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Abstract—Wireless Sensor Networks (WSNs) are a key tech-
nology for future social and industrial developments. With in-
creasingly complex applications, the compute demands for in-
node / in-network processing have been growing steadily, while
the capabilities of energy-harvesting or -storage systems have
advanced only slowly. We present the Hardware-Accelerated Low
Power Mote (HaLoMote), a heterogeneous system architecture for
a wireless sensor node that achieves significantly better energy
efficiency than traditional approaches, even for demanding appli-
cations requiring sensor sample rates of hundreds of Hertz. The
paper discusses an evolution of the node hardware architecture
and details the implementation of a signal processing chain re-
quired for Structural Health Monitoring (SHM) applications. The
measurement accuracy of the WSN-based data acquisition system
is compared against a wire-bound laboratory system showing
that the dominant eigenfrequencies of a monitored structure can
be detected with less than 1 % error. Furthermore, the runtime
and power requirements of the HaLoMote are compared against
various software processors typically used for conventional WSN
architectures. It can be shown that the HaLoMote is 2.3 times more
energy-efficient than a state-of-the-art ARM Cortex-M3 based
device.

I. INTRODUCTION

While heterogeneous computing architectures have been em-
ployed successfully in high-performance server, desktop, and
even embedded systems such as mobile phones, they have
seen only limited use in highly energy-critical settings, such
as WSN nodes. But the increasing sophistication of WSN
applications is accompanied by a corresponding demand for
in-node computation, communication, security, and availabil-
ity, which often conflicts with the still-limited energy supply.
To meet the timing requirements, low-power microcontrollers
(MCUs) (as used on the TelosB or Mica2 mote) are replaced
by more powerful processors (e.g., 32 bit ARM on Imote2) at
the cost of an increased power consumption in active mode
(ą100 mW) and longer wake-up times from deep sleep modes
(ą100 ms). Active power management on these nodes thus
can only occur when measurements are completely suspended.
However, improvements in energy storage and harvesting are
made only slowly, and do not keep up with the growth in
node capabilities. Dynamic Power Management (DPM) and in-

network data aggregation are well known strategies to achieve
energy efficiency, but they become hard to realize at higher
sampling frequencies.

As a more energy-efficient approach to homogeneous node
architectures, we propose the use of a heterogeneous system
architecture to handle even complex WSN scenarios. The archi-
tecture is able to handle compute-intensive tasks (e.g., data pre-
processing) as well as long-term low-intensity operations (e.g.,
the RF communications protocol). To this end, our HaLoMote
architecture employs a low-power Field Programmable Gate
Array (FPGA), acting as Reconfigurable Compute Unit (RCU),
for the first use, and a small 8 bit MCU with integrated RF
functionality for the latter.

The architecture was designed for applications in which
multiple sensors are sampled by each mote at several hundred
hertz, thus producing large amounts of data that have to be
preprocessed and aggregated. Such applications include e.g.,
the condition monitoring of vibrating machinery [11], vibration-
based SHM [13], acoustic object localization [1] and video
surveillance [20]. For such high-data rate applications, node-
local processing can be used to reduce the necessary wireless
communication bandwidth by techniques such as application-
specific feature extraction (e.g., modal properties, object loca-
tion), or generic data aggregation (e.g., lossless compression).
But even low-data rate applications, such as environmental
and industrial monitoring, may require more intense process-
ing (e.g., for encryption protocols). The HaLoMote hardware
accelerator is suitable for both use-cases.

While prior attempts at using reconfigurable computing in
wireless sensor nodes have been made, their success has only
been limited, as we will discuss in Section II. We present
the evolution of the HaLoMote in Section III, while Section
IV details a SHM application and its hardware-accelerated
implementation. In Section VI, the accuracy of the proposed
wireless data acquisition system is compared against a wire-
bound laboratory system. Furthermore, the energy required
per acquired sample is compared between the HaLoMote and
various software processors.



II. RELATED WORK

WSNs have become popular for environmental monitoring
in the last decades. Several research groups started to equip
various bridge structures with wireless sensor networks ranging
from small models with artificial excitation [3] over medium
size pedestrian bridges [8] up to large size traffic bridges [5],
[6], [17], [18], [23]. The number of involved sensor nodes
ranges from 8 [8] to 70 [6]. The sampling rates and syn-
chronization accuracy required for monitoring the distributed
vibration of large structures are much harder to realize than
monitoring slowly changing temperature or humidity. As the
power supply of the sensor nodes is limited and the radio
transceiver typically is the major power consumer of a sensor
node, sensor data aggregation is required to reduce the overall
communication and power requirements and thus extend the
network lifetime or maintenance intervals. Very few of the
related research projects actually support this feature, such as
[6], [8]. Both execute complex in-sensor computations such
as Frequency Domain Decomposition, or Stochastic Subspace
Identification of a Filtered Hilbert-Huang Transformation on
an XScale ARM processor. Compared to the traditional MCUs
typically used in wireless sensor platforms, the XScale proces-
sor is very power-hungry, thus depleting even a relatively large
21 A h battery in less than two months [6].

FPGA-based RCUs can perform complex computations more
efficiently than MCUs and Digital Signal Processors (DSPs)
[14]. In real-time applications, the use of RCUs often enables
computations that cannot be performed by MCUs or DSPs at all
under the given constraints. This made them attractive for use in
sensor nodes performing compute-intensive applications (e.g.,
video and image compression) [4], [15], [27]. However, none of
these systems could achieve truly low power operation: They all
relied on FPGAs using Static RAM (SRAM) for configuration
storage, which thus could not be powered down completely
without losing the configuration data itself.

When energy actually becomes a first-class design goal,
Flash-based FPGAs are far more suitable [21] for the RCU.
Sensor nodes using a combination of a Flash-based Microsemi
Igloo FPGA and a wireless transceiver have already been pro-
posed [22], [25], [26]. However, despite the power advantages
of Flash configuration storage, these architectures also turn
out to be sub-optimal: All processing is performed on the
RCU (even long-term low-intensity tasks), and when powered
down, the radio transceiver is required to wake up the FPGA
again. Thus, at least one of the two power-hungry devices
has to be enabled all the time. Refinements which use very
simple timekeeping on the RCU, employing inverter ring-based
oscillators [16], to only power up the receiver periodically
at pre-agreed times for data reception, are still sub-optimal:
Due to the large timing inaccuracy (drift) of these oscillators,
the power-down windows have to be shortened conservatively,
leading to the system drawing higher power for longer intervals.

A better choice is a heterogeneous architecture combining an
RCU and a low-power MCU. The Cookie WSN [24] and the
PowWow Mote [2] have joined a small Microsemi Igloo FPGA

with a TI MSP430 MCU and an additional radio transceiver.
However, both systems utilize the FPGA only for low-level
handling of radio messages, instead of preprocessing the sensor
data stream. Furthermore, the use of discrete MCU and RF
components carries the burden of slower communication as well
as more complex power management.

III. HALOMOTE HARDWARE ARCHITECTURE

To overcome the deficits of the WSN-architectures described
in the last section, we proposed the HaLoMote architecture.
In this section, we present its evolution driven by experiences
gained in different applications.

The basic architecture of the original HaLoMote is shown in
Figure 1. It heterogeneously combines software-programmable
and reconfigurable compute units. The MCU handles less
complex computations, such as the radio protocol and basic (yet
precise) time-keeping. It is integrated with the RF components
into a single System-on-Chip (SoC) and can directly access the
human-machine interface (HMI) peripherals (e.g., LEDs) on the
mainboard. The RCU is realized as a discrete FPGA based on
non-volatile memory (NVM), allowing for deep sleep modes
with fast shutdown and wakeup times as well as a very low
static power draw. External sensors and additional memories
are connected to the RCU to support the efficient preprocessing
of the sampled data stream. Only the aggregated results are
transferred to the MCU for RF transmission into the network.

For the first realization of the architecture, a Microsemi
IGLOO AGL1000 FPGA and a TI CC2531 RF-SoC have
been used and application-specific sensors and memories were
flexibly attached using expansion headers. While it already ex-
ceeded the performance and power efficiency of homogeneous
systems for real applications [13], the practical experiences
gained identified a number of design weaknesses. This led
to design improvements for a second implementation of the
architecture, shown in Figure 2.

Detailed power profiling revealed that the 8051-based MCU-
component of the CC2531 RF-SoC required significant energy
even with the RF transceiver completely shut-down: With the
control software on the MCU just initiating RCU operations
(i.e., sensor sampling and data accumulation) at 128 Hz, the RF-
SoC consumed between 34 % and 48 % of the overall system
energy (depending on the actual load at the RCU) [13]. More
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Fig. 1. Basic architecture of the Hardware-Accelerated Low Power Mote
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than half of the active time of the MCU (31 µs out of 58 µs)
was spent waiting for the clock source of the RCU to become
stable after waking it up. This led to a more refined clocking
scheme which allows the MCU to provide an auxiliary clock
for the RCU until the main oscillator started up.

In the second version, the TI RF-SoC itself was replaced
by a more recent Atmel ATmega256RFR2 device, which not
only has more RF throughput, but also more General Purpose
Input/Output (GPIO) pins for communicating with the RCU.
Furthermore, it can be operated with just a 1.8 V supply (instead
of the 2.5 V used for the CC2531), thus allowing for more
efficient switching regulators.

We excluded the power and area-consuming HMI-peripherals
from the mainboard. While they can still be attached for
debugging purposes, unused peripheral pins are now used to
increase the communication bandwidth between MCU and
RCU.

Most monitoring applications require a significant amount
of external memory. By directly integrating four 1 Mbit serial
SRAM devices on the mainboard, less demand was imposed on
the expansion headers (now 40 pins, down from 148). This sig-
nificantly shrunk the overall system size from 100 mmˆ 62 mm
down to 46 mmˆ 30 mm (see Figure 3). We chose multiple
serial instead of a single parallel memory to enable parallel in-
dependently addressed memory accesses by the RCU. Further-
more, we can now selectively replace one or more SRAMs with

Fig. 3. Current implementation of the HaLoMote architecture

pin-compatible non-volatile Ferroelectric RAMs (FRAMs) for
even more aggressive power management. FRAM was chosen
as persistent data storage as it clearly outperforms FLASH-
based memory in terms of write performance (i.e., access
time, granularity and power consumption) [19]. In particular,
the MB85RS1MT modules can be written at 25 Mbit/s while
drawing only 17 mW from the 1.8 V supply rail.

Finally, the new implementation allows over-the-air recon-
figuration of the RCU by exposing the FPGA JTAG interface
to the MCU. This comes, however, at the cost of an additional
3.3 V regulator responsible for providing the higher program-
ming voltage.

IV. RANDOM DECREMENT TECHNIQUE FUNDAMENTALS

Civil infrastructures such as bridges are prone to fatigue and
other load-induced damage. With increasing age, inspection
intervals have to be scheduled more frequently to assure the
secure operation of the infrastructure. Costly manual inspec-
tions thus have to be complemented by automated SHM. By
periodically observing modal properties such as the eigen-
frequencies, mode shapes, or the damping of the structures,
damage or fatigue can be identified by significant deviations of
these properties from reference measurements [9].

Modal parameters of an object are typically derived by
observing its response to a well defined artificial excitation.
While large structures can be excited by appropriate equipment,
a significant amount of energy is required to drive such large
shakers. Furthermore, the excited structures often have to be
taken out of service to assure safety and measurement accuracy.
For continuous automated SHM, the identification of the modal
properties thus has to be based on the natural ambient vibration
of the structure caused by wind or traffic. The major challenge
of this Operational Modal Analysis (OMA) is the separation
of the random components of the observed signals caused by
the unknown excitation from the structure’s actual response to
this excitation. The Random Decrement Technique (RDT) was
proposed for this purpose [7].

For the RDT, a set of sensors S Ă N is distributed all over
the structure to acquire its vibrations in terms of acceleration
or deflection as time series pxs : T ÞÑ V qsPS . For a finite
sampling rate and measurement duration, the time domain
is also finite and discrete, i.e., T “ t0, . . . ,nt ´ 1u Ă N. For
simplicity, V Ă R can be assumed by abstracting from the
finite measurement accuracy. As the OMA aims for the dynamic
characteristics of the observed structure, the static components
of the acquired signals (gravity or prestress) have to be elim-
inated by a high-pass filter, e.g., by applying a Finite Impulse
Response (FIR) filter

x̂sptq –

minpnf ,tq
ÿ

k“0

ck ¨ xspt´ kq @ps, tq P S ˆ T

of order nf with nf ` 1 appropriate coefficients ck P R.
To eliminate the random signal components, the RDT selects

a subset of the sensors as references R Ď S and a trigger level
lr P V for each reference r P R. The points in time t P T , at



Signal
Window

=
lr

x̂r

Displacement
Response

+

Velocity
Response

+

Random
Excitation

=
lr

x̂r

+

+

+

+

+

=Dr,r

=

+
=

+

=
Fig. 4. Accumulation of triggered signal windows for the Random Decrement
Technique

which a reference signal x̂r crosses lr, are referred to as trigger
events

Er – tt P T : px̂rptq ě lr ^ x̂rpt´ 1q ă lrq_

px̂rptq ă lr ^ x̂rpt´ 1q ě lrqu @r P R.

A signal window px̂rpt` kqq
nw´1
k“0 of fixed length nw P N

starting at a trigger event is composed of the structure’s
response to its initial displacement x̂rptq “ lr, its response to
the initial velocity and the random ambient excitation, as shown
in Figure 4. Assuming a zero-mean excitation, the random
components are extinguished when accumulating a sufficient
number of these triggered windows. The velocity response will
also be eliminated, as each rising signal edge (with positive
initial velocity) is followed by a falling signal edge (with
negative initial velocity). Thus, the accumulated signal windows
converge against the displacement response, which describes
the structures free decay and can thus be used to derive its
modal properties.

To estimate the mode shapes of the structure, spatial correla-
tions between different sensor positions are required. Therefore,
signal windows from all sensors are accumulated for each
trigger event, resulting in |S| ¨ |R| correlation functions

Ds,rpkq –
ÿ

tPEr

x̂spt` kq @ps, rq P S ˆR, 0 ď k ă nw.

Finally, the accumulated functions must be normalized by the
number of detected trigger events, the trigger level and the
standard deviation of the reference signals:

D̂s,rpkq –Ds,rpkq ¨
σr

lr ¨ |Er|
@ps, rq P S ˆR

σr –

g

f

f

e

1

|T |

ÿ

tPT

x̂rptq2 ´

˜

1

|T |

ÿ

tPT

x̂rptq

¸2

@r P R

The normalized correlation functions D̂s,r are the input of the
subsequent modal analysis, which is performed on a central
gateway and is thus not covered in this paper.

In addition to eliminating the random parts of the sampled
signals, the RDT aggregates the |S| ¨ |T | raw sensor samples
down to |S| ¨ |R| ¨ nw correlation samples. The compression
factor |T |

|R|¨nw
increases with the measurement duration. nw is

typically chosen such that the correlation functions show the
free decay of the structure, which may take several seconds for
large bridges. For a measurement duration of several hours,
which is required to collect a sufficient number of trigger
events, the compression factor typically exceeds two or more
decades. This is the major benefit of the RDT for the distributed
WSN implementation of SHM applications.

However, the RDT increases the demand for in-sensor
preprocessing. The computational complexity of the RDT is
dominated by the FIR filter and the memory accesses required
for the accumulation of the correlation functions. The latter
becomes particularly complex if the correlation functions can
not be stored in the few kilobytes of RAM provided by
most WSN processing units thus requiring access to exter-
nal memory. The RDT preprocessing linearly scales with the
number of sensor channels to be processed by each sensor
node. Each sensor typically provides three channels to capture
the multidimensional movement of the structure and multiple
nearby sensors may be connected to a single sensor node to
simplify the deployment. Thus, assuming three to twelve sensor
channels per mote is not unrealistic. As the sensor channels can
be processed independently of each other, most of the RDT
preprocessing can be parallelized. The next section details the
RDT implementation on the HaLoMote RCU.

V. HARDWARE ARCHITECTURE FOR RDT

Figure 5 shows the sequential FIR implementation requiring
one multiplier per sensor channel. The FIR taps are buffered in a
Block RAM (BRAM) and the filtered value is passed to an
additional First In, First Out (FIFO) buffer, which is integrated
into the same BRAM as the FIR taps. The additional delay
between the filtering of a sample and its further processing is
required to ensure that trigger events captured at other sensor
nodes can be flooded over the entire network [10].

Figure 6 shows the computational logic required for each
sensor channel. A sensor specific control module requests the
samples over the digital senor interface. Although most of
the control lines of the sensor interfaces (e.g., SPI or I²C)
could be shared between multiple sensors, each sensor channel

FIR taps Delay FIFO

COEFF ˆ ` ACC filtered

delayed
sample

Fig. 5. FIR and FIFO in single BRAM



Sensor Control FIR+FIFO

ACC

ACC

`

`ˆ

BUF

ăě ă ě

^ ^_

SPI

level

sx

sxx

delayed

generate

sample

filtered

Fig. 6. Sensor interface, trigger event detection and precomputations required
for calculating the standard deviation

is controlled by a dedicated interface to allow for parallel
independent sensor sampling. The samples are filtered
and delayed as described above. The filtered samples
are used to detect trigger events by comparing the current and
the last value against the trigger level to drive a generate
flag. Furthermore, the filtered values and their squares are
accumulated as sx and sxx to derive the standard deviation
of the sensor channel. Both, the trigger event detection and the
standard deviation calculation are only required for sensor chan-
nels configured as RDT references. To simplify the network
configuration, the reference-specific hardware is provided for
each sensor channel and the software processor decides which
of the results to use for further processing.

Figure 7 shows the module used for accumulating the
delayed samples to a correlation function stored in BRAM.
External trigger event specific logic decides whether and which
memory position to modify. Additional clear logic is required
to initialize the correlation functions at the start of each
measurement.

Figure 8 shows the handling of trigger events for a specific
reference channel. This logic is required at all sensor nodes,
not only at the sensor node sampling the reference signal. A
trigger event is characterized by its age, i.e., the number of
sampling cycles since it was generated by the logic shown in
Figure 6. Trigger events older than the length of the delay FIFO
(shown in Figure 5) cause an accumulation of the output of
the delay FIFO to all correlation functions corresponding to
the reference channel that generated the trigger event. Trigger
events are removed after nw accumulations.

The main difficulty of the trigger event management is that
the sequence of event insertions does not necessarily have to
match the sequence of event removals. For example, a trigger
event generated at the local node will be inserted immediately
with an age of 0. In the next sampling cycle, another trigger
event generated at a remote node may arrive that already
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traveled for 10 sampling cycles on a multi-hop path to the
local node. This second trigger event will thus be inserted after
the first event, but it will be removed before the first event.
To avoid the fragmentation of the data structure storing the
trigger events, a shift register based queue is used. In each
sampling cycle, each trigger event is dequeued and enqueued
again after incrementing unless it is old enough to be removed.
New events are enqueued afterwards. The actual length of the
queue is managed by dedicated logic and corresponds to the
number of currently active (i.e., overlapping) signal windows
triggered by the reference channel.

Figure 9 shows the combination of all these modules to
realize an RDT kernel for |S| “ 4 sensor channels and |R| “ 2
reference signals. The SPI ports of this module are connected
to the discrete digital sensors. All other ports are controlled by
the HaLoMote MCU using the communication infrastructure
described in [13]. The BRAM addressing for the correlation
functions are overridden for clearance and readout of individual
correlation functions. As all correlation functions of a single
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Fig. 9. RDT kernel for four sensor channels and two reference signals
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reference channel share the same addressing signals, BRAM
can be shared among those functions.

Figure 11 details the scheduling of the RDT operations. At
the start of each sampling cycle, the MCU wakes up the RCU,
which starts requesting the next sensor samples. The number
of RCU cycles required for this operation depends on the
number of bits to read, which typically do not exceed 3 ¨16 bit.
The high pass filter operates on the sample from the previous
sampling cycle and can thus be executed in parallel to the sensor
sampling. The filtering takes nf ` 1 RCU cycles. The trigger
event detection, the computation for the standard deviation
and the handling of the delay FIFO require one additional
RCU cycle after the filtering operation. The accumulation of
the delayed sample value from the last sampling cycle to the
correlation functions is performed in parallel to the filtering. It
requires one RCU cycle per registered trigger event. If available,
new trigger events are inserted just before the RCU is shutdown
again. As long as the number of registered trigger events does
not exceed the order of the FIR filter, the overall execution time
of the RDT kernel is fixed.

VI. EVALUATION

A. Measurement Accuracy

To evaluate the measurement accuracy of the proposed
wireless data acquisition system, a laboratory scale testbed was
set up as shown in Figure 10. A warren truss railroad bridge
was modeled by connecting 54 metal rods with 24 metal joints
(Figure 10a) resulting in 51 kg overall weight and a span width
of 246 cm. The test structure can be excited by a G-scale railway
model or an impact hammer.

Five HaLoMotes were attached to this structure (Figure 10b),
each connected to four ADXL362 micro-electro-mechanical
(MEMS) acceleration sensors (upper part of Figure 10c). Thus,
the movement of all inner joints of the bridge can be observed in
three dimensions with a resolution of 1 mg. However, only the
acceleration orthogonal to the bridge deck is taken into account
as this is the main direction of the ambient excitation cased by
traffic. Due to the relatively large stiffness of the small bridge
model, the relevant structural modes to be observed are located
between 50 Hz and 100 Hz. Thus, to safely meet the Shannon-
Nyquist lower limit, a sampling rate of 400 Hz was chosen. The
wireless sensor nodes are synchronized with an accuracy of a
few microseconds. The time synchronization protocol [12] is
not detailed in this paper, but the achieved accuracy is sufficient
for the required sampling rate.

The WSN-based data acquisition system does not capture
the actual excitation of the structure, so an OMA is required
as described in Section IV. A nf “ 64 tap high pass filter
with a cut-off frequency of 20 Hz is applied to each sensor
channel. This configuration was chosen as a trade-off between
computational complexity and the filter quality. Static acceler-
ation is damped by 60 dB, while all frequencies above 40 Hz
are damped by less than 4ˆ 10−3 dB.

After the high-pass filtering, the RDT with two reference
channels (nodes 3 and 13 as marked in Figure 10a) is applied.
The trigger level of l3 “ l13 “ 200mg was determined experi-
mentally and corresponds to the peak excitation injected by the
train set. A window length of nw “ 256 is applied to capture
the free decay of the structure within the first 640 ms after each
trigger event.

The manual excitation of the structure for 10 s resulted in
60 trigger events registered at node 3 and 40 trigger events
registered at node 13. The 40 resulting correlation functions
D1,3, . . . ,D20,3,D1,13, . . . ,D20,13 were transmitted to a base
station for the subsequent modal analysis. As shown in Figure
12 for D3,13, these correlation functions characterize the free
decay of the structure.

A second wire-bound data acquisition system was installed
in parallel consisting of 12 PCB 356A16 integrated circuit
piezoelectric (ICP) accelerometers (lower part of Figure 10c)
controlled by the LMS Test.Lab 14A (LMS). Due to the
limited number of input channels available at the SCADAS

(a) Bridge model (b) Attached WSN (c) Attached sensors (d) Cabling for LMS

Fig. 10. Testbed consisting of a truss bridge model with attached wire-bound (LMS Test.Lab 14A with 12 ICP accelerometers) and wireless (HaLoMotes with
20 MEMS accelerometers) data acquisition systems
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sensor front-end, only one half of the bridge can be completely
observed by the reference system. In principle, both sides of
the bridge could be analyzed independently, but moving the
sensors from one side to another is not practical for long term
observations as required by SHM. Instead, only two additional
ICP sensors are installed in the other half of the bridge to assess
the symmetry of the observed mode shapes. All sensors are
sampled at 512 Hz with a resolution of 0.1 mg. The LMS system
also captures the excitation provided by an impact hammer, so
an Experimental Modal Analysis (EMA) can be performed thus
providing more accurate results than the OMA-based WSN.
Compared to the wireless data acquisition system, the cabling
required for the LMS system becomes rather complex (Figure
10d) even though only 60 % of the structure is covered.

For the LMS measurement, five strokes with an impact
hammer on node 17 (see Figure 10a) were injected in vertical
direction at intervals of about 3 s to excite the vertical bending
modes of the bridge model. The EMA results are averaged over
those five individual measurements. The resulting frequency
response functions at the lower central joint (marked as node 3
in Figure 10a) is shown in Figure 13. Below 40 Hz and above
110 Hz, the structure’s characteristics can not be captured prop-
erly by the WSN-based system. However, the two dominating
modes are located outside of the fuzzy frequency bands and can
be captured with an accuracy of at least 1 % as summarized in
Table I.

In addition to the eigenfrequencies, the actual mode shapes
are of special interest for an SHM system as minor damage
will be reflected in the deformation of the mode shapes before
significant changes in the eigenfrequencies can be detected.
Figure 14a shows the asymmetric vertical bending mode cap-
tured by both monitoring systems. Remember that the wire-
bound LMS system has a limited view on the rear side of the
structure due to input channel restrictions. However, the two
nodes on the rear side are sufficient to detect the asymmetric
character of the mode, i.e., the rear side is bending up while
the front side is bending down. But only the WSN system
provides a detailed view on both sides of the structure, which
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Fig. 13. Frequency Response Function at node 3 captured with LMS Test.Lab
14A and the Wireless Sensor Network

Eigenmode by LMS by WSN relative deviation

Symmetric vertical bending 47.0 Hz 46.9 Hz 0.2 %
Asymmetric vertical bending 75.7 Hz 75.0 Hz 0.9 %

TABLE I
DETECTED DOMINANT EIGENFREQUENCIES

(a) Asymmetric vertical bending mode at about 75 Hz

(b) Symmetric vertical bending mode at about 45 Hz

Fig. 14. Mode shapes captured with LMS Test.Lab 14A (red) and Wireless
Sensor Network (blue)

is essential for the subsequent SHM analysis. This also holds
true for the symmetric vertical bending mode shown in Figure
14b. Although the reduced accuracy of the WSN system is
clearly visible in the mode shapes, the principal behavior of the
structure can still be observed without the need for extensive
cabling and well-known controlled excitation.



B. Resource Requirements

Finally, the runtime and energy required by the hardware
accelerator of the HaLoMote architecture for the RDT compu-
tation is compared against software processors typically used
in mobile and WSN applications. Namely, the TI CC2530 and
the Atmel ATmega256RFR2 were chosen as representative 8 bit
MCUs as these RF-SoCs have also been integrated into the
HaLoMote. Furthermore, the TI CC430 RF-SoC was chosen
as representative 16 bit MCU, as the MSP430 architecture
is widely used in many WSN motes. Most recent software
processors for mobile applications are based on the ARM
Cortex-M architecture, so the STM32F407 and the TI CC2650
were chosen as particularly powerful and energy-efficient state-
of-the-art references.

For a fair comparison, all systems were configured with
the same RDT settings as described in Section VI-A, i.e.,
400 Hz sampling frequency, four sensor channels, two reference
channels, 64-tap FIR filter and 256 samples per correlation
function. As the actual work-load heavily depends on the
amount of detected trigger events, all systems were fed with
the same pre-recorded sensor samples stored in the processors
code memories and the trigger levels were chosen such that the
actual number of triggered events is 60 and 40, respectively,
as observed in Section VI-A. The firmware for all systems
was build with most recent compilers configured to optimize
for execution speed. The average runtime per sampling cycle
measured with peripheral timers was combined with data-sheet
information about the power consumption and the wakeup time
from sleep mode as shown in Table II. The deepest sleep mode
with memory retention and enabled realtime-clock was chosen
for each system respectively. To derive the overall energy spent
per sampling cycle (Eoverall), a power-consumption of Pactive
was assumed during wakeup, as the capacitors of the internal
switching regulators have to be charged during the ramp-up. To
better illustrate the consumed energy per sample by the different

processor architectures, the corresponding system live time
(talive) achievable when supplied by a 1 W h energy buffer (e.g.,
a typical NiMH cell) was derived. Note that this estimation
takes only the processor into account, disregarding the sensors
and the radio transceiver (which are assumed to be identical
across the platforms examined).

As shown in Table II, the 8 bit MCUs do not achieve the
required sampling period of 2500 µs. The CC430 requires about
50 % of the sampling period for the RDT computations thus
consuming 15.4 µJ per sampling cycle. The powerful Cortex-
M4 device is nearly 30 times faster than the CC430, but
its comparatively large power draw in idle mode still results
in 11.4 µJ consumed per sampling cycle. The TI CC2650
proves to be the most energy-efficient software-processor under
consideration as it requires only 1.6 µJ per sampling cycle.
However, the HaLoMote FPGA requires only 28 % of the
energy of the most efficient software processor. Note that the
HaLoMote MCU causes an additional overhead mainly caused
by its wakeup (228 nJ) and idle (6 nJ) time. The combination of
the hardware accelerator and the Atmel MCU, as used by the
latest HaLoMote implementation, thus consumes only 44 % of
the energy of the most efficient software processor.

The energy efficiency of the HaLoMote easily exceeds that
of the other platforms while actively performing computations,
but it suffers when the node has to remain powered, but stays
idle. In that case, its idle power consumption is 53 µW, which
is nearly thirty times the power drawn by the CC2650 MCU
in idle mode. As sensor motes spend most of their lifetime
in idle mode, special care must be taken on the HaLoMote to
address this issue. In the SHM application, this can be achieved
by having a supervisory power manager suspend the sensor
sampling when no traffic is present on the structure. For the
specific use-case of railway bridges, these times may be more
than 95 % of the overall operating time. For these quiet periods,
the non-volatile FRAM (see Section III) can be employed

Processing Unit TI CC2530 ATmega256RFR2 TI CC430 STM32F407 TI CC2650 AGL1000

Architecture 8 bit 8051 8 bit AVR 16 bit MSP430 32 bit ARM Cortex-M4 32 bit ARM Cortex-M3 IGLOO FPGA
Compiler SDCC 3.4 AVR GCC 4.3.1 CL430 4.4.3 ARM GCC 4.9.3 ARM GCC 4.9.3 SynplifyPro 2014.03
Main Clock [MHz] 32 16 20 128 48 8
VCC [V] 2.0 1.8 2.4 1.8 1.8 1.2
Iactive [mA] 6.5 3.7 4.6 40 2.9 25
Pactive [mW] 13 6.7 11 72 5.2 30
sleep mode LPM2 POWER-SAVE LPM3 STOP STANDBY Flash-Freeze
Iidle [µA] 1 1.5 5.3 280 1 44
Pidle [µW] 2 2.7 12.7 156 1.8 53
tactive [cycles/sample] 257,795 43,387 24,985 5,463 7,150 68
tactive [µs/sample] 8,056 2,712 1,249 43 149 9
twakeup [µs/sample] 100 34 150 110 151 1
tidle [µs/sample] - - 1,101 2,347 2,200 2,490
Eactive [nJ/sample] 104,728 18,170 13,739 3,096 775 270
Ewakeup [nJ/sample] 1,300 228 1,650 7,920 785 30
Eidle [nJ/sample] - - 14 366 4 132
Eoverall [nJ/sample] - - 15,403 11,382 1,564 432
talive [d] - - 7 9 67 241

TABLE II
RESOURCES REQUIRED FOR EXECUTING RDT ON VARIOUS PROCESSING UNITS



to store the internal state of the hardware kernels, which
has to be preserved once the supervisory manager completely
powers down the hardware accelerator. Note that the FPGA
configuration data is not affected by such a shutdown, as it is
held on-chip in non-volatile Flash memory.

For the concrete SHM configuration discussed in this section,
about 48 kbit of runtime state has to be preserved across
shutdowns (i.e., 41 kbit for the correlation functions, 3 kbit for
the FIR taps, 3 kbit for the delay FIFO, and 1 kbit for the
trigger events). Writing this state requires about 2 ms when
using only one FRAM module. A state transfer between FRAM
and FPGA requires a total of 188 µJ for both directions (state
save and restore). This energy would be consumed by the
FPGA in idle mode in about 3.5 s. Thus, state preservation and
FPGA power-gating pays off for an idle duration of at least
4 s for the SHM application. Beyond the railway bridge use-
case, such short idle-times occur even in many less frequently
traveled automotive bridges. Thus, the capability of quickly and
power-efficiently preserving the system state, while completely
shutting down the accelerator, is attractive for a variety of
applications.

VII. CONCLUSION

With the growing complexity of WSN applications, the
use of heterogeneous computing architectures was shown to
be profitable even for space- and power-constrained sensor
nodes. The evolution of the HaLoMote was driven by practical
experiences and resulted in a significantly more compact and
efficient WSN mote. When used as a data acquisition system for
distributed SHM applications, its accuracy can compete with a
wire-bound laboratory system at least in the limited frequency
range relevant for that applications while significantly reducing
the deployment efforts. Finally, due to its hardware-accelerated
signal processing chain, the energy-efficiency of the HaLoMote
outperforms even most recent ARM-based processors designed
for WSN applications by a factor of 2.3 thus improving the
system lifetime when powered by a limited energy supply.
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