
...

HETEROGENEOUS WIRELESS SENSOR
NODES THAT TARGET THE INTERNET OF

THINGS
...

THIS ARTICLE SUMMARIZES THE ARCHITECTURAL DESIGN DECISIONS OF THE HARDWARE-

ACCELERATED LOW-POWER MOTE (HALOMOTE), WHICH COMBINES A FIELD-

PROGRAMMABLE GATE ARRAY FOR ENERGY-EFFICIENT DATA AGGREGATION WITH A RADIO

SYSTEM ON CHIP FOR NETWORK MANAGEMENT. THE AUTHORS SHOW HALOMOTE’S

POWER CONSUMPTION IMPROVEMENTS OVER TYPICAL SOFTWARE PROCESSORS OF

WIRELESS SENSOR NETWORKS FOR TWO USE CASES BASED ON GENERAL DATA

COMPRESSION AND APPLICATION-SPECIFIC FEATURE EXTRACTION.

......The growth of the Internet of
Things (IoT) has led to a unification of
embedded systems’ and systems-of-systems’
design spaces, with a focus on cyber-physical
systems communicating with each other.
While some IoT devices such as mobile sys-
tems absolutely require wireless communica-
tion, radio transceivers are sometimes
employed purely for convenience (for exam-
ple, to simplify installation or retrofitting),
even in stationary settings such as smart
homes or industrial process monitoring. In all
of these untethered-usage scenarios, decentral-
ized data aggregation in the wireless sensor
networks (WSNs) is crucial to keeping the
amount of wirelessly transferred data and thus
the energy consumed by the transceiver within
the limited budget of the devices, which are
typically powered by batteries or energy har-
vesters. Challenges on the embedded process-
ors in the IoT domain are due not only to the

ever-growing amount of data to be handled,
but are also due to the increasing importance
of security and privacy. These force applica-
tion designers either to ensure that no private
information leaves the smart device (that is, all
the data processing must be performed locally
at the sensors) or to use strong encryption and
authentication methods to protect the gath-
ered data. In both cases, the demand for
energy-efficient embedded processing capabil-
ities increases.

To address the challenges of computation-
ally intensive distributed applications with
limited energy budgets, we proposed the het-
erogeneous Hardware-Accelerated Low-
Power Mote (HaLoMote) as a more energy-
efficient approach to the common homoge-
neous node architectures.1 Prior attempts at
using reconfigurable computing in the WSN
domain have seen only limited success (see
the “Related Work in Hardware-Accelerated

Andreas Engel

Andreas Koch

Technische Universit€at

Darmstadt

...

8 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

Wireless Sensor Nodes” sidebar). In this
article, we summarize the architectural design
concepts and power management mecha-
nisms of HaLoMote and its application in
two IoT-related domains. This article
expands on prior reports with details on
HaLoMote’s interprocessor communication,
basic power management, and performance
in different monitoring applications2,3 by
justifying architectural design decisions and
detailing more advanced power management
strategies.

HaLoMote Hardware Architecture
In this section, we detail the main design
choices considered for the heterogeneous sen-
sor node, its basic architecture, and the latest
implementation.

Heterogeneous Processing and Communication
To integrate a reconfigurable computing unit
(RCU) into a WSN mote, the design options
for the computation and communication
architecture (shown in Figure 1a to Figure
1d) must be traded off against each other.

..

Related Work in Hardware-Accelerated Wireless Sensor Nodes
Most wireless sensor network (WSN) motes are homogeneous archi-

tectures based on software processors ranging from small microcon-

trollers (MCUs) to large digital signal processors (DSPs). This article

focuses on hardware-accelerated processing; for a more comprehen-

sive overview of software-processor-based WSN motes, see previous

work by Antonio de la Piedra and colleagues.1

Field-programmable gate array (FPGA)-based reconfigurable com-

puting units (RCUs) can perform complex computations more effi-

ciently than MCUs and DSPs while providing more flexibility for an

iterative design process than application-specific integrated circuits.

In real-time applications, the use of RCUs often enables computations

that cannot be performed by MCUs or DSPs at all under the given con-

straints. This makes RCUs attractive for use in sensor nodes perform-

ing computationally intensive applications (such as video and image

compression).2,3 However, none of these systems could achieve truly

low-power operation: they all relied on FPGAs using static RAM

(SRAM) for configuration storage, which thus could not be powered

down completely without losing the configuration data itself.

When energy actually becomes a first-order design goal, Flash-

based FPGAs are far more suitable for the RCU.4 Sensor nodes using a

combination of a Flash-based Microsemi IGLOO FPGA and a wireless

transceiver have already been proposed.5–7 However, despite the

power advantages of Flash configuration storage, these architectures

also turn out to be suboptimal: all processing is performed on the RCU

(even long-term, low-intensity tasks), and when powered down, the

radio transceiver is required to wake up the FPGA again. Thus, at least

one of the two power-hungry devices must be enabled all the time.

A better choice is a heterogeneous architecture that combines an

RCU and a low-power MCU. The Cookie WSN8 and the PowWow

Mote9 have joined a small Microsemi IGLOO FPGA with a TI MSP430

MCU and an additional radio transceiver. However, both systems use

the FPGA only for low-level handling of radio messages, instead of

preprocessing the sensor datastream. Furthermore, the use of discrete

MCU and RF components carries the burden of slower communication

as well as more complex power management. In the “HaLoMote Hard-

ware Architecture” section in the main article, we examine the usage

of a radio frequency system on chip next to a Flash-based FPGA in

greater detail.

References
1. A. de la Piedra, A. Braeken, and A. Touhafi, “Sensor Systems

Based on FPGAs and Their Applications: A Survey,” Sensors,

vol. 12, no. 9, 2012, pp. 12,235–12,264.

2. C. Zhiyong et al., “A Novel FPGA-BasedWireless Vision Sen-

sor Node,” Proc. IEEE Int’l Conf. Automation and Logistics,

2009; doi:10.1109/ICAL.2009.5262805.

3. K. Goh et al., “FPGA BasedWireless Sensor Node for Distrib-

uted Process Monitoring,” Proc. 7th IEEE Conf. Industrial

Electronics and Applications, 2012; doi:10.1109/

ICIEA.2012.6361045.

4. T. Nyl€anden et al., “FPGA Based Application Specific Proc-

essing for Sensor Nodes,” Proc. Int’l Conf. Embedded Com-

puter Systems, 2011; doi:10.1109/SAMOS.2011.6045452.

5. L. Vera-Salas et al., “Reconfigurable Node Processing Unit

for a Low-Power Wireless Sensor Network,” Proc. Int’l Conf.

Reconfigurable Computing and FPGAs, 2010; doi:10.1109/

ReConFig.2010.48.

6. B. Stelte, “Toward Development of High Secure Sensor Net-

work Nodes Using an FPGA-Based Architecture,” Proc. 6th

Int’l Wireless Communications and Mobile Computing Conf.,

2010, pp. 539–543.

7. T. Nyl€anden et al., “Reconfigurable Miniature Sensor Nodes

for Condition Monitoring,” Proc. Int’l Conf. Embedded Com-

puter Systems, 2012; doi:10.1109/SAMOS.2012.6404164.

8. V. Rosello, J. Portilla, and T. Riesgo, “Ultra Low Power

FPGA-Based Architecture for Wake-up Radio in Wireless

Sensor Networks,” Proc. 37th Ann. Conf. IEEE Industrial

Electronics Soc., 2011; doi:10.1109/IECON.2011.6119933.

9. O. Berder and O. Sentieys, “PowWow: Power Optimized

Hardware/Software Framework for Wireless Motes,” Proc.

23rd Int’l Conf. Architecture of Computing Systems, 2010,

pp. 1–5.

...

NOVEMBER/DECEMBER 2016 9

Because an RCU typically does not provide
wireless communication capabilities, at least
a radio transceiver must be attached. Such a
transceiver implements the lower communi-
cation layers (that is, symbol modulation and
medium access control) and provides a lim-
ited message buffer that can be accessed by a
digital interface. All other radio protocol
tasks (such as routing and transport control)
must thus be handled by the RCU, if it is
directly attached to the transceiver (Figure
1a). Because these are typically rather simple
and sequential control-flow-dominated algo-
rithms, waking up the RCU just to handle
the radio protocol would not be energy effi-
cient. For the same reason, we should avoid
handling the radio stack on a soft-core micro-
controller (MCU) inside the RCU, as shown
in Figure 1b.

When adding a dedicated MCU (Figure
1c) for all low-priority tasks, such as the radio
protocol, basic timekeeping, and the top-
level control flow of the application (for
example, periodic sensor sampling), the plat-
form can exploit its heterogeneity by selec-
tively shutting down temporarily unused
computation and communication units. This
basic dynamic power management (DPM)
principle also applies when the radio trans-
ceiver and the low-power MCU are inte-
grated into a single device (Figure 1d),
because these radio frequency systems on
chip (RF-SoCs) let us suspend the radio and

the MCU separately. Compared to Figure 1c,
more of the limited number of the MCU’s
general-purpose I/O (GPIO) pins can be
dedicated for interprocessor communication,
because they are not required for communi-
cation between the MCU and the transceiver.
The combination of an RCU and an RF-
SoC thus improves the data throughput
between hardware accelerator and wireless
transceiver. Therefore, HaLoMote is based
on the architecture shown in Figure 1d.

Integration of Peripherals
A second fundamental architectural design
choice deals with the integration of sensors
and memories, often required to temporarily
buffer raw or aggregated sensor data. Attach-
ing both peripherals to the RF-SoC (Figure
1e) lets us collect the number of samples
required for the data aggregation algorithm
without ever waking up the hardware acceler-
ator. However, the entire stream of sensor
data must be transferred over the critical link
from the RF-SoC to the RCU to be aggre-
gated. The additional GPIO pins required by
the RF-SoC to interface the sensors and the
memory further reduces the data throughput
between both processing units. The transfer
of the raw datastream thus becomes the
architecture’s bottleneck.

We can mitigate this bottleneck using a
shared memory for interprocessor communi-
cation (Figures 1f and 1g), either by using a
dual-port memory or by synchronizing the
memory access of both processors via the
remaining direct connections between RCU
and RF-SoC. Although a dual-port memory
is typically more expensive than a single-port
memory (in terms of chip cost and energy
consumption), it enables more parallel opera-
tions on the heterogeneous platform, such as
transmitting one block of the aggregated data
while generating the next block. The shared
memory approach is most valuable if the sen-
sors are attached to the RF-SoC (Figure 1f)
and the data aggregation can be performed
on larger blocks of the raw sample data, so
the RCU can remain sleeping until the next
block is collected.

However, the sensors might need to be
attached to the RCU (Figures 1g and 1h) if
the RF-SoC does not have enough GPIO
pins to control all peripherals (for example, if

RCU

Radio

(a)

RCU

Radio

MCU

(b)

RCU

MCU

Radio

(c)

RCU

MCU

Radio

(d)

RCU

RF-SoC

S M

(e)

RCU

RF-SoC

S M

(f)

RCU

RF-SoC

S M

(g)

RCU

RF-SoC

S M

(h)

Figure 1. Design options for (a–d) the processing and communication

architecture and (e–h) the attachment of sensors (S) and memories (M) to

the computing units. (MCU: microcontroller; RCU: reconfigurable computing

unit; RF-SoC: radio frequency system on chip.)

..

THE INTERNET OF THINGS

..

10 IEEE MICRO

the sensors cannot be daisy-chained or con-
nected to a common bus). Furthermore,
many event-detection applications require
immediate processing of the sensor data to
minimize the detection delay. In these cases,
only the aggregated datastream must pass the
bottleneck from the RCU to the RF-SoC. A
dedicated shared memory between both
computational units is thus not required, and
the architecture of Figure 1g is not useful in
those cases.

From the remaining two reasonable archi-
tectures (Figures 1f and 1h), we chose the lat-
ter as HaLoMote’s foundation. With all
peripherals being interfaced by the RCU,
HaLoMote supports a broad range of appli-
cations with different sensor and memory
requirements. This flexibility is essential for
an exploration of the broad design space of
IoTapplications.

Implementation of HaLoMote
The design decisions discussed thus far led to
the prototype implementation of the HaLo-
Mote architecture shown in Figure 2. The
RCU is realized as a discrete field-program-
mable gate array (FPGA; specifically, Micro-
semi IGLOO AGL1000) based on
nonvolatile memory, allowing for deep sleep
modes with fast shutdown and wakeup times,
as well as a very low static power draw. Exter-
nal sensors and additional memories connect
to the RCU to support the efficient prepro-
cessing of the sampled datastream. Only the
aggregated results are transferred to the
RF-SoC for transmission into the network.
The latter is realized by the Atmel
ATmega256RFR2 device.

The power- and area-consuming human-
machine interface peripherals are not located
on the main printed circuit board, but can be
attached for debugging purposes as needed.
Most monitoring applications require a sig-
nificant amount of external memory. We
chose four 1-Mbit serial SRAMs instead of a
single parallel memory to enable parallel
independently addressable memory accesses
by the RCU. Furthermore, one or more
SRAMs can thus be selectively replaced with
pin-compatible nonvolatile ferroelectric
RAMs (FRAMs) for even more aggressive
power management. By directly integrating
the memory on the mainboard, we can use

the remaining 40 pins of the expansion head-
ers to attach application-specific sensors.

Finally, by exposing the FPGA Joint Test
Action Group interface to the MCU, HaLo-
Mote supports over-the-air reconfiguration.
However, this comes at the cost of an addi-
tional 3.3-V regulator responsible for provid-
ing the higher programming voltage.

Active Power Management
Because both the RCU and MCU devices
support DPM, a proper power-management
scheme should be straightforward: The
MCU is woken up periodically at the begin-
ning of each sampling interval to handle sys-
tem management tasks. It retrieves previously
computed data from the RCU, offloads new

Mainboard

SRAM/
FRAM

SRAM/
FRAM

SRAM/
FRAM

SRAM/
FRAM

NVM-FPGA
AGL1000

RF-SoC
ATmega
256RFR2

OSC DC/DC DC/DC DC/DC

Energy storage

>2.7 V

1.2 V 3.3 V 1.8 V1.5 V

CLK

8 MHz

Shutdown
JTAG
ACLK
GPIO
GPIO

HMISensors

(a)

(b)

Figure 2. Implementation of Hardware-Accelerated Low-Power Mote

(HaLoMote): (a) schematic and (b) 46 mm� 30 mm printed circuit board.

(ACLK: auxiliary clock; FRAM: ferroelectric RAM; GPIO: general-purpose

I/O; HMI: human-machine interface; JTAG: Joint Test Action Group; NVM-

FPGA: nonvolatile memory field-programmable gate array; OSC: oscillator;

SRAM: static RAM.)

...

NOVEMBER/DECEMBER 2016 11

computations (if any) to the RCU, and then
goes to sleep itself. The RCU is powered up
only if it actually has work to do.

The Microsemi IGLOO Flash-Freeze
mode preserves the hardware configuration
and the content of the on-chip state while
reducing the FPGA’s power draw to just
53 lW. This sleep mode can be entered and
exited within a few microseconds of transi-
tion time, which is negligible even when sam-
pling at several hundreds of hertz. The MCU
signals the RCU to enter (or exit) the Flash-
Freeze mode by asserting (or deasserting) the
shutdown signal (see Figure 2a). However,
the interdependency between both of the het-
erogeneous architecture’s computing units
introduces difficulties for the overall DPM
strategy.

Flash-Freeze Control
Figure 3a shows a sample DPM scheduling
for a single sampling cycle between time steps
1 and 21. The MCU wakes up at Time 1
and deasserts the shutdown signal at Time 2.
After it finishes its low-level management
tasks at Time 6, the MCU must wait until
the RCU also finishes its computations at
Time 17 before asserting the shutdown at
Time 18 and falling to sleep at Time 19.
Actively stalling the MCU just to wait until
the RCU can be shut down is not energy effi-
cient. Although the MCU could fall asleep
earlier and use a GPIO interrupt to wake up
as soon as the RCU has completed, the addi-
tional state transitions of the MCU would
increase the mote’s energy consumption.

To decouple the shutdown of the RCU
from the shutdown of the MCU, a DPM
controller inside the RCU delays the actual
shutdown request until the RCU is finished.
This is achieved by a dedicated control bit
inside the IGLOO fabric. Figure 3b shows
the same sample schedule as before, now
exploiting the improved Flash-Freeze control.
The MCU asserts the shutdown signal at
Time 7 and falls asleep at Time 8 immedi-
ately after finishing its tasks. The RCU, how-
ever, can keep running and shuts itself down
at Time 18.

The decoupling of the DPM mechanisms
of both processors thus simplifies the overall
implementation and reduces the time the
MCU must be kept awake. We can further
reduce the amount of time the RCU spends
awake by driving it with an MCU-generated
auxiliary clock (such as the serial clock of an
SPI module) while the main oscillator is
ramped up.1 The startup of a crystal oscilla-
tor can take up to tens of microseconds and
is not negligible for intersampling cycle
power management for sampling frequencies
of several hundred hertz.

Preserving Live Variables in External Memory
Although the IGLOO FPGA can enter and
exit the Flash-Freeze mode quickly, the 53 lW
static power consumption within this mode is
at least an order of magnitude larger than the
power drawn by typical sleeping WSN soft-
ware processors. To reduce the FPGA’s power
consumption further, its voltage supply must
be shut down completely by an appropriate

Sampling cycle

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122

MCU awake

MCU busy Active stalling

Shutdown signal

RCU awake

RCU busy

Sampling cycle

(a) (b)

Figure 3. Scheduling of dynamic power management between theMCU and the RCU: (a) stalling the MCU and (b) delayed

Flash-Freeze.

..

THE INTERNET OF THINGS

..

12 IEEE MICRO

power field-effect transistor controlled by the
MCU (not shown in Figure 2).

All runtime data held in the volatile
(SRAM-based) registers or block RAMs
(BRAMs) is lost after each power cycle. Thus,
before shutting down the FPGA, any data
that will be required again after the power
cycle (that is, the live variables) must be pre-
served in an external memory, from which it
can be restored after the FPGA is repowered.

This data transfer requires additional energy
for the memory read and write operations in
addition to the extra time the FPGA must be
kept awake. Thus, the sleep period with
reduced power consumption must be suffi-
ciently long to recoup the transfer overhead. To
estimate the minimum sleep time per swapped
bit, let Pr, Pw, and Ps denote the power drawn
by the memory during reading, writing, and
shutdown. Furthermore, let Tr and Tw be the
achievable throughput for streaming reads and
writes, as well as Pa and Pf be the power drawn
by the FPGA in active and Flash-Freeze modes.
The swapping of n-bit live variables for a sleep
period t pays off, if

t � Pf >
n

Tw
ðPa þ PwÞ þ

n

Tr
ðPa þ PrÞ

þ t � n

Tw
� n

Tr

� �
Ps:

Table 1 lists the power draw and through-
put specification of three types of memory.
Out of all devices that can be mounted on
the current HaLoMote implementation (that
is, serial memory in an 8-pin small outline
integrated circuit package), we selected the
most frugal chips with a capacity of 1 Mbit.

The relative break-even time t/n depends on
the power drawn by the FPGA and is thus
application specific. However, assuming Pa ¼
30 mW for a worst-case analysis has proven
reasonable for typical applications. Thus, t/n
is the minimum relative sleep time (per bit)
that actually amortizes the state save and
restore overhead.

With its low write throughput, Flash
memory is not suitable for live variable pres-
ervation. Preservation in SRAM pays off after
63 ls per bit. It is outperformed by using
FRAM, having a delay of just 50 ls/bit.
Thus, assuming 100 bytes of live variables,
sleep times longer than 40 ms would profit
from preservation in FRAM. Note that, even
when using FRAM, such state preservation is
generally not feasible for applications requir-
ing continuous acquisition and processing
with large live-variable sets.

HaLoMote Applications
Lossless data compression is the most generic
form of in-sensor preprocessing. RCUs are
well-suited for this kind of data aggregation,
because they can process multiple independ-
ent sensor channels in parallel, and the
applied compression algorithm can be
adapted to the characteristics of the data
source. In previous work,2 we used a for-
ward-adaptive differential pulse code modu-
lation with a Rice symbol coder to compress
vibration data from three microelectro-
mechanical systems sensors to 79 percent of
its original size. While HaLoMote’s energy-
efficient hardware-accelerated encoder
reduced the overall energy required for

Table 1. Power consumption and streaming throughput of different 1-Mbit

memories operated at 2 V.

Parameter

Memory type

23A1024 SST25WF010 FM25V10

Type SRAM Flash Ferroelectric RAM

Tw 20 Mbits/s 0.26 Mbits/s 25 Mbits/s

Tr 20 Mbits/s 20 Mbits/s 25 Mbits/s

Pw 2 mW 12 mW 3mW

Pr 2 mW 4mW 3mW

Ps 2 lW 0 lW 0 lW

t/n 63 ls/bit 3,080 ls/bit 50 ls/bit

...

NOVEMBER/DECEMBER 2016 13

compression and wireless transmission to 81
percent of sending uncompressed data, a com-
parable software encoder for the TI CC2530
8-bit MCU would have increased the system’s
overall energy consumption to 134 percent
due to the lengthy sequential encoding.

Application-specific feature extraction
provides even more potential for data aggre-
gation than lossless data compression. In
vibration-based structural health monitoring
(SHM), the modal parameters of large infra-
structure objects (such as bridges) are derived
from cross-correlation functions describing
the temporal and spatial relations between
different vibration sensors distributed over
the structure. The distributed estimation of
those cross-correlation functions is a useful
data aggregation mechanism, because it sig-
nificantly reduces the required wireless
throughput while relying primarily on simple
accumulations of values. However, many of
these accumulations must be performed,
which can be done in parallel on the RCU.

In previous work,3 we described a HaLo-
Mote implementation of this SHM-specific
preprocessing. Four acceleration sensors are
sampled at 400 Hz (as required by the SHM
application) and are high-pass filtered in par-
allel. Eight cross-correlation functions must
be computed from the filtered sensor chan-
nels on every sensor node. We measured the
overall execution time per sampling cycle on

different processing platforms, as shown in
Table 2. The software processors we used as
reference for the HaLoMote platform range
from small 8-bit MCUs up to a powerful 32-
bit DSP to cover the architectures typically
used inWSN and IoTapplications. The devi-
ces were configured to run at the highest
clock speed for the lowest applicable supply
voltage, and the software compilers were con-
figured to optimize for execution speed.
Most processors execute fixed-point imple-
mentations of the SHM algorithm, whereas
the STM32F407 executes a floating-point
implementation with support of its hardware
floating-point unit (FPU). We took the
power consumption in both active mode and
the deepest appropriate sleep mode (that is,
with enabled wake-up clock; see Table 2), as
well as the transition time between both
states (that is, wakeup), from the software
processors’ datasheets, whereas we actually
measured the FPGA’s power consumption.
The overall energy consumption per 2.5-ms
sampling cycle was derived as

tidle ¼ 2:5 ms� tactive � twakeup
Ecycle ¼ ðtactive þ twakeupÞ � Pactive þ tidle

� Pidle;

thus assuming that ramping up the internal
regulators during wakeup is as costly as the
regular active mode.

Table 2. Execution time and energy consumption per sample for structural health monitoring feature

extraction on different processing platforms.

Parameter

Processing unit

TI CC2530 ATmega256RFR2 TI CC430 STM32F407 TI CC2650 AGL1000

Architecture 8-bit MCU 8-bit MCU 16-bit MCU 32-bit DSP 32-bit MCU Flash FPGA

Instruction set 8,051 AVR MSP430 Cortex-M4F Cortex-M3 Custom

Compiler SDCC 3.4 AVRGCC 4.3.1 CL430 4.4.3 ARMGCC 4.9.3 ARMGCC 4.9.3 Synplify 2014

Clock speed (MHz) 32 16 20 128 48 8

VCC (V) 2.0 1.8 2.4 1.8 1.8 1.2

Sleep mode LPM2 POWER-SAVE LPM3 STOP STANDBY Flash-Freeze

tactive (ls) 8,056 2,712 1,249 43 149 9

twakeup (ls) 100 34 150 110 151 1

tidle (ls) N/A N/A 1,101 2,347 2,200 2,490

Pactive (mW) 13 6.7 11 72 5.2 30

Pidle (lW) 2 2.7 12.7 156 1.8 53

Ecycle (nJ) N/A N/A 15,403 11,382 1,564 432

..

THE INTERNET OF THINGS

..

14 IEEE MICRO

The two 8-bit MCUs could not achieve
the required sampling frequency, so Table 2
does not provide tidle and Ecycle values for
these devices. High-performance DSPs such
as the TI C6747 are as fast as the IGLOO
FPGA (that is, 9 ls per cycle), but do not
provide sufficiently deep sleep states (that
is, 60 mW for the C6747 in static mode)
and thus are not listed in Table 2. The
IGLOO FPGA itself consumed only 28
percent of the energy spent by the best soft-
ware processor, the TI CC2650. However,
for HaLoMote, we also have to take into
account the additional overhead of the
ATmega256RFR2 MCU. Because of the
improved Flash-Freeze control, the MCU
spends about 98 percent of each sampling
cycle in idle mode, thus causing an over-
head of just 342 nJ. In total, the heteroge-
neous HaLoMote architecture still
outperforms the best homogeneous soft-
ware processor by a factor of two in terms
of overall energy consumption.

Note that these figures do not include
wireless data transmission. Another 94 mJ
are required to transmit the eight correlation
functions (with 1 Kbyte each) if a channel
utilization of 10 percent can be achieved after
packet loss and communication overhead.
A 60-second measurement thus requires
113 mJ on HaLoMote for computation and
transmission. A comparable WSN-based
modal identification system without decen-
tralized data aggregation requires more than
3,000 mJ on that 60-second measurement.4

The energy efficiency gain of more than 26
times thus justifies the use of a more complex
heterogeneous architecture on HaLoMote.

We evaluated the heterogeneous HaLo-
Mote architecture in distributed

applications from the two IoT domains of
industrial condition monitoring and struc-
tural health monitoring. For these cases, we
observed energy efficiency improvements of
2 and 26 times, respectively, over recent low-
power software processors and prior works.
For highly energy-critical use cases (such as
long harvester-powered operation), these
gains can offset the more complex node
architecture. Further improvements currently
under investigation include the use of a cus-

tom-designed coarse-grained reconfigurable
RCU instead of the FPGA. MICRO

..
References
1. A. Engel, B. Liebig, and A. Koch, “Energy-

Efficient Heterogeneous Reconfigurable

Sensor Node for Distributed Structural

Health Monitoring,” Proc. Conf. Design and

Architectures for Signal and Image Process-

ing, 2012, pp. 43–50.

2. A. Engel and A. Koch, “Hardware-Acceler-

ated Data Compression in Low-Power Wire-

less Sensor Networks,” Reconfigurable

Computing: Architectures, Tools, and Appli-

cations, LNCS 8405, 2014, pp. 167–178.

3. A. Engel, T. Siebel, and A. Koch, “A Hetero-

geneous System Architecture for Low-

Power Wireless Sensor Nodes in Compute-

Intensive Distributed Applications,” Proc.

40th IEEE Conf. Local Computer Networks,

2015, pp. 636–644.

4. M. Bocca et al., “A Synchronized Wireless

Sensor Network for Experimental Modal

Analysis in Structural Health Monitoring,”

Computer-Aided Civil and Infrastructure Eng.,

2011; doi:10.1111/j.1467-8667.2011.00718.x.

Andreas Engel is a postdoctoral researcher
at Technische Universit€at Darmstadt. His
research interests include microcontroller-
and FPGA-based wireless sensor networks,
energy-management concepts for long-term
WSN operation, and coarse-grained recon-
figurable array-based hardware accelerators.
Engel received a PhD in engineering from
Technische Universit€at Darmstadt. Contact
him at engel@esa.cs.tu-darmstadt.de.

Andreas Koch is a full professor and the
head of the Embedded Systems and Appli-
cations group in the Computer Science
Department at Technische Universit€at
Darmstadt. His research interests include
application-specific computer architectures
and their design and programming tools.
Koch received a PhD in engineering from
Technische Universit€at Braunschweig. Con-
tact him at koch@esa.cs.tu-darmstadt.de.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

...

NOVEMBER/DECEMBER 2016 15

