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Abstract—The simulation of biomedical models often requires
the numerical integration of ordinary differential equation sys-
tems, a computationally intensive task that can be accelerated
well by deeply-pipelined FPGA-based accelerators. Since the
main design target is throughput, larger FPGA devices can easily
be exploited by scaling-up the number of parallel datapath in-
stances on a chip. To this end, reducing the area of each datapath
becomes a key optimisation. High-level synthesis can be employed
to generate custom simulation accelerators from standardised cell
descriptions in CellML. In this work, we improve this process
by inserting LLVM into the flow to pre-optimise the simulation
models generated from CellML for hardware synthesis. This is
achieved not only by the selective application of general-purpose
optimisation passes, but also by adding new domain-specific
optimisations, including unsafe floating-point transformations, to
the optimisation flow. We investigate their effect on the quality-
of-results and show that a novel strategy using our optimisations
outperforms standard strategies, such as LLVM’s -Oz (aggressive
size reduction), when applied for hardware synthesis in 99 out of
146 example models. Our approach, which reduces area by up
to 25%, leads to the smallest implementations for four models
examined in detail, and allows a particularly complex cell model
to fit on the target FPGA device for the first time.

I. INTRODUCTION

Computer-based simulations of models expressed as ordi-
nary differential equation systems help researchers understand
the function of the human physiology and other biomedical
problems. CellML [1] emerged as an open standard to formu-
late and exchange such models, and laid the foundation for an
ecosystem of modeling and simulation tools. Simulations often
use numerical integration to solve the underlying equation
systems. This is a computationally intensive task, as it requires
the evaluation of the equations at huge numbers of grid points
and time steps to satisfy increasing demands for simulation
accuracy.

Yu et al. [2] recently presented ODoST, a high-level synthe-
sis tool to automatically generate FPGA-based hardware accel-
erators for rapid simulation of CellML models. As the problem
at hand is highly data parallel, the accelerator pipelines can
be assumed to be fully saturated for most of the execution
time of the accelerator, making the latency negligible and
elevating the throughput to the primary optimisation goal. The
throughput, in turn, can be increased by mapping multiple
parallel instances of the accelerator onto the target FPGA [3].

In this paper, we extend the original ODoST compila-
tion flow by additional pre-optimisations realised in LLVM

[4]. This pre-processing includes the application of general-
purpose optimisations, including unsafe floating-point trans-
formations, as well as of newly developed domain-specific
passes. Using a custom recipe (pass sequence) of the existing
and new optimisations, we outperform LLVM’s aggressive size
reduction preset recipe -Oz in up to 99 out of 146 example
models, while maintaining user-selected accuracy bounds. Our
extended flow delivers the smallest designs in the synthesis
results for four sample accelerators generated by ODoST, and
with the use of the domain-specific transformations, allows the
most complex of these models to fit on the FPGA device for
the first time.

II. BACKGROUND

A CellML model is a description of a set of interconnected
components. It is translated into an executable simulation
model by a tool such as the CellML code generation service
(CCGS) [5], [6]. The CCGS treats the mathematics embedded
in the model description as an initial-value problem and
determines a sequential evaluation order for the equation
system, ultimately emited as C code into a function as shown
in Figure 1. From a compiler’s perspective, the inputs to the
computation are the VOI, CONSTANTS and STATES arrays,
and the RATES and ALGEBRAIC arrays are outputs. [6]
explains the meaning of the different computation targets in a
model simulation context. The arrays do not alias or overlap;
their sizes are constant and externally known. Elements in the
ALGEBRAIC array are always written before they are read in
other equations.

In software, the computation is performed on double-
precision floating-point numbers, using several mathematical
library functions in addition to the standard C operators.

Despite the name, the elements from the CONSTANTS input
are treated more like parameters than compile-time constants,
as it is desirable to change the values without the need to
resynthesise the hardware accelerator each time.

The CellML standard does not specify any accuracy bounds,
and CCGS does not take precautions (e.g., such as the ones
in [7], [8]) concerning the numerical stability of the formulas.
This freedom allows the existing ODoST tools to exploit area-
saving single-precision computation, and motivates our own
work on exploiting unsafe floating-point transformations for
further area reductions.



void computeRates(
double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC
) {
ALGEBRAIC[1] = -0.1 * (STATES[0] + 50.0) / (exp(-(STATES[0] + 50.0) / 10.0) - 1.0);
ALGEBRAIC[5] = 4.0 * exp(- (STATES[0] + 75.0) / 18.0);
RATES[1] = ALGEBRAIC[1] * (1.0 - STATES[1]) - ALGEBRAIC[5] * STATES[1];
ALGEBRAIC[2] = 0.07 * exp(- (STATES[0] + 75.0) / 20.0);
ALGEBRAIC[6] = 1.0 / (exp(- (STATES[0] + 45.0) / 10.0) + 1.0);
RATES[2] = ALGEBRAIC[2] * (1.0 - STATES[2]) - ALGEBRAIC[6] * STATES[2];
ALGEBRAIC[3] = -0.01 * (STATES[0] + 65.0) / (exp(-(STATES[0] + 65.0) / 10.0) - 1.0);
ALGEBRAIC[7] = 0.125 * exp((STATES[0] + 75.0) / 80.0);
RATES[3] = ALGEBRAIC[3] * (1.0 - STATES[3]) - ALGEBRAIC[7] * STATES[3];
ALGEBRAIC[4] = CONSTANTS[2] * pow(STATES[1], 3.0) * STATES[2]

* (STATES[0] - CONSTANTS[5]);
ALGEBRAIC[8] = CONSTANTS[3] * pow(STATES[3], 4.0) * (STATES[0] - CONSTANTS[6]);
ALGEBRAIC[9] = CONSTANTS[4] * (STATES[0] - CONSTANTS[7]);
ALGEBRAIC[0] = (VOI >= 10.0 && VOI <= 10.5 ? 20.0 : 0.0);
RATES[0] = - (- ALGEBRAIC[0] + ALGEBRAIC[4] + ALGEBRAIC[8] + ALGEBRAIC[9])

/ CONSTANTS[1];
}

Fig. 1. Equations for [9], as generated by CCGS, reformatted for readability.

ODoST [2] creates Hardware Accelerator Modules (HAM)
for the numerical integration step during model simulation. It
uses IEEE-754 single-precision floating-point [10] operators
generated by FloPoCo [11], and currently supports the basic
arithmetic operators as well as the power, exponential, natural
logarithm, floor, absolute value and negation functions. Lim-
ited support exists for comparisons, logical operations and the
conditional assignment operator.

The HAMs employ a fully spatial computation model, i.e.,
every operation in the equation system is implemented by
a dedicated hardware module on the FPGA. A reduction of
the number of operations thus directly leads to a reduction
of hardware area. Such transformations fall into the class
of architecture-independent compiler optimisations [12], [13],
many of which attempt to reduce the number of operations
in a given program, e.g., by the elimination of redundant
computations, or replace expensive operations by cheaper ones
(according to a problem-specific cost model).

In a survey on code size reduction techniques conducted
by Beszédes et al. [14], most works propose compression
schemes for the binary encoding of a compiled program.
Only [15], [16] perform compiler transformations to extract
reusable instruction sequences into procedures. The hardware
equivalent of this concept would be the multiplexing of inputs
for individual operators or parts of the datapath, which is
infeasible in our setup, as we assume that all operators are
in use for almost the entire runtime due to the pipelined
architecture.

Among the high-level synthesis systems with a more general
scope, Huang et al. [17] performed an extensive automated
search in the space of LLVM optimisation sequences for
LegUp to assess their effects on various metrics, including cir-
cuit area. However, their benchmarks did not contain floating-
point operations, and they state that the different optimisation
flows in the study had no significant effect on the number of
required logic elements. Buyukkurt et al. [18] improved the
resource requirements of ROCCC-generated accelerators by
using common transformations, accompanied by a tree-height
reduction and the replacement of multiplications and division
by sequences of shifts and additions.

Kastner et al. [19] published a book on arithmetic opti-

misation for a later hardware realisation, with a focus on
the efficient implementation of integer/fixed-point polynomials
and linear systems. The book gives an introduction to the
multiple constant multiplication problem, which is prevalent
in digital finite impulse response (FIR) filter design: Given a
value that has to be multiplied by a set of integer factors,
one wants to eliminate the multiplications in favour of a
minimal sequence of bit-shifts and additions. This concept
is not directly applicable to floating-point multiplications;
however, we introduce a transformation with a much simpler
variant of this idea in our proposed optimisation strategy.

Trade-offs between hardware area and accuracy have also
been examined in SOAP [20]. Our technique is simpler in that
it applies a fixed sequence of transformations, while SOAP
performs a more thorough iterative design-space exploration
to determine Pareto-optimal solutions. On the other hand,
SOAP supports just the four basic arithmetic operations and
lacks the power and exponentiation operators crucial for the
optimisation of CellML models.

Garny et al. [5] acknowledge the applicability of compiler
optimisations to code generated form CellML models, and
refer to the work of Cooper et al. [21] who performed
partial evalation [22] on a model representation in a functional
language, and converted the resulting program back to a
CellML description. Additionally, during code generation, they
identified a subexpression occuring frequently and with inputs
known to be in a small interval and replaced the evaluation
by a lookup table-backed approximation.

III. OPTIMISING FOR LOWER RESOURCE REQUIREMENTS

In this work, we aim to optimise for lower FPGA resource
requirements by elimination and simplification of operations
in a CellML model’s equation system, prior to performing the
actual high-level synthesis.

To this end, we first need to define a cost-model to guide
our optimisations, analyse the gains achievable by selective
applications of existing optimisation passes, and then define
domain-specific transformations.

A. Cost model

The HAMs constructed by ODoST currently target an Altera
Stratix IV EP4SGX530 device. We define uALM(op) as the
demand of adaptive logic modules (ALM) and uDSP(op) as
the demand of 18-bit DSP blocks (DSP), of individually
synthesised operators relative to the target device’s total re-
sources (values are shown here in %). Table I shows the
actual quantities from [2]. The usage of these resource types
is orthogonal in a first approximation, leading to the notion
of the combined usage as a point in a two-dimensional space.
We define the cost of each operator in the equation system
as the Euclidean norm, e.g. the length, of the point’s position
vector:

c(op) =

∥∥∥∥(uALM(op)

uDSP(op)

)∥∥∥∥ (1)

The cost of the whole equation system is defined as the sum
of the cost of each operator as defined in Eq. (1) and serves



TABLE I
RESOURCE USAGE FOR THE USED FLOPOCO-GENERATED [11],

SINGLE-PRECISION OPERATORS ON THE STRATIX IV DEVICE.

Operator ALM uALM [%] DSP uDSP [%]

FPAdd 395 0.19 - -
FPMult 132 0.06 4 0.39
FPDiv 1116 0.52 - -
FPExp 507 0.23 2 0.20
FPLog 808 0.38 18 1.79
FPPow 2058 0.97 31 3.03

Device 212480 100 1024 100

ALM = Adaptive Logic Module · DSP = 18-bit DSP block

as an estimate of the resource requirements for the resulting
HAM.

The presented cost model is tailored to the characteristics
of the particular Altera FPGA used in this work, but could be
easily adapted to other FPGA architectures. For ASIC designs,
an estimate of the silicon area could be employed as an even
simpler cost function.

The optimisations utilised in this work either eliminate
an operation altogether, which is clearly always beneficial
in the cost model, or replace an operation with another
kind. However, no ordering relation of the different operator
types exists that holds for both the ALM and DSP usage,
so there are transformations of the latter kind that lower
the relative ALM usage, but require a larger share of the
DSP blocks, and vice versa. Defining the cost based on the
vector norm allows transformations where the improvement
in one dimension dominates the degradation in the other
dimension. For example, replacing a multiplication having
cost c(∗) =

∥∥(0.06
0.39

)∥∥ ≈ 0.39 by an addition with c(+) =∥∥(0.19
0

)∥∥ ≈ 0.19 results in a cost reduction, therefore making
this a viable optimisation. Analogously, replacing a division
with c(/) ≈ 0.52 by a multiplication, another typical strength
reduction transformation, is also benefical in our cost model,
as indicated by the lower cost shown in Table I.

B. Existing optimisations in LLVM

The -instcombine pass facilitates local algebraic simplifi-
cations through pattern matching and replacement, constant
folding, as well as a simple form of dead code elimination.

These local transformations either reduce the number of
instructions, or normalise instructions into a canonical form.
These normalisations are important, because they allow the
other transformations to look for matches against fewer pat-
terns, and create more constant folding opportunities.

Figure 2 shows examples for patterns that are applicable to
the CellML equation systems. Eq. (2) moves constants to the
right-hand side of commutative operations. Operations involv-
ing their respective neutral element are eliminated in Eq. (3).
Subtractions and divisions are replaced in favour of commuta-
tive and simpler additions and multiplications with the inverse
constant in Eqs (4, 5). Eq. (6) transforms a multiplication with
−1 into a negation, which is encoded as 0 − x, because the

c⊕ x⇒ x⊕ c (2)
x+ 0, x · 1⇒ x (3)

x− c1 ⇒ x+ c2 with c2 = −c1 (4)
x/c1 ⇒ x · c2 with c2 = 1/c1 (5)

x · (−1)⇒ 0− x (6)
(0− x) + c1 ⇒ c1 − x (7)
(0− x) · c1 ⇒ x · c2 with c2 = −c1 (8)

x2 ⇒ x · x (9)
c1 ⊕ c2 ⇒ c3 with c3 = c1 ⊕ c2 (10)

(x⊕ c1)⊕ c2 ⇒ x⊕ c3 with c3 = c1 ⊕ c2 (11)
(x · c1 + c2) · c3 ⇒ x · c4 + c5 with c4 = c1 · c3 (12)

and c5 = c2 · c3
(c1 − x · c2) · c3 ⇒ c4 − x · c5 with c4 = c1 · c3 (13)

and c5 = c2 · c3

Fig. 2. Sample transformations performed by -instcombine. x denotes an
unknown value, the ci are constants, ⊕ is either an addition or a multiplication,
± is either an addition or subtraction.

LLVM-IR does not contain a dedicated negation instruction.
Eqs. (7, 8) are used to eliminate the extra subtraction where
possible. The square operation is transformed from a call to
the generic power function to a single multiplication in Eq.
(9). Eqs. (10-13) show the application of constant folding. It
is even performed on distributive expressions if the number of
operations can be reduced thereby.

The transformations of Eqs. (11-13) are enabled only if
unsafe floating-point transformations are allowed; Eq. (5) is
safe when the constant’s reciprocal is exact.

According to the previous section, the replacement of op-
erations using Eqs. (5, 6) is beneficial in our cost model.
All other transformations actually eliminate operations, and
therefore lower the overall resource estimation as well.

Along these transformations, a simple store-to-load forward-
ing is performed. This retrieves the value at a known array
index of ALGEBRAIC directly from the defining expression,
circumventing the effect that the underlying pairs of array
stores and loads would break the def-use chain in the inter-
mediate representation.

In addition to -instcombine, we use the following passes:
-gvn is an implementation of the global value numbering

algorithm [13] and identifies reusable subexpressions in the
whole equation system. This includes store-to-load forwarding
at global scope.

-simplifycfg exposes computations that are used on both
sides of a conditional operator, and extracts them to be shared.

-dce globally cleans up any computations that became dead
during one of the other transformations

We augment the IR representing the equation system with
additional facts, exploiting domain knowledge: The array
parameters are marked as non-overlapping, allowing the alias



analysis framework to conclude that all accesses to these
arrays with different indices are independent, and all function
calls are mapped to LLVM intrinsics, characterising them
as side-effect free. This more precise information allows
the value numbering and store-to-load forwarding passes to
build a single connected directed acyclic graph (DAG) of the
computations in the equation system, which leads to more
transformation opportunities for both the existing and custom
optimisations.

C. Computing higher-order powers

A generic power operator uses significantly more resources
than a multiplication. However, if the exponent is a constant
integer, we can replace the large generic power operator by a
sequence of multiplications.

We use Knuth’s binary exponentation method [23] (Figure
3) to construct the required multiplication instructions. Z is
used to successively compute X(2k) for 1 ≤ k ≤ blog2(P )c.
For every ’1’ bit in the binary representation of P (beginning
with the least significant bit), Y is multiplied with the power
of X corresponding to the bit’s significance. The algorithm
uses blog2(P )c+ν(P )−1 multiplications, where ν(P ) is the
number of ones in the binary representation of the exponent.
The term −1 corrects the error due to one multiplication
by 1.0 being always constructed, which can immediately be
removed. Should different powers of the same value occur in
the equation system, already-computed intermediate powers
will be reused to calculate larger powers.

Our cost model allows to use up to eight multiplications,
which is sufficient to compute powers as large as 46. This
range covers all relevant cases in CellML models.

The binary exponentation method does not always yield the
sequence with the minimal number of multiplications. The
algorithm is a specialisation of the optimal addition chain
exponentiation method, which constructs the multiplications
according to a shortest addition chain for the exponent [23].
Finding such an optimal addition chain is a NP-complete
problem [24]. Considering the relatively narrow range of
exponents that typically occur in CellML models, it would
be feasible to optimally pre-compute optimal realisations for
all exponents. However, for the CellML models we examined,
Knuth’s method already computed the smallest solutions.

D. Additional normalisations

In order to create more candidates for the transformations
presented in the next sections, we propose to expand the set
of optimised distributive expressions involving two constants
according to the Eqs. (14, 15) shown in Figure 4.a, comple-
menting LLVM’s existing normalisations.

E. A closer look at the exponential function

Exponential relations are common in the biological pro-
cesses modelled by CellML descriptions. A pattern that occurs
frequently in these models is ex+c1 · c2. If both c1, c2 6= 0,
according to the power laws, we can either propagate and fold
c2 into the exponent or fold c1 into the multiplication with c2.

Input: X : Value, P : int
1: N ← P , Y ← “1.0”, Z ← X
2: loop
3: remember whether N is odd
4: N ← bN/2c
5: if N was odd then
6: Y ← new “mul Z, Y”
7: end if
8: if N = 0 then
9: return Y

10: end if
11: Z ← new “mul Z, Z”
12: end loop

Fig. 3. Knuth’s binary exponentation method [23] for lowering XP to
multiplication instructions.

a) Additional normalisations

(x+ c1) · c2 ⇒ x · c2 + c3 with c3 = c1 · c2 (14)
(c1 − x) · c2 ⇒ x · c3 + c4 with c3 = −c2 (15)

and c4 = c1 · c2

b) Exponential function optimisations

ex+c1 · c2 ⇒ ex · c3 with c3 = ec1 · c2 (16)

ex · c1 ⇒ ex+c2 with c2 = ln(c1) (17)
when c1 > 0, nuses(e

x) = 1

c) Assembling of multiplications with constant factors

x · cr ⇒ x · cs + x · cs when cr = 2 · cs (18)
x · ct ⇒ x · cu + x when ct = cu + 1 (19)

and ct, cu > 0

x · cv ⇒ x · cw − x when cv = cw − 1 (20)
and cv, cw < 0

Fig. 4. Domain-specific optimisations.

In both cases, no new operation is required, therefore we can
either save an addition or a multiplication.

If either constant is 0, the immediate constant folding
opportunities are not present, leading to the introduction of
a new operation. We trade a multiplication for an addition
when c1 = 0, or vice versa in case c2 = 0. However, the latter
case can be viable, too: If the exponential function operator
can be reused from elsewhere and thus be eliminated from this
instance, the cost reduction is c(∗)− c(exp)− c(+) ≈ −0.1.

To this end, we propose the strategy depicted in Figure 4.b
using Eqs. (16, 17). LLVM keeps track of the number of uses
nuses for any value in the intermediate representation, so no
additional analysis is required to obtain this information.

F. Assembling constant-factor multiplications

After the presented optimisations and normalisations, we
observe that the equation systems contain sets of multiplica-



Input: Mx : map(Constant → Instruction)
1: Factors ← [c1, . . . , cn|∀ci, cj : |ci| ≤ |cj |, ci ∈ keys(Mx)]
2:
3: for all c ∈ Factors do
4: if c · 2 ∈ Mx then
5: ensureAvailability(Mx, c, c · 2)
6: Mx[c · 2]← new “add Mx[c], Mx[c]”
7: end if
8: if c+ 1 ∈ Mx ∧ c > 0 then
9: ensureAvailability(Mx, c, c+ 1)

10: Mx[c+ 1]← new “add Mx[c], Mx[1]”
11: else if c− 1 ∈ Mx ∧ c < 0 then
12: ensureAvailability(Mx, c, c− 1)
13: Mx[c− 1]← new “sub Mx[c], Mx[1]”
14: end if
15: end for

Fig. 5. Algorithm to assemble constant-factor multiplication instructions.

tions x · ci of a value x with pairwise distinct constants ci.

Among these factors, there exist linear dependences that
can be exploited to lower a multiplication into an addition.
For example x · 0.2 can be replaced by x · 0.1+ x · 0.1, given
that x · 0.1 is available somewhere in the equation system.
Analogously, x · 3.0 can be expressed as an addition by using
x · 2.0 + x, assuming that x · 2.0 is already available. Eqs.
(18-20) in Figure 4.c formalise this approach.

The optimisation is implemented through the algorithm in
Figure 5. It operates on a map Mx for every value x that
is part of a multiplication with a constant factor. Mx maps
the constant factors to the multiplication operation that uses
them, e.g. ci → x · ci. To find pairs of factors that are
eligible for the proposed transformation, we traverse a list of
all occurring factors in ascending order of the absolute values.
This particular order is important, because, as an example, 0.1
is thereby visited before 0.2, and −2 is visited before −4,
allowing us to handle even chains of factors (e.g. 0.1, 0.2, 0.4)
correctly.

For each factor, the applicability of Eqs. (18-20) is checked.
If Mx[c] does not dominate the multiplication we want to
replace, a copy of Mx[c] has to be inserted before the replace-
ment candidate by the helper function ensureAvailability; the
original Mx[c] will be eliminated by common subexpression
elimination later. Afterwards, the respective new instruction is
created and Mx updated accordingly.

For brevity, we do not show the code to ensure that every
multiplication is only replaced once, as Eqs. (18) and (19/20)
can both match. We assume that the factor 1 is present in Mx

and initially marked as non-replaceable, due to the fact that
we cannot represent x as an expression of itself.

This transformation could be extended to transform arbi-
trary integer factors into a series of additions (similar to the
approach we used to optimise power computations). However,
given the cost model of Table I, a multiplication could be
replaced by at most two additions, limiting the generality of
the optimisation.

Name Steps

0 clang IR→ C
z clang opt -Oz IR→ C
zU clang -ffast-math opt -Oz IR→ C
EqC clang -ffast-math cellml-opt

zEqC clang -ffast-math opt -Oz cellml-opt

O
D

oS
T

Fig. 6. Compilation flows.

IV. EVALUATION

We implemented the optimisation strategy from the previous
section in an LLVM-based source-to-source optimiser called
cellml-opt. While LLVM generally does not generate C code
for arbitrary programs, we can easily do so for the limited
forms of IR in the CCGS-created simulation models, once
again exploiting domain knowledge.

We evaluate the LLVM-extended ODoST hardware synthe-
sis in five flows (shown in Figure 6). These range from a
baseline flow 0 that just uses the LLVM front-end clang and
performs no optimisations of its own, to a flow z that uses
LLVMs generic optimiser opt for aggressive size reduction.
The flow EqC adds the new domain specific-optimisations of
our cellml-opt pass, which are combined with the generic opt
in zEqC. All of the cellml-opt flows employ unsafe floating-
point transformations. We currently use a simple driver that
iterates the existing and new optimisations in a fixed order. For
reference, we also show the impact of these transformations
with just the generic optimiser in the flow zU.

We use tools from and link cellml-opt against the LLVM
compiler framework, version 3.5.1. The low-level synthesis of
the accelerator modules generated by ODoST is performed by
Altera Quartus II, version 14.0, targeting an Altera Stratix IV
EP4SGX530 FPGA device.

The CellML model repository [25] contains a vast number
of models from biology as well as other disciplines. We chose
to filter out models for which any of the following criteria are
true: a) they are too simple (have fewer than 20 equations),
b) they have low quality (a curation rating below 2 stars), c)
do not converge in the fixed input interval used for testing
(e.g., due to singularities in the interval), d) contain arithmetic
operators of functions not yet supported by the current cellml-
opt implementation (e.g., integer modulo, arccos).

Testing and evaluation is performed by a simple software
driver calling the CCGS-generated code (changed to single-
precision arithmetic) and performing 1000 integration steps
of 10−6 each, starting with an initial value of the integration
variable of 1.0. We use the results obtained in this manner to
evaluate the accuracy of our optimised models: The absolute
error is the difference between the final integration values
computed by these models and the unoptimised reference, the
relative error normalises this to the reference value.

Applying the selection criteria a). . . d), we thus obtain 146
CellML models for our evaluation. We will consider the results



of the evaluation first in an aggregated fashion, and then in
detail for four sample models.

A. CellML repository optimisation results

For one particular model, Cooper et al. [21] state that an
error below 0.01 % is smaller than the precision obtainable in
“wet biology” lab experiments. However it is difficult to define
a generic threshold, as the acceptable inaccuracy will depend
on the context of the specific simulation goals. We will thus
examine the performance of our optimised accelerators across
a number of error thresholds.

Figure 7.a shows the sum of the estimated area cost across
all 146 models when compiled with the different flows,
normalised to the summed costs of using the unoptimised flow
0 for the models. At a loose error threshold of 2.0%, our
EqC optimisations can lead to area savings of up to 29.2%
across the entire model suite. With increasingly tighter error
thresholds, however, fewer models can be compiled with the
more aggressive area-reducing but floating-point unsafe trans-
formations. Instead, their larger implementations generated by
omitting the unsafe transformations have to be used. Applied
in isolation, the safe general-purpose optimisations (flow z)
lead to a 14.6% reduction of area over the original ODoST
synthesis flow.

Figure 7.b gives a different perspective of the data and
shows for how many of the 146 models each flow resulted in
the least estimated area cost at the given error threshold. For
loose error bounds, our unsafe domain-specific flow EqC gives
the best results for most models. For tighter bounds, more and
more models must refrain from using unsafe optimisations to
maintain accuracy and have to use the general-purpose z flow.
Only very few models profit from combining the generic and
domain-specific optimisation (flow zEqC).

B. Detailed analysis and hardware synthesis

We pick four models of increasing complexity (the same
as were used in [2]) for a detailed analysis of our approach
(Table II), including a look at the actual Quartus-fitted FPGA
implementations of the HAMs generated by ODoST. As the
EqC and zEqC flows produce identical results, we omit the
latter from the discussion.

The data shows that the custom transformations are suc-
cessful in reducing the number of multiplications, exponential
functions, and power operators. The “Other” row covers the
logarithm, floor, absolute value, comparison and negation
operators, for which no special transformations are currently
implemented. The domain-specific transformations are applied
after the replacement of all divisions by a constant with
multiplications by the constant’s reciprocal, similar to that
performed by the generic zU flow. In combination, the domain-
specific optimisations thus lead to the smallest accelerator
sizes (allowing maximum parallelism using multiple instances
per chip). Despite the unsafe floating-point transformations,
only one model (Hilgemann & Noble [26]) has an error thresh-
old significantly exceeding the precision of “wet biology”
experiments (0.32% vs 0.01%). Using the less aggressive (but

still floating-point unsafe!) transformations of the zU flow,
even its accuracy can be sufficiently increased to lie below
the experimental threshold, and still save around 12% of DSP
blocks over the unoptimised version. Note that these HAMs
perform the integration step in addition to the evaluation of
the equation system, which requires a small number of extra
additions and multiplications.

Across all of these models, the area savings of the actual
FPGA implementations can reach up to 25% for large models
such as ten Tusscher et al. [27], allowing an accelerator for this
model to fit the target device for the very first time. The clock
frequency, and thus the throughput of the saturated accelerator
pipelines, is almost unaffected in the optimised versions, and
never falls below the 100 MHz typically used as the reference
clock for the FPGA board.

V. CONCLUSION AND FUTURE WORK

We presented prefixing an existing domain-specific high-
level synthesis flow with an LLVM-based optimisation
pipeline, with the aim to reduce the hardware area require-
ments of CellML-based simulation accelerators.

In addition to selectively applying general-purpose tech-
niques, we also introduced domain-specific transformations
tailored for hardware synthesis. We also investigated the
applicability of unsafe floating-point transformations for the
cell simulation domain. We discovered that they can lead to
area reductions of up to 25%, if computation inaccuracies of
0.01% . . . 2% are acceptable.

The cellml-opt tool was initially intended as a front- and
middle-end to ODoST, but we expect that its implementation
as a source-to-source optimiser will allow it to be used in
conjunction with other tools from the CellML ecosystem as
well. We also plan to investigate whether it is possible to make
the use of unsafe transformations context-aware, such that their
application can be restricted to areas where they cause only
limited accuracy loss.

cellml-opt is available as open-source from the Downloads
section of http://www.esa.cs.tu-darmstadt.de.
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