
ILP-based Modulo Scheduling
for High-level Synthesis

Julian Oppermann Andreas Koch
Embedded Systems & Applications Group

Technische Universität Darmstadt, Germany

Melanie Reuter-Oppermann
Discrete Optimization & Logistics Group

Karlsruhe Institute of Technology, Germany

Oliver Sinnen
Parallel & Reconfigurable Computing Group

University of Auckland, New Zealand

Contact {oppermann, koch}@esa.tu-darmstadt.de melanie.reuter@kit.edu o.sinnen@auckland.ac.nz

Loop pipelining Typical modulo scheduler

Approaches (based on Integer Linear Programs)

Result quality - 5 min time limitScheduling time - 5 min time limit

Evaluation

▪ Start new loop iterations after a fixed number of time
steps, called Initiation Interval (II)

▪ Partially overlapping execution of subsequent loop
iterations → resource constraints on congruence
classes (modulo II) of time steps

Ite
ra

tio
n

0

0
1
2
3
4

Initiation
Interval (II)

…Ite
ra

tio
n

1

0
1
2
3
4

Ite
ra

tio
n

2

0
1
2
3
4

tim
e

[s
te

ps
]

▪ Determine lower and upper bound for the II

▪ Select a candidate II from that range and try to
find a feasible modulo schedule
⁃ Input: candidate II, precedence edges,

resource constraints, operation latencies
⁃ Output: start times for operations, or

attempt fails
▪ Primary objective: Find schedule with smallest feasible II,

subject to resource constraints and inter-iteration dependencies

Moovac (novel)

Eichenberger’s formulation

▪ Scheduling without resource constraints is easy, can be done in
polynomial time with a System of Difference Constraints (SDC)

▪ Approaches differ in the modelling of resource constraints

⁃ There are Ak units of resource kind k and II-1 congruence classes

⁃ Each resource instance can be used at most by one operation in
each congruence class

Modulo SDC
▪ State-of-the-art heuristic algorithm using an SDC and an MRT

▪ Start with a resource-unconstrained schedule

▪ Incrementally try to assign ops to MRT / update SDC, until all
resource-constrained ops fit in MRT

▪ Backtracking required if SDC becomes infeasible

min …
s.t.
 vj - vi ≤ 1
 …

MRT
(Modulo Reservation Table)

SDC
(special linear program)

Modulo SDCi

j
h

Co
ng

ru
en

ce
cl

as
se

s

Resource instances

▪ Exact formulation as general ILP with
time-indexed binaries:
Variable am,i := “op i starts in
congruence class m”

▪ Resource constraints modelled per
congruence class q: ∑x aq,x ≤ Ak
(simplified)

a0,i

a1,i

aII-1,i

Co
ng

ru
en

ce
cl

as
se

s

i

a0,j

a1,j

aII-1,j

j

Operations

a0,0

a1,0

0

a0,N

a1,N

N

aII-1,0

a2,i a2,j a2,N

aII-1,N

a2,0

▪ Exact formulation based on an efficient task scheduler

▪ Uses integer variables to model operations’ start times

▪ Resource assignment modelled by

⁃ integer variables
ri resource instance ID
mi congruence class ID

⁃ binary overlap variables
εij := 1 iff. ri < rj
μij := 1 iff. mi< mj

▪ No resource conflict iff. εij + εji + μij + μji ≥ 1

Co
ng

ru
en

ce
cl

as
se

s

Resource instances

u

wv

εuw = 1
µuw = 1

µuv = 1

εvw = 1

▪ Schedulers implemented with CPLEX 12.6.3, ran single-threadedly on Intel Xeon E5-2667’s at 3.3 GHz

▪ Time limit of 5 min or 60 min per candidate II → increment II if instance is shown to be infeasible, or no solution was found within time budget

▪ Attempted to schedule 225 loops from CHStone and MachSuite

▪ Moovac is surprisingly fast; Moovac + M. SDC synergistically is even faster: 429 min

▪ Fruitless attempts dominate overall time. Heuristic can struggle with small graphs.

▪ Compared to time-limited Moovac, Modulo SDC
finds schedules with…

⁃ the same II for 217 of 225 graphs

⁃ a worse II for 6 of 225 graphs

⁃ a better II for 2 of 225 graphs

Graphs Moovac Modulo SDC Eichenberger’s ILP
Size # Time [min] Timeouts Time [min] Timeouts Time [min] Timeouts
all 225 489 96 753 148 932 177

small 203 3 0 131 26 5 0
large 22 486 96 623 122 927 177

