ILP-based Modulo Scheduling for High-level Synthesis

Julian Oppermann Andreas Koch

Embedded Systems & Applications Group

Technische Universität Darmstadt, Germany

Melanie Reuter-Oppermann

Discrete Optimization & Logistics Group Karlsruhe Institute of Technology, Germany

Oliver Sinnen

Parallel & Reconfigurable Computing Group University of Auckland, New Zealand

Loop pipelining

- Start new loop iterations after a fixed number of time steps, called Initiation Interval (II)
- Partially overlapping execution of subsequent loop iterations -> resource constraints on congruence classes (modulo II) of time steps
- Primary objective: Find schedule with smallest feasible II, subject to resource constraints and inter-iteration dependencies

Approaches (based on Integer Linear Programs)

Scheduling without resource constraints is easy, can be done in

Typical modulo scheduler

- Determine lower and upper bound for the II
- Select a candidate II from that range and try to find a feasible modulo schedule
 - Input: candidate II, precedence edges, resource constraints, operation latencies
 - Output: start times for operations, or attempt fails

Modulo SDC

- State-of-the-art heuristic algorithm using an SDC and an MRT
- polynomial time with a System of Difference Constraints (SDC)
- Approaches differ in the modelling of resource constraints
 - There are A_k units of resource kind k and II-1 congruence classes
 - Each resource instance can be used at most by one operation in each congruence class

Moovac (novel)

- **Exact** formulation based on an efficient task scheduler
- Uses integer variables to model operations' start times
- Resource assignment modelled by

- m_i congruence class ID
- binary overlap variables ε_{ii} := 1 iff. $r_i < r_j$ $\mu_{ii} := 1$ iff. $m_i < m_j$

• No resource conflict iff. $\varepsilon_{ij} + \varepsilon_{ji} + \mu_{ij} + \mu_{ji} \ge 1$

- Start with a resource-unconstrained schedule
- Incrementally try to assign ops to MRT / update SDC, until all resource-constrained ops fit in MRT
- Backtracking required if SDC becomes infeasible

Eichenberger's formulation

- **Exact** formulation as general ILP with time-indexed binaries: Variable $a_{m,i}$:= "op *i* starts in congruence class m"
- Resource constraints modelled per congruence class $q: \sum_{x} a_{q,x} \le A_{k}$ (simplified)

Evaluation

- Schedulers implemented with CPLEX 12.6.3, ran single-threadedly on Intel Xeon E5-2667's at 3.3 GHz
- Time limit of 5 min or 60 min per candidate II → increment II if instance is shown to be infeasible, or no solution was found within time budget
- Attempted to schedule 225 loops from CHStone and MachSuite

Scheduling time - 5 min time limit

Graphs		Moovac		Modulo SDC		Eichenberger's ILP	
Size	#	Time [min]	Timeouts	Time [min]	Timeouts	Time [min]	Timeouts
all	225	489	96	753	148	932	177
small	203	3	0	131	26	5	0
large	22	486	96	623	122	927	177

- Moovac is surprisingly fast; Moovac + M. SDC synergistically is even faster: **429 min**
- Fruitless attempts dominate overall time. Heuristic can struggle with small graphs.

Contact {oppermann, koch}@esa.tu-darmstadt.de melanie.reuter@kit.edu o.sinnen@auckland.ac.nz

TECHNISCHE

Result quality - 5 min time limit

- Compared to time-limited Moovac, Modulo SDC finds schedules with...
 - the same II for 217 of 225 graphs
 - a worse II for 6 of 225 graphs
 - 2 of 225 graphs - a better II for

