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III. HAM AND ODOST
A. Biomedical Model Overview

Biomedical models are often represented by a set of ODEs describing time varying variables and parameters. In
our research, we use selected biomedical models from the CellML model repository1 which contains 300+ models.
Each CellML model is component based and components are represented by one or more mathematical equations
or expressions. For example:

alpha_m =

�(V + 47)

e�
V +47

10 � 1

(1)

beta_m = 40⇥ e�0.056⇥(V+72) (2)

dm

dt
= alpha_m⇥ (1�m)� (beta_m⇥m) (3)

The above equations represent the component of sodium m gate current in the Beeler-Reuter model2, a model
that describes the mammalian ventricular action potential. The model contains a total of 13 components with 26
mathematical equations/expressions. Each CellML model contains a list of state variables (V and m) that are
time dependent, a list of rate constants and intermediate variables (alpha_m and beta_m) and the rates of the
states (dm

dt

) at time t. For a single time step of a model integration, the values of the intermediate variables are
computed first based on the state variables (and rate constants if they are required). The rate of change for the state
variable is then computed which is dependent on the intermediate variables. Once the value of rate is available,
a numerical integration method is used to approximate the state value at the next time step. A variety of such
numerical integration algorithms exist and, in this paper, we use a forward Euler’s method [28], which is a simple
and fast numerical method that is widely used. According to Euler’s method, the computation of the state variable m
at time t+4t is represented in Eq. (4).

m
t+4t

= m
t

+4t⇥ dm

dt
(4)

In order to achieve accurate and stable results, the above process is performed using fine time steps. For example,
to integrate 1ms of the model at one point, we divide the time interval into 1000 time steps with each time step
taking 1µs. At each time step for the “sodium_current_m_gate”, the computations in Eqs. (1 - 3) are performed
first to obtain the rates of change and then numerical integration is performed to find the new states after 1µs.
The new state variables are then passed to the next step for the next time integration and so on. During this
integration process, each point is integrated individually and independent of other points. According to the fine
integration process, the time requirement of I/O data communication is far less than the compution requirement.
This is because each cell is integrated 1000 times individually and independently before sending the data back to
the host for spatial solving. For example, in the human ventricular tissue model, the data to computation ratio is
588 bytes : 527,000 FLOPs. Therefore, pipelining and concurrency features of FPGAs can be largely exploited.

B. Hardware Accelerator Module
We have developed the Hardware Accelerator Module (HAM) architecture to accelerate biomedical models using

pipelined floating point operations. The pipelined structure allows a multiple number of independent cells to be
accessed cycle by cycle and hence to achieve one cell operation per cycle throughput. The hardware/software
co-design architecture is shown in Figure 1, and is composed of a host computer and an FPGA board connected
through a PCIe interface. The arrows indicate the data communication flows throughout the system. The software
module is used as a bridge application from the biomedical simulator such as OpenCMISS [2] and interacts with
the FPGA by sending and receiving data through the PCIe interconnects.

On the FPGA side, there is a PCIe IP core that interacts with the PCIe connector and maps to the on-chip
memory directly for the control signals, and through the DMA (Direct Memory Access) controller for data transfer.
The on-chip memory is used as an intermediate data buffer and because of the low I/O data requirement (e.g.,

1http://www.cellml.org/model
2models.physiomeproject.org/e/9a
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2models.physiomeproject.org/e/9a

ALGEBRAIC[1] = -1.0 * (STATES[0] + 47.0)
               / (exp(-0.1 * (STATES[0] + 47.0)) - 1.0);
ALGEBRAIC[8] = 40.0 * exp(-0.056 * (STATES[0] + 72.0));
RATES[1]     = ALGEBRAIC[1] * (1.0 - STATES[1])
               - ALGEBRAIC[8] * STATES[1];

C Code Generation Service
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FPGA accelerators from a model’s equation system 

• Instantiate as many pipelines as fit on the FPGA
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FPGA accelerators from a model’s equation system 
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per pipeline More throughput
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Approach
• Fully-spatial computation  

= every SW instruction becomes HW operator 

• SW compiler’s architecture independent 
optimisations 

• eliminate redundant operations, or 

• replace “expensive” ops by “cheaper” ones 

• Try unsafe floating-point transformations

4
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Cost model
• Estimation of resource demand → guide opts 

• Based on relative, per operator ALM and DSP 
usage on Stratix IV 

• Allows transformation with a Pareto improvement 

• Resulting order of operation costs  
Add < Exp < Mul < Div < Log < Pow

5

c(op) =

�����

✓
nALM(op)
212480

nDSP(op)
1024

◆�����
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Adding LLVM to the mix

• Sequential computation in C generated from 
CellML equations → idiomatic DSL-like structure 

• Use clang/LLVM as frontend 

• Optimise on LLVM-IR (existing and custom opts) 

• Reconstruct C code for ODoST input

6
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Identifying redundancies
• Array accesses, function calls hinder optimisation

7

… = -0.1*(STATES[0]+50.0) / (exp(-(STATES[0]+50.0)/10.0) - 1.0);
same value?
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Identifying redundancies
• Array accesses, function calls hinder optimisation

• But we know: 

• Input arrays do not alias or overlap 

• Function calls are mathematical operators, side 
effect-free

7

… = -0.1*(STATES[0]+50.0) / (exp(-(STATES[0]+50.0)/10.0) - 1.0);
same value?
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Identifying redundancies
• Augment the IR with this domain knowledge to help 

alias analysis 

• Mark input pointers as noalias 

• Map function calls to LLVM intrinsics 

• LLVM’s global value numbering can now identify 
expressions across the whole equation system 

• Equation system ≅ Dataflow graph

8
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Existing optimisation 
patterns in LLVM

• -instcombine pass

• Constant folding & algebraic identities

• Add < Mul < Div in software compiler as well

9
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Existing optimisation 
patterns in LLVM

• -instcombine pass

• Constant folding & algebraic identities

• Add < Mul < Div in software compiler as well

• Some transformations only if unsafe FP 
transformations are allowed 
e.g. x/c = x · 1/c only safe if reciprocal is exact

9
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Domain-specific 
optimisations
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Higher-order powers 
• Equations contain xp with an integer constant 

• 8·c(Mul) < 1·c(Pow) 

• Use Knuth’s binary  
exponentiation method 

• lower generic power operator to short sequence 
of multiplications 

• Example: x6 = ((x · x) · y) · y

Op ALM DSP c(•)

Mul 132 4 0.39

Pow 2058 31 3.18

11

:= y
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A closer look at the 
exponential function

12

ex + c · d
Common 
pattern!

constants 
underlined

Add < Exp < Mul < …
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ex · ec·d ex + c+ln(d)

- 1 add - 1 mul

- 1 add, +1 mul

- 1 mul, +1 add
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A closer look at the 
exponential function

12

ex + c · d

ex · ec·d ex + c+ln(d)

- 1 add - 1 mul

- 1 add, +1 mul

- 1 mul, +1 add

constants 
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Multiple Constant 
Multiplication

• x is multiplied with a set of constants ci 

• Can trade 1 multiplication for 1 addition if: 

• c2 = 2 · c1  →  x · c2 = (x · c1) + (x · c1) 

• c4 = c3 + 1 →  x · c4 = (x · c3) + x 

• Handle factors in ascending order of absolute values 

• Works also for chains of constants, e.g. 2, 3, 4, 6

13
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Results
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Compilation flows

15

clangNoOpt: IR → C

Reconstruct 
equations

Compile C 
to LLVM-IR



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Compilation flows

15

clangNoOpt: IR → C



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Compilation flows

15

clangNoOpt:

SWSize: clang

IR → C

IR → Copt -Oz



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Compilation flows

15

clangNoOpt:

SWSize: clang

IR → C

IR → Copt -Oz

LLVM’s aggressive size 
optimisation preset
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Enable unsafe FP 
transformations

Compilation flows
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Compilation flows
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Error measurement
• Generic driver, 1000 integration steps of 1 μs each, 

starting at t = 1.0 s 

• Compare computed values before / after 
optimisation, calculate relative error 

• Certain, model specific deviation is acceptable 

• e.g. precision of “wet biology experiments” ~ 
0.01 %

16



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

# 
O

pe
ra

tio
ns

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

# 
O

pe
ra

tio
ns

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.

Least total number 
of operations



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

# 
O

pe
ra

tio
ns

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.

Many generic power 
operators eliminated

Least total number 
of operations



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

# 
O

pe
ra

tio
ns

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.

Many generic power 
operators eliminated

Transform many div 
to mul when unsafe 

FP is allowed

Least total number 
of operations



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

# 
O

pe
ra

tio
ns

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

Synthesis fails

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

Synthesis fails

Only synthesisable with 
our custom optimisations

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

Synthesis fails

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

SWSizeU Ours
Rel. Err [%] 0.00054 0.0012
Fmax [MHz] - 111

Synthesis fails

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

Example model

17

0
50

100
150
200
250
300
350
400
450
500
550

NoOpt SWSize SWSizeU Ours

Add/Sub Mul Div
Exp Pow Other

0 %

25 %

50 %

75 %

100 %

125 %

150 %

NoOpt SWSize SWSizeU Ours

ALM (est.) ALM (syn.)
DSP (est.) DSP (syn.)

SWSizeU Ours
Rel. Err [%] 0.00054 0.0012
Fmax [MHz] - 111

Synthesis fails

# 
O

pe
ra

tio
ns

U
sa

ge

Ten Tusscher, K. H. W. J., Noble, D., 
Noble, P. J., & Panfilov, A. V. (2004). A 

model for human ventricular tissue.

Slightly larger 
error



J. Oppermann: Domain-specific Optimisation for the High-level Synthesis of CellML-based Simulation Accelerators / 22

General applicability

• 146 models from the CellML repository  
(> 20 equations, operators available as intrinsics, 
converge in input interval, 2+ curation stars) 

• 4 thresholds for maximum relative error per model 

• Use the cost model to estimate impact of 
transformations

18
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Least cost per flow

• Count models with 
least cost after 
optimisation with a 
given flow 

• If error > threshold, 
fall-back to SWSafe
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The larger the 
acceptable deviation, 

the more models 
benefit from our flow
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Summary

• Size reduction after synthesis in 4 example models 

• Our recipe: up to 25 % less ALM, 20 % less DSP 

• Never worse than unoptimised (c.f. other flows) 

• Broad applicability for domain-specific 
optimisations across 146 models
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Future work

• Cost model served us well as quantitive instrument  

• Estimation of DSP usage ok 

• More accurate estimation of ALM demand 
needed 

• A priori error analysis instead of empirical study
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Thank you!
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