector (ZD)
to identify the block holding the most significant 1.
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0 0 0 0 0 0 0 0 0 0 0(a)

1 1 1 1 1 1 1 1 1 1 1(b)

1 1 1 1 2 0 0(c)
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Figure 10: Different forms of leading zeros in two’s com-
plement CS representation

The ZD does need to handle some idiosyncrasies of
the two’s complement CS format we use for the mantissa.
Obviously, leading blocks with all 0s can be skipped (see
Fig. 10.a). However, similarly, leading blocks with all 1s can
also be skipped: While they indicate a negative number, that
same number can be represented with fewer bits as long as
the MSB remains 1. Thus, leading all-1 blocks can also be
skipped (see Fig. 10.b, the leftmost all-1 block is skipped).
Furthermore, a block of 1s followed by a single 2 followed
by 0s to the end of the block is considered a block with
value zero (due to the ripple carry from the 2 upwards)
and will also be skipped (see Fig. 10.c). Finally, before
actually skipping a leading all-0 block, we have to be sure
that its removal will not alter the value of the succeeding
blocks. Fig. 10.d shows an example for this: At first glance,
it appears that the leftmost all-0 block could be skipped.
However, when converting the value of the succeeding block
from CS into binary, 012...cs = 100...b. Since that block is
now the most significant block (the first one got skipped),
the 1 in the MSB now indicates a negative number, which
is incorrect (with the leading all-0 block, the original value
was positive). Thus, to avoid these overflows, we skip an
all-0 block only if the first two CS digits of the succeeding
block are also 0, avoiding all potential overflows.

While the Carry Reduction step of Sec. III-E is carried out
in parallel with ZD, the latter is now critical and determines
the total FMA latency.



G. Early leading zero anticipation

We can shorten the critical path further by replacing the
ZD units with early leading zero anticipation. We combine
our idea of zero-value consideration at block granularity with
the prior art of LZA units. For each of the FMA inputs,
we use an LZA unit to compute the lower bound for the
number of leading zeros in the FMA output. Since BM

is in standard format (having an implied leading 1 in the
mantissa), it does not need a dedicated LZA if subnormal
numbers are disregarded (as we do here). LZA units are
required only for A and C.

Most LZA units are inexact and have an error of up to
one bit position. A further bit of uncertainty is introduced
by the product BM ∗ CM , with 1 ≤ BM < 2. Finally,
the sum of the shifted (aligned for different exponents) AM

with the product can potentially require an additional bit,
increasing the total error in leading zero anticipation to three
bits. To compensate for this maximum error and still exceed
double-precision, the result mantissa block size introduced
in Section III-D must be increased from 55b to 58b to make
sure that in worst case, at least 53 significant mantissa bits
are included in the two result blocks selected.

Special consideration must be focused on the issue of
adding a product B∗C with an addend A that have different
signs but a similar magnitude. This will lead to many leading
zero blocks in the sum. Potentially, even all of the blocks
may be zero if the two addends cancel each other out
completely. In these cases of mantissas with very small
magnitude, the anticipation error of the LZA-based approach
leads to a larger relative inaccuracy compared to the precise
(but slower) ZD-based approach described in Sec. III-F.
However, since we have already taken the maximum LZA
error into account by widening the mantissa, we ensure
that even in these extreme cases, we will never be more
inaccurate than IEEE 754 double precision.

Also, the early leading zero anticipation logic must reli-
ably detect all-0 input mantissas. Otherwise, the result block
multiplexer could erroneously select leading all-0 blocks for
the result, even though a 1 (that should actually be in the
leading block) is present in the less significant bits of the
sum.

H. FCS-FMA for FPGAs with DSP pre-adders

The improvements described in Sec. III-G remove the ZD
operation from the critical path. However, now the Carry
Reduce step (Fig. 9) becomes critical. For FPGAs featuring
fast pre-adder stages in their DSP blocks, even this step
can be completely eliminated, but its removal still incurs a
significant complexity cost.

In contrast to the Xilinx Virtex-5 family, the more re-
cent Virtex-6 and -7 devices provide DSP48E1 blocks that
implement a 25b pre-adder on one of their inputs. The pre-
adder can be used for CM to add two 23b blocks of CS
partial sum and carry bits, converting them to plain binary

format, without the risk of a sign-changing overflow. The
most significant block of CM can actually be processed at
the full pre-adder width of 25b, as it is a signed number
itself.

The pre-adders allow the representation of A and C in
full carry save representation, thus eliminating the Carry
Reduce step. However, such a space-intensive format begins
to tax the resources even of recent FPGAs. Due to routing
difficulties using ISE 14.1 on Virtex-6, we were forced to
reduce the mantissa from 116b (two 58b blocks) down to
87b (three 29b blocks). This reduces the size of most internal
modules (multiplier, adder, etc.) by almost 25% at cost of
a more complex multiplexer at the end (11-to-1 instead of
6-to-1). However it enables 200+ MHz operation.

When the result mantissa consists of three blocks, blocks
of 29 FCS digits (each digit having 1b partial sum and 1b
CS carry, together expressed in the unit c from here on)
are required to surpass double accuracy: In the worst case,
the first result block and the first digit of the second block
can all be zero, but the following non-zero digit prevents the
removal of the leading zero block (see Fig. 10.c). In addition,
when using early leading zero estimation, there is a three bit
uncertainty to consider, possibly causing three further digits
(4c in total) of block two to be zero. On the other hand,
this means that even in the worst case, at least 25c in block
two and all 29c in block three are significant FCS digits
(54c in total), exceeding IEEE 754 double-precision with its
mantissa of 52b+1b binary digits.

The inputs to the FCS-FMA unit (shown in Fig. 11)
consist of the three exponents (12b for A and C, 11b for
B) and BM in standard format (52b+1b leading 1). AM and
CM are represented in FCS as 87c each, accompanied by
29c of rounding data. The output is a 87c result mantissa,
29c of rounding data and 12b exponent.

The width of the result multiplexer must be sized accord-
ingly: The multiplication yields a five block wide result.
The shifter aligning the addend AM to match exponents has
an additional three blocks on the right hand (less significant
side) and five blocks on the left hand (more significant side),
yielding a total of 13 blocks, each 29c wide, for a total width
of 377c.

The final multiplexer for the result selects from these 13
blocks the three most significant non-zero blocks. It thus
accepts 13 blocks as inputs and selects from 11 possible
positions for the three block result RM holds, which holds
at least 53 significant mantissa digits, possibly shifted across
three blocks (87c). A parallel multiplexer outputs the 29c of
the mantissa immediately to the right of the actual result
RM for rounding in a subsequent FCS-FMA operator.

I. Automatic P/FCS-FMA unit insertion in high-level syn-
thesis

Manually replacing critical discrete multiply-add opera-
tions by FMA operations and performing the appropriate
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Figure 11: FCS-FMA unit exploiting DSP block pre-adders

type conversions is both tedious and error prone. We have
integrated a pass into our C-to-hardware compiler Nymble
that performs the required analysis and transformations
automatically.

The datapath is initially assembled from IEEE 754 opera-
tors and scheduled (Fig. 12a). Then, the datapath is searched
for pairs of successive multiply and add operators. If they
are on the critical path, the pair gets replaced by a P/FCS-
FMA unit, surrounded by the required conversion logic
between the CS and IEEE 754 formats. After all critical
multiply/adds have been greedily replaced by FMA units
(Fig. 12b), redundant type conversions between FMA units
are removed (Fig. 12c), the entire datapath is rescheduled,
and the procedure repeats until no further FMA insertions
can be performed.
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(a) Before
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Figure 12: Insertion steps

IV. EXPERIMENTAL EVALUATION

For evaluation, both proposed P/FCS-FMA operations
have been implemented on a Xilinx Virtex-6 FPGA. and
their multiplier modules have been specially optimized to
exploit the Xilinx DSP48E1 blocks. For comparison with

the industrial and academic state-of-the-art, Xilinx CoreGen
and the FloPoCo library were used to generate IEEE 754
double-precision units for the Virtex-6 family. Note that none
of these units supports subnormals [14, 15] and all were
constrained to achieve a minimum clock frequency of 200
MHz.

A. Synthesis results

FloPoCo allows the definition of target frequency, tech-
nology and bit width by command line parameter. We used
the FPPipeline command to allow optimizations across the
multiplier and adder units [24]. The resulting hardware
model was synthesized with and without register balancing,
using the better result as baseline for the comparison.

In contrast to FloPoCo, Xilinx CoreGen only allows the
generation of separate multiply/add units and the specifi-
cation of operator latency. Thus, we manually selected the
configuration with the lowest latency that still managed to
achieve the target clock. The specific designs chosen were
the ”low latency” 5 cycle multiplier and ”low latency” 4
cycle adder. Our P/FCS-FMA units have been manually
pipelined to 200 MHz operation.

Table I shows the synthesis results achieved using Xilinx
ISE 14.1. All results are taken from post-layout timing re-
ports. While FloPoCo achieves the smallest implementation
(in terms of DSP usage), its latency of 11 cycles is also the
slowest in the test. The FCS-FMA unit is the fastest unit,
followed by the PCS-FMA unit. Note that the FCS-FMA
unit achieves better area efficiency than the PCS variant due
to its exploitation of the DSP48E1 pre-adder blocks, which
would not be available on earlier FPGAs. However, both of
our units require more area (LUTs) than their competitors.

Figure 13 shows the minimum computation time for a sin-
gle Multiply-Add-Operation. It is calculated by multiplying
the minimum cycle time with the number of clock cycles



Table I: Synthesis results

Architecture fMax Cycles LUTs DSPs
Xilinx CoreGen 244 9 1253 13
FloPoCo FPPipeline 190 11 1508 7
PCS-FMA 231 5 5832 21
FCS-FMA 211 3 4685 12

required to complete one computation. The PCS- and FCS-
FMA units are about 1.7x and 2.5x faster than their closest
competitor.
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Figure 13: Latency (as minimum clock period times pipeline
length) for FloPoCo, Xilinx and P/FCS-FMA pperations

B. Numerical Accuracy

As discussed earlier, with the exception of limitations in
rounding fidelity, our P/FCS-FMA units are guaranteed to
reach or exceed IEEE 754 double-precision accuracy. To
study the impact of the potential misrounding (see Sec.
III-C), we fed valid but random data into a pair of FMA
units recursively computing the value x[50] as described in
Equation 1, where B1 and B2 are random numbers with
1 < |B1| < 32 and 1 > |B2| > 0.

x[n] = B1 ∗ x[n− 1] +B2 ∗ x[n− 2] + x[n− 3] (1)

The same computation is also performed on data widths
of 64b (IEEE 754 double), 68b, and 75b using the Xilinx
CoreGen floating-point operations as reference. The 68b
and 75b variants employ a larger mantissa for improved
accuracy.

Figure 14 illustrates the average mantissa error of 64b,
68b and FCS-FMA implementation. The result of the 75b
CoreGen computation was used as golden reference to
gauge the errors of the less accurate implementations. Both
PCS and FCS-FMA units clearly outperform standard IEEE
double precision in terms of average accuracy.

C. Energy consumption

The energy consumption was analyzed by the Xilinx
XPower tool considering the actual switching activity of
the units. Post-layout delays were extracted and the activity
recorded in VCD/SAIF format using the Xilinx ISim simula-
tor on the benchmark computations described in Sec. IV-B.
The pipeline is examined in steady-state (producing one x[i]
per clock cycle) after sufficient priming.
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Figure 14: Average mantissa error in x[50] (arithmetic mean
over 20 computations)

Table II: Average energy consumption per multiply-add
computation (nJ)

Xilinx (Mul+Add) FloPoCo PCS-FMA FCS-FMA
0.54 0.74 2.67 2.36

The increased performance of our P/FCS-FMA units
comes at a 4x to 5x increase in energy consumption. The
XPower analysis details showed that most of the energy was
drawn in the large CSA trees of multiplication and addition.
Obviously, our P/FCS-FMA units are not suitable for ultra
low power operation. However, due to the much lower gen-
eral energy consumption of FPGAs compared to GPGPUs
and GPPs [25, 26], FPGA designs using P/FCS-FMAs may
still be competitive energy-wise with other implementation
technologies. Furthermore, both architectures are applicable
to the high-performance computing domain.

D. Application in High-Level-Synthesis

The P/FCS-FMA units have been made available for high-
level synthesis using the approach outlined in Sec. III-I. The
Nymble hardware compiler was then used to compile parts
of three convex solvers generated by CVXGEN as discussed
in Sec. I. The ldlsolve() function, which holds the core
solver algorithm, is selected for hardware compilation. It
requires more than half of the execution time on a general-
purpose processor and can thus be considered a compute
kernel. As above, floating-point operators have been chosen
for a target frequency of 200+ MHz.

The resulting schedule length is shown in Figure 15. It
could be reduced by 26.0% to 50.1% when selectively re-
placing discrete multiply/add operations with up to 39 time-
multiplexed P/FCS-FMA units. Note the higher performance
gains achievable using the FCS approach, which is however
limited to recent FPGA architectures due to its reliance on
the DSP48E1 pre-adder functionality.
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Figure 15: ldlsolve() schedule cycles for increasing
solver complexity



V. CONCLUSION AND FUTURE WORK

We performed an architecture exploration for the realiza-
tion of fast fused multiply-add units, also taking into account
specific features of recent FPGA families. The resulting
operators rely on carry-save floating-point representations
and could be shown to deliver up to 2.5x the performance
of the industrial Xilinx CoreGen IEEE 754 double-precision
operations.

Our P/FCS-FMA units can be employed selectively in
high-level synthesis to accelerate the critical paths of
compute kernels, converting between standard and custom
floating-point representations as required. Application-level
benchmarks on the synthesis results for the hardware accel-
eration of convex solvers have demonstrated speed-ups of
up to 50%.

Since these benefits come at the cost of increased area
and energy requirements, a selective use, as suggested by
our own high-level synthesis integration, is recommended.

For future work, the use of different carry bit densities in
the PCS-FMA could be explored when increasing the block
size to 56b (instead of the 55b used here). Furthermore, the
concept of mantissas represented in partial/full carry save
formats could applied to other floating-point operations.
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