ffLink: A Lightweight High-Performance Open-Source PCI
Express Gen3 Interface for Reconfigurable Accelerators

David de la Chevallerie
Embedded Systems and
Applications Group
HochschulstraBe 10
64289 Darmstadt, Germany

dc@esa.cs.tu-
darmstadt.de

ABSTRACT

We describe the architecture and implementation of ffLink,
a high-performance PCle Gen3 interface for attaching re-
configurable accelerators on Xilinx Virtex 7 FPGA devices
to Linux-based hosts. ffLink encompasses both hardware as
well as flexible operating system components that allow a
tailoring of the infrastructure to the specific data transfer
needs of the application. When configured to use multiple
DMA engines to hide transfer latencies, ffLink achieves a
throughput of up to 7 GB/s, which is 95% of the maximum
throughput of an eight-lane PCle interface, while requiring
just 11% of device area on a mid-size FPGA.

Keywords

Heterogeneous Computing, High Throughput, FPGA, VC709,

PCI Express, PCle Gen3, Intel64, AXI4, DMA, Double-
Buffering, Linux-Driver

1. INTRODUCTION

Despite promising work on next-generation accelerator in-
terconnects such as NVLink [2], PCle remains the most
widely used method of connecting accelerators to host com-
puters. Reconfigurable accelerators face the challenge, that
the interface functionality provided by hardwired IP blocks
on recent reconfigurable devices only covers the lower pro-
tocol layers, and significant engineering effort has to be ex-
pended to actually allow high-throughput data transfers be-
tween host and accelerator.

We present ffLink, the first open-source solution aiming
to fully support the PCle Gen3 IP block integrated in Xil-
inx Virtex 7 devices. Using the eight lane (x8) configura-
tion commonly used on current FPGA accelerator boards,
ffLink achieves transfer rates of up to 7 GB/s. The hard-
ware side of ffLink was carefully designed to maximally reuse
the well-supported Xilinx IP library, while software-side de-
vice drivers for Linux x86-64 provide multiple data transfer
mechanisms to match the needs of the current application.
On the FPGA, even a fully-scaled system encompassing mul-
tiple parallel DMA engines requires significantly less chip
area than optimized commercial (closed-source) PCle Gen3
interfaces.

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 1-2, 2015.

Jens Korinth
Embedded Systems and
Applications Group
HochschulstraBBe 10
64289 Darmstadt, Germany

jk@esa.cs.tu-
darmstadt.de

Andreas Koch
Embedded Systems and
Applications Group
HochschulstraBe 10
64289 Darmstadt, Germany

ak@esa.cs.tu-
darmstadt.de

2. RELATED WORK

For the prior versions of PCle a wide spectrum of im-
plementations for FPGAs exists. An early Genl design is
described in [11], while Speedy [5] is typical of early Gen2
work. A key effort to make Gen2 interfaces more practical is
RIFFA [7], which formed the base for refinements by other
researchers, e.g., an extension to allow both streaming and
random accesses [10]. A similar effort is EPEE [6], while
Kavianipour et al. [8] concentrated only on streaming ac-
cesses (as did the original RIFFA). Performance-wise, these
Gen2 systems achieve throughputs of 750 MB/s to 3.8 GB/s
for x8 bus configurations.

As the Gen3 interface block in the Xilinx Virtex 7 de-
vices is completely different than the Gen2 block used in
prior chips, no academic or open-source efforts to advance
to Gen3 have been published by the time this work is sub-
mitted. True Gen3 interfaces for FPGAs have so far solely
been the domain of commercial efforts. Northwest Logic [4]
provides a closed-source IP core for the Xilinx XC7VX690T
FPGA, used, e.g., on the Xilinx VC709 evaluation board
[14], which requires 31-44% (depending on configuration) of
the FPGA area. The IP block is documented to reach up
to 6.8 GB/s. In practice, the two reference designs provided
with the VC709 that use the block achieve transfer rates
of 5.6 and 6.0 GB/s in our host machine. The commercial
Xillybus interface [1] is considerably smaller, but tops out
at just 800 MB/s even in a Gen3 x8 configuration.

High-performance PCle interfaces always require Direct
Memory Access (DMA) mechanisms, as programmed I/O
(PIO), where the processor itself transfers each datum, is
highly inefficient and typically limits throughputs to just 11
MB/s (read from accelerator) and 38 MB/s (write to ac-
celerator). A key difference in the realization of the DMA
mechanisms lies in the use of scatter/gather (the engine is
able to collect/distribute data from/to non-contiguous phys-
ical address ranges in a single transfer) versus buffering (data
is retrieved/deposited only from/to a physically contiguous
buffer by the engine and copied to non-contiguous physical
address ranges in software). While scatter/gather capabil-
ity is highly efficient, it requires complex custom-designed
DMA engines taking up much chip area (e.g., the Northwest
Logic approach). We will show that it is possible to achieve
a similar level of performance using a good combination of
multiple small, off-the-shelf 32b DMA engines from the Xil-
inx IP library and a double-buffering scheme [15, 9, 10] to
hide transfer latencies.

b) Intel Xeon E5-1620 v2
Core 1 LLC PCle
LLC Endpoint
Memory ¢
<) System Agent Controller d)
. PCle Root Complex .
Switch Port 1 PortN |« Switch
a) Virtex-7 XC7VX690T PCle
Endpoint
> PCle Endpoint (Hard-IP)
PCle AXI Bridge (Soft-IP)
DMA- Accelerator
Engine
Memory Controller

Figure 1: Overall system architecture

3. SYSTEM ARCHITECTURE OVERVIEW

In current computer systems (Figure 1), PCle is realized
as an interconnection of multiple communication partners
(End Points) over switches (Figure 1.c and .d) to individual
Ports, which belong to a single Root Complex (Figure 1.b).

For high-throughput and low-latency, a Root Complex is
typically integrated on the CPU. It not only initiates trans-
fers from/to its associated End Points under CPU control
(PIO), but also makes the memory attached to the CPU(s)
available to End Points capable of initiating their own ac-
cesses (acting as DMA bus masters).

On the FPGA, the actual electrical-level (PHY) End Point
of a Gen 3 interface is typically implemented as a hardwired
IP block (Figure 1.a). It communicates upwards in a packet-
based protocol (Transaction Layer Packets, TLP), which is
then translated to the on-chip bus interfaces (today often
ARM AMBA AXI) by a bridge IP block implemented in
configurable logic. The FPGA memory controller(s), DMA
engine(s), and the command /status registers of the accelera-
tor(s) themselves are thus connected using their native AXI
interfaces to the AXI-TLP bridge. The detailed composition
of these components is discussed in Section 5.

On the software side, the accelerator(s) and data-transfer
infrastructure are made visible to the Linux operating sys-
tem using a device driver (see Section 6).

4. PCI EXPRESS FUNDAMENTALS

The PCle protocol is organized in three layers, with each
layer adding a wrapper to the payload (Figure 2). The
lowest physical layer (PHY) is responsible for the electrical
transfer of data and the establishment of the link between
two devices. Here, the link width and speed are negotiated,
e.g., a connection using eight lanes with 8 GT/s per lane
(Gen3 x8). Each lane is a bidirectional channel with two
differential wires per direction.

Data is transmitted in Gen3 using a 128b/130b encoding
scheme (18% more efficient than the 8b/10b scheme used in
Gen2). The wrapper overhead consists of 4 B of Start-of-

PHY TLP DLL
A N A

128b/130b

.
encoded | STP | Header | Payload | [ECRC] | LCRC |

4 Bytes 12..16 Bytes 0..4096 Bytes 0..4 Bytes 4 Bytes

Figure 2: PCle protocol layers

Packet (STP) data, a header of 12 B (16 B when using 64b
addresses), and 4. ..8 B total of checksums (optional ECRC
and mandatory LCRC), yielding a minimal overhead of 20
B per 0...4096 B of actual payload.

The Data Link Layer (DLL) ensures reliable transport
between End Point and Root Complex, while the topmost
Transaction Layer Packets transport memory and I/O ac-
cesses, as well as configuration data for the link itself (e.g.,
the maximum payload size, MPS). TLPs are distinguished
into two kinds of requests: posted and non-posted. For
posted transactions the transmitter does not expect a com-
pletion (reply), e.g., memory write, whereas a completion is
expected for non-posted requests, e.g., memory read.

S. HARDWARE ARCHITECTURE

Figure 3 shows the on-chip architecture typical of systems
using ffLink, which can be assembled in an automated fash-
ion by Tcl scripting the Xilinx IP Integrator tool.

The AXI Bridge for PCle Gen3 IP core [13] (Figure 3.b)
translates PCle transactions on the bus to corresponding
AXI4 transactions. The target clock frequency of the de-
sign is 250 MHz, thus requiring a 256b wide AXI4 bus to
cope with the theoretical maximum PCle Gen3 throughput
of 8 GB/s (eight serial lanes, 8 GT/s each). The bridge can
operate with 32...64b bus addresses. We will use 32b ad-
dresses, which provides six Base Address Registers (BAR)
to map distinct address ranges between PCle bus addresses
and on-board addresses on the accelerator card (e.g., mem-
ory banks, control/status registers etc.). PIO accesses from
the CPU will thus use the bridge’s M_AXI master port and
the Register Interconnect (Figure 3.c) to reach the corre-
sponding AXI4 slave on the card.

The bridge also offers a slave port S_AXI to allow AXI4 bus
master-capable IP blocks (such as DMA engines or the accel-
erator itself) to generate PCle transactions, e.g., to access
host memory. An additional S_.AXI_LITE interface is pro-
vided to read/write status/control data from/to the PCle
End Point IP block itself (e.g., actual link speed, interrupt
mask etc.).

The system-on-chip (DMA engines, accelerator; Figure
3.d and .e) can use Message Signaled Interrupts (MSI) for
communication with the host, selecting one of up to 32 in-
terrupt vectors to activate. Note that for PCle, interrupts
are no longer transported as levels/edges on separate wires,
but instead as special TLP packets in-band with the nor-
mal bus traffic. An on-chip Interrupt Controller (Figure 3.1)
was developed to gather the interrupts from multiple sources
(DMA engines, accelerators) and set the MSI vector in the
PCle IP core accordingly. If multiple interrupts arrive in
parallel, a source is chosen in a priority-based manner. As
soon as the PCle block has accepted the interrupt, the next
MSI can be issued. It is actually possible for MSIs to get
lost due to starvation, if the bus is completely loaded with
data traffic. The PCle block will silently discard a pending
MSI if it could not actually send the corresponding TLP

d)

<) CDMA 1 g)
Register Interconnect BRAM Controller
b) S_AXI_LITE
PCle AXI Brid M_AXI |« 0x00000000
€ ridee Interrupt f)
: S_AXI
a) S_AXI_LITE |« Memory Interconnect
2] owsoo 123 | M_AXI «—{ S _AXI | OnFFFEEE
‘S| PCleBar | 0xcpoo_1234
o = M_AXI
E Accelerator DDR-SDRAM Controller
W | 0xAB0O_1234 S_AXI
& [Bus Master | 0xcpoo_1234 Intr Ctrl ™| S_AXI_LITE 0x00000000
Interrupt < M_AXI S AXI
—{ Intr. Logic Interrupt -
i) e) OXFFFFFFFF

Figure 3: System-on-chip architecture

packet after an unspecified timeout. The on-chip Interrupt
Controller has thus been extended to re-issue the MSI if it
has not been acknowledged by the host within a set time in-
terval, thus enabling reliable (if possibly delayed) interrupt
delivery.

Following the idea of maximally re-using existing IP, to
reduce development time and profit from vendor library up-
dates, the AXI Central Direct Memory Access (CDMA [12])
block was chosen from the Xilinx catalog as DMA engine
(Figure 3.e). It reaches up to 99 % bandwidth utilization of
the AXI protocol. The CDMA block has a maximum ad-
dress width of 32b, which also determines the address width
of the PCle block. The CDMA block has access to both
on-chip (Figure 3.g) and off-chip memory (Figure 3.h). It
uses the Memory Interconnect (Figure 3.f) to transfer mem-
ory data to/from the host using the AXI bridge slave port,
which controls the bus-mastering of the PCle End Point
(Figure 3.a). After completing a data transfer, a CDMA
block raises an interrupt to signal the host.

Note that the system can flexibly scale to multiple CDMA
engines, which will be used to hide engine-setup or interrupt
latencies (see Section 8.2.2). In the current structure of one
Interconnect each for control/status register and memory
accesses, a mix of up to 16 CDMA engines and accelerators
can be implemented. For larger numbers, multiple Intercon-
nects may be instantiated, allowing a higher clock frequency
at the cost of access latency.

6. OPERATING SYSTEM INTEGRATION
6.1 Virtual and Physical Addressing

On the software side, Linux running on an x86_64 system
uses two 47b (128 TB) wvirtual address spaces (Figure 4).
One for each user process, the second one for the operating
system kernel. The latter is subdivided to, e.g., directly map
up to 64 TB of physical memory (all physical memory ex-
cluding zone_highmem), or directly map-in I/O devices from
physical to kernel virtual memory using ioremap. The ad-
dress ranges set by the BARs of a PCle device are mapped
into the physical address space at host boot time, and can
then be selectively mapped into the kernel virtual space by
the device driver. PIO can then be performed on these vir-
tual address ranges to access the device (which acts as a
slave in this case).

A different mechanism is used when the PCle device (act-
ing as bus master) wants to access data in host memory.

Physical Address Space

0000_0000_0000_0000

Virtual Address Space 16 MB zone_dma
0000_0000_0000_FFFF
0000_0000_0000_0000 g T
o ~4 GB zone_dma32
128 TB user space MMU 0000_0000_FFFF_FFFF
0000_7FFF_FFFF_FFFF 0000_0000_0001_0000
|_|__not addressable ~ 64 TB zone_normal
(0000_3FFE_FFFF_FFFF
FFFF_8800_0000_0000 0000_3FFF_0000_0000
64 TB direct 64 TB zone_highmem
mapping phys. mem 0000_7FFF_FFFF_FFFF
FFFF_C7FF_FFFF_FFFF
IOMMU/
'n_a FFFF_C900_0000_0000 { SWIOTLB
0 < 32 TB vmalloc/
9 joremap PCle Endpoint
FFFF_E8FF_FFFF_FFFF
FFFF,FFFFtslooofoooo PCle Config
~ 2 GB kernel text/
module mapping PCle Bar 0 PCle Bar 0
N FFFF_FFFF_FFSF_FFFF PCle Bar 1

Figure 4: Linux x86-64 address map

Since not all PCle devices are capable of 64b addressing
(which includes ffLink with its use of stock 32b CDMA blocks),
some care must be taken to ensure that data will actu-
ally be accessible to the device. A small number of hosts
(mainly using CPUs by AMD) provide a general solution to
this problem by employing a full-scale I/O Memory Man-
agement Unit (IOMMU) that allows arbitrary remapping of
1/0 accesses within the entire physical memory space. The
more common Intel x86_64 processors lack such an IOMMU
and instead emulate some of its functionality by Software
I/O Translation Buffers (SWIOTLB). This technique relies
on bounce buffers allocated at boot time in low physical ad-
dress ranges, guaranteed to be accessible by the device (e.g.,
within the first 16 MB for 24b devices in zone_dma, within
the first 4 GB for 32b devices in zone.dma32). When data
is staged to be accessible by the device, it is actually copied
to the bounce buffer if its physical address would be inac-
cessible to the device. For 32b devices, a typical size of the
bounce buffer is 64 MB (larger buffers are possible, but have
a higher set-up overhead).

As data will often be copied (usually, see below for a zero-

User Space Kernel Space FPGA
T 1 JTRiffer | = 3 ()
Zero | 5 | p—> Buffer
| E | _HCDMA
Copy | & «—immap——] Buffer |«
= L =
5 83— 5
BOUnFe é’) —copy‘_fronr_user-) Buffer -g_ CDVIA g
Buffering | & [<—copy_to_user—| Buffer |« & =
<
switch when done g g
a
Double | & <o som wers{Buffer | Buffer i
ol 5 I CDMA
Buffering | @

«copv,to,\f Buffer [«

‘ switch when done —

Figure 5: Driver transfer methods

copy approach) when using a bounce buffer, adding scatter/-
gather capability to a 32b DMA engine is not very efficient.
It would increase its complexity, but not help in avoiding
the copying in the general case.

Instead, data to be transferred is copied by the CPU from
user space to a contiguous address range within the bounce
buffer, which can then be accessed in a single transfer using
a simple (and small) DMA engine. The default memory allo-
cator in the Linux kernel can easily provide such contiguous
regions on request, but is limited to a maximum size of 4 MB
per allocation, which in turn limits the maximum size of a
single DMA transfer to 4 MB. However, as will be shown in
Section 8.2.1, this restriction does not impede the maximal
transfer rate, and thus makes more complicated means to
lift it (e.g., the use of huge pages) unnecessary.

6.2 Data Transfer Mechanisms

The ffLink device driver is highly flexible. It can operate
in three different transfer modes (Figure 5) and also allows
scaling the number of CDMA engines. Due to the small size
of each simple engine, even configurations of four engines
remain highly area efficient. Each engine appears as a sep-
arate mutex-protected device node in the Linux file system,
ensuring serialization if multiple processes attempt concur-
rent accesses.

Zero Copy: This approach can always avoid the extra
copying of data from user space to a bounce buffer. In-
stead, device-accessible memory is directly mmaped into user
space. Once the user program has finished operating on the
data, the actual transfer to the accelerator is initiated using
an ioctl call, which starts the DMA transfer for the given
number of bytes and also flushes/invalidates the CPU cache
for the buffer. This transfer mode has the lowest latency,
but requires multiple transfers for sizes exceeding 4 MB and
requires a separate buffer per process using the accelerator
in this manner.

Bounce Buffering: This is the conventional SWIOTLB
approach, using two separate buffers for reading/writing,
both located in device-accessible memory. The buffers are
present only in kernel space (and can thus be shared between
user processes), with actual CDMA data transfers initiated
by read/write system calls after the accelerator address has
been set using ioctl. The driver automatically copies data
between the buffers and user space, and splits larger trans-
fers into 4 MB chunks.

Double Buffering: This employs the same API as the
previous mechanism, but uses two pairs of buffers. The

Table 1: Utilization of Xilinx XC7VX690T FPGA for dif-
ferent CDMA and memory configurations at Gen3 x8

Configuration LUT FF BRAM

(%] [%] (%]
1 CDMA/ BRAM memory 3 5 9
1 CDMA/ DDR3 memory 5 9 6
4 CDMA/ BRAM memory 5 8 11
4 CDMA/ DDR3 memory 711 7
Commercial Loopback 11 31 6
Commercial Base 20 44 18

driver can thus perform the copying of data from/to user
space on one buffer in parallel with the DMAing of data
from/to the accelerator. This method should be selected
for larger transfers, where the overhead of copying data can
be hidden behind the DMA operation, thus justifying the
additional allocation of more device-accessible memory.

7. CHALLENGES

A key difficulty in designing ffLink were the significant
changes Xilinx made to the interfaces from the Gen2 to the
Gen3 interface block, which rendered much prior work in-
applicable. Without very costly measurement equipment
(e.g., external bus protocol analyzers), in-system debugging
of the core had to rely on the Xilinx Integrated Logic An-
alyzer core, which, however, does not have sufficient signal-
capturing depth to effectively diagnose intermittent failures
(such as the loss of MSI packets) that only occur during
large transfers.

Tuning the ffLink for high-performance was also non-trivial.
As an example, the default configuration of the AXI in-
terconnect allows at most two outstanding requests, which
leads to the DMA engines not being able to saturate the
PCle-AXI bridge, limiting transfer rates to less than 5 GB/s.
Only by manually configuring the AXI interconnect IP the
number of in-flight requests can be increased to four, which
alleviates the problem. It is not solved completely, as mul-
tiple DMA engines can saturate even the widened intercon-
nect.

8. EXPERIMENTAL RESULTS
8.1 FPGA Area Utilization

Table 1 shows the area utilization of different ffLink con-
figurations and of the commercial IP [4], which has simi-
lar performance for a Gen3 x8 use-case. The BRAM-based
versions omit the memory controller for access to external
memory (this is similar to the Loopback configuration of the
commercial solution), while the DDR3 versions do support
external memory instead (similar to the commercial Base
configuration). Note that ffLink is much smaller than the
commercial IP, leaving more logic on the FPGA for the ac-
tual accelerator(s).

8.2 Throughput Measurements

We evaluate ffLink throughput at different transfer sizes
using 1, 2, and 4 CDMA engines in parallel, each controlled
by a separate software thread (using the pthread library).
To obtain accurate results, each test executed transfers for

at least 5 ms, and was repeated 100 times, with the best
result used for further analysis.

All tests were run on Linux kernel 3.17 and compiled by
gce 4.8.3 with the -O3 flag. The software is executed on a
Intel Xeon E5-1620 v2 CPU, consisting of four cores, acti-
vated Hyper-Threading, and a base clock frequency of 3.7
GHz (boosted up to 3.9 GHz). The hardware was built using
Vivado 2014.4 for the Xilinx VC709 Evaluation Board. The
circuits were clocked at 250 MHz, only the DDR3-SDRAM
controller uses 200 MHz. However, since the controller sup-
ports 512b wide accesses, it will never be a bottleneck for
throughput.

Even with the theoretical throughput tpi}., of 8 GB/s
for Gen3 x8, the practically achievable throughput in this
scenario can never exceed tpprac:

MPS

tpprac = tPheo * encoding * o B S T T.ORC
128 256
—8CB/sk oy P
8GB/s* 130 * 1512 + 256 1 4

= 7.306 GB/s

However, even that will be reduced in real-world usage
due to difficult-to-model effects such as PCle flow-control,
ACK/NACK, and inter-layer latencies. In addition, soft-
ware has to perform a context switch to kernel space for
the driver system calls, which takes 100...300 ns, and an
additional 2...10 us are required for acknowledging the in-
terrupt raised by hardware. The MPS value used of 256
B is the maximum supported by the hardwired PCle End
Point and a typical upper bound of many server-class host
systems.

8.2.1 Single CDMA Engine

In the initial scenario, we select a minimal ffLink config-
uration providing just a single CDMA engine. We measure
the achievable throughput, shown in Figure 6, for differ-
ent transfer sizes, using each of the three different transfer
mechanisms discussed in Section 6.2.

The measurements differentiate between reading from de-
vice memory (which writes to host memory over the bus)
and writing to device memory (which reads from host mem-
ory over the bus). The throughput will be determined by
the operations crossing the bus. Since PCle writes are non-
posted requests (no response required), they will always be
faster than bus reads (posted requests). Thus, in our sce-
nario of the device performing the transfers as DMA bus
master, we expect reads from device memory to be faster
than writes to device memory.

For small transfer sizes, the achieved throughput is similar
for all mechanisms, as copies to the single bounce buffer are
still fast, and the setup overhead of each transfer dominates
the execution time (even for the zero-copy approach). For
increasing transfer sizes, however, the larger amounts of data
to copy lead to the bounce buffer approach falling behind
zero-copy. This growing overhead for copying actually leads
to bounce buffer performance deteriorating for sizes of 1...4
MB, leveling out after the maximum single-transfer size of
4 MB is reached.

Compared to bounce buffering, double buffering becomes
efficient for transfer sizes of 256 KB and above. At that
point, the time required for copying to the single bounce
buffer reaches the time required for performing a second

8 _ .
7 -
1
D
6 i
D
5 -
4 -
3
zero copy memory read —e—
; zero copy memory write —-&
2 -1 /' bounce buffering memory read
. - bounce buffering memory write
. i~ . double buffering memory read —&—
1 - o . double buffering memory write -&
Lo theoretical maximum
... practical maximum —— .
T 1T 1T 1T 1T 17T T 1T T T T
R YRS R R sy
- =
AARAAAN oconv==<=<XZX< 00 OoN
WowwAAAX TOomow=<X<
W W w AR A Dww===<Z<
lvsRusRus] www

Transfer Size

Figure 6: Throughput using single DMA engine

CDMA transfer. Since the behavior of zero-copy transfers
indicate a sweet-spot for the throughput at 1 MB trans-
fer sizes, double buffering is also internally configured to
transfer larger amounts of data in 1 MB chunks. However,
until the total size of a transfer exceeds 8 MB, the second
buffer is not reused sufficiently often to completely hide the
user—buffer copying time behind the actual DMA transfer
time.

The 1 MB chunk size is indeed a sweet spot for double-
buffering, as larger chunk sizes can be shown to no longer
hide the growing copying times behind the DMA transfers,
and smaller chunks require more time to set-up each transfer
relative to the actual transfer times (reducing throughput).

As foreshadowed in Section 6.1, this behavior for both
zero-copy as well as double buffering is the reason, why com-
plex measures to increase the maximum DMA transfer sizes
beyond their default Linux-imposed limit of 4 MB are not
necessary in practice.

For the single CDMA engine case, zero-copy achieves the
best throughput (up to 6.29 GB/s) for transfer sizes below 8
MB, while double buffering performs best for larger transfers
(6.72 GB/s). The conventional approach of just using a
single bounce buffer is not efficient, as it tops out 3.87 GB/s.

8.2.2 Multiple CDMA Engines

The same experiments were repeated for the three transfer
mechanisms, but now using 1, 2, or 4 CDMA engines. For
space reasons, Figure 7 graphs these results only for the
zero-copy approach, the other approaches will be discussed
below in text.

The key idea remains the use of multiple engines to hide
the latencies of reacting to interrupts, or programming an
engine for the next data transfer. For smaller transfer sizes,

8 -
7 -
6 -
5
4 -
3 A I S S S S N U SR
g 1 dma zero copy memory read —6—
1 dma zero copy memory write -
2 - 2 dma zero copy memory read
+ 2 dma zero copy memory write
. 4 dma zero copy memory read —&—
1 - . 4 dma zero copy memory write —-&
. theoretical maximum
SR practical maximum _——
1T 1T 1T 1T 1T

Transfer Size

Figure 7: Throughput using multiple DMA engines

the effort of programming an additional engine is not effi-
cient with regard to the very short actual transfer times.
But at transfer sizes above 64 KB, the use of two engines
becomes worthwhile. Finally, at 256 KB, the addition of two
more engines improves throughput to a top performance of
7.06 GB/s for zero-copy.

In a similar fashion, the addition of more engines also im-
proves the other transfer mechanisms, leading to a best-case
performance of 6.15 GB/s for the conventional bounce buffer
approach, and 7.06 GB/s for double buffering. Bounce buffer-
ing and zero-copy profit most from the additional engines,
while double buffering realizes only a modest improvement.

9. CONCLUSION AND FUTURE WORK

ffLink achieves its goals of being lightweight (at most 11%
device utilization), yet offering high data transfer perfor-
mance of up to 7.06 GB/s. It thus exceeds the throughput of
even commercial offerings. ffLink is highly configurable and
allows to trade-off chip area and Linux DMA buffer memory
with transfer throughput, as required by the application.

The entire system is composed using the Xilinx Vivado de-
sign flow and easily integrates custom logic (e.g., the actual
accelerator block(s)) into memory access and host signal-
ing mechanisms. By relying on standard functions from the
Xilinx IP catalog (e.g., the CDMA block), ffLink can profit
from future vendor updates without requiring user design
effort.

An interesting future refinement would be the use of CDMA
engines capable of 64b, which would eliminate the need for
the SWIOTLB approach on processors without an IOMMU
entirely.

The source code of ffLink is available from the Download
section of http: //www. esa. cs. tu-darmstadt. de.

Acknowledgment

This work was performed in the context of "REPARA — Re-
engineering and Enabling Performance and poweR of Ap-
plications” [3], a Seventh Framework Programme project of
the European Union.

10. REFERENCES

[1] Demo Bundle Virtex7 Gen3.
http://xillybus.com/pcie-download, 2014.
Accessed: 02/15.

[2] NVIDIA NVLink High-Speed Interconnect:
Application Performance. Whitepaper, 2014.
Accessed: 02/15.

[3] REPARA - Reengineering and Enabling Performance
and poweR of Applications.
http://wuw.repara-project.eu, 2014. Accessed:
01/15.

[4] PCI Express Solution. http:
//nwlogic.com/products/pci-express-solution/,
2015. Accessed: 03/2015.

[5] R. Bittner. Speedy bus mastering pci express. In Field
Programmable Logic and Applications, Intl. Conf. on,
pages 523-526, Aug 2012.

[6] J. Gong, T. Wang, J. Chen, and et al. An efficient and
flexible host-fpga pcie communication library. In Field
Programmable Logic and Applications, Intl. Conf. on,
pages 1-6, Sept 2014.

[7] M. Jacobsen and R. Kastner. Riffa 2.0: A reusable
integration framework for fpga accelerators. In Field
Programmable Logic and Applications, Intl. Conf. on,
pages 1-8, Sept 2013.

[8] H. Kavianipour, S. Muschter, and C. Bohm. High
performance fpga-based dma interface for pcie.
Nuclear Science, IEEE Trans. on, 61(2):745-749,
April 2014.

[9] A. Tumeo, M. Monchiero, G. Palermo, and et al.
Lightweight dma management mechanisms for
multiprocessors on fpga. In Application-Specific
Systems, Architectures and Processors, ASAP Intl.
Conf. on, pages 275-280, July 2008.

[10] K. Vipin, S. Shreejith, D. Gunasekera, and et al.
System-level fpga device driver with high-level
synthesis support. In Field-Programmable Technology,
Intl. Conf. on, pages 128-135, Dec 2013.

[11] Q. Wu, J. Xu, X. Li, and et al. The research and
implementation of interfacing based on pci express. In
Electronic Measurement Instruments, Intl. Conf. on,
pages 3-116-3-121, Aug 2009.

[12] Xilinx Inc. LogiCORE IP AXI Central Direct Memory
Access, v4.1 edition, December 2013.

[13] Xilinx Inc. AXI Bridge for PCI Ezpress Gen3
Subsystem, v1.0 edition, November 2014.

[14] Xilinx Inc. Virtez-7 FPGA XT Connectivity Targeted
Reference Design for the VC709 Board, v3.0 edition,
December 2014.

[15] C. Zinner and W. Kubinger. Ros-dma: A dma double
buffering method for embedded image processing with
resource optimized slicing. In Real-Time and
Embedded Technology and Applications Symposium,
Proc. on, pages 361-372, April 2006.

