ILP-based Modulo Scheduling for High-level Synthesis

Julian Oppermann, Andreas Koch, Melanie Reuter-Oppermann, Oliver Sinnen
Outline

- Introduction to loop pipelining / modulo scheduling
Outline

- Introduction to loop pipelining / modulo scheduling
- Comparison of a novel & two existing approaches
Outline

- Introduction to loop pipelining / modulo scheduling
- Comparison of a novel & two existing approaches
Outline

- Introduction to loop pipelining / modulo scheduling
- Comparison of a novel & two existing approaches

Modulo SDC
Canis et al.

Formulation by
Eichenberger &
Davidson

state-of-the-art heuristic state-of-the-art exact formulation
Outline

- Introduction to loop pipelining / modulo scheduling
- Comparison of a novel & two existing approaches

Modulo SDC
Canis et al.

Formulation by
Eichenberger & Davidson

Moovac
Oppermann et al.

state-of-the-art heuristic state-of-the-art exact formulation novel exact formulation
Outline

- Introduction to loop pipelining / modulo scheduling
- Comparison of a novel & two existing approaches
 - result quality, heuristic vs. exact

- Modulo SDC
 Canis et al.

- State-of-the-art heuristic

- Formulation by Eichenberger & Davidson

- State-of-the-art exact formulation

- Moovac
 Oppermann et al.

- Novel exact formulation
Introduction to loop pipelining / modulo scheduling

Comparison of a novel & two existing approaches

- result quality, heuristic vs. exact
- **time to schedule** - *it’s impractical to do exact modulo scheduling, right?*

- **Modulo SDC**
 Canis et al.
 state-of-the-art **heuristic**

- **Formulation by Eichenberger & Davidson**
 state-of-the-art **exact** formulation

- **Moovac**
 Oppermann et al.
 novel **exact** formulation
C-based High-level Synthesis (HLS) needs to exploit all sources of parallelism
Loop Pipelining

- **C-based High-level Synthesis (HLS)** needs to exploit all sources of parallelism

- **Loop pipelining**
 = new loop iterations are started after a fixed number of time steps, called **Initiation Interval (II)**

 - Partially overlapping execution of subsequent loop iterations
- Increases throughput!
Loop Pipelining

- Increases throughput!

- Executing n iterations →

 $n \cdot SL$ time steps w/o pipelining

 $(n-1) \cdot II + SL$ time steps with pipelining
Loop Pipelining

- Increases throughput!

- Executing n iterations →
 \[n \cdot SL \] time steps w/o pipelining
 \[(n-1) \cdot II + SL \] time steps with pipelining

- Primary objective is to find **smallest feasible II**
 - Limited by dependencies between iterations
 - Subject to resource constraints (cache ports, DSPs, …)
- Operations from different iterations are active at the same time
Loop Pipelining

- Operations from different iterations are active at the same time
- Resource constraints have to hold for congruence classes (modulo II) of time steps

 - “modulo resource constraints”
Loop Pipelining

- Operations from different iterations are active at the same time
- Resource constraints have to hold for congruence classes (modulo II) of time steps
 - “modulo resource constraints”
- Suitable schedules for loop pipelining are found by modulo schedulers
Example

```c
for (i = 1 .. N) {
    t = a[i-1];
    a[i] = s + t;
    s = t * t;
}
```
for (i = 1 .. N) {
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

data flow implies precedence constraints
Example

\begin{verbatim}
for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}
\end{verbatim}

add operation depends on the value of s from the previous iteration
Example

```c
for (i = 1 .. N) {
    t = a[i-1];
    a[i] = s + t;
    s = t * t;
}
```

- Load value only after it was written in the previous iteration
- Add operation depends on the value of s from the previous iteration
Example

for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

add operation depends on the value of s from the previous iteration

Both edges imply inter-iteration dependencies a.k.a “backedges”

Load value only after it was written in the previous iteration
for (i = 1 .. N)
{
 t = a[i-1];
 a[i] = s + t;
 s = t * t;
}

<table>
<thead>
<tr>
<th>Time step</th>
<th>Iteration 0 / modulo schedule</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ld a[i-1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>st a[i]</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>st a[i]</td>
<td>ld a[i-1]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Approach

- Determine lower and upper bound for the II
General Approach

- Determine lower and upper bound for the II
- Try to find a feasible modulo schedule
General Approach

- Determine lower and upper bound for the II
- Try to find a feasible modulo schedule
 - Input: candidate II, precedence edges, resource constraints, operation latencies
General Approach

- Determine lower and upper bound for the II
- Try to find a feasible modulo schedule
 - Input: candidate II, precedence edges, resource constraints, operation latencies
 - Output: start times for operations, or attempt fails
General Approach

- Here: Compare schedulers based on **Integer Linear Programs** (ILP)
General Approach

- Here: Compare schedulers based on Integer Linear Programs (ILP)

- Scheduling graphs with only typical HLS precedence constraints and backedges is easy

 - e.g. as a System of Difference Constraints (SDC), special ILP that can be solved in polynomial time
General Approach

- Here: Compare schedulers based on **Integer Linear Programs (ILP)**

- Scheduling graphs with only typical HLS precedence constraints and backedges is **easy**
 - e.g. as a System of Difference Constraints (SDC), special ILP that can be solved in **polynomial** time

- Approaches differ in the modelling of resource constraints
General Approach

- A_k instances/units/... of a certain scarce resource kind k
General Approach

- A_k instances/units/… of a certain scarce resource kind k
- Candidate II \Rightarrow congruence classes of operations’ start times
General Approach

- A_k instances/units/… of a certain scarce resource kind k
- Candidate II \Rightarrow congruence classes of operations’ start times
- Each instance can be used once per congruence class by an operation i

<table>
<thead>
<tr>
<th>Congruence classes</th>
<th>Resource instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A_k-1</td>
</tr>
</tbody>
</table>
General Approach

- A_k instances/units/… of a certain scarce resource kind k
- Candidate II \Rightarrow congruence classes of operations’ start times
- Each instance can be used once per congruence class by an operation i
- “modulo reservation table” (MRT)
- **Heuristic** using an SDC and an explicit MRT

\[
\begin{align*}
\text{min} & \ldots \\
\text{s.t.} & \quad v_j - v_i \leq 1 \\
& \quad \ldots
\end{align*}
\]
- **Heuristic** using an SDC and an explicit MRT
 - Start with a resource-\textbf{un}constrained schedule

\[\text{min} \ldots \\
\text{s.t. } v_j - v_i \leq 1 \\
\ldots \]
- **Heuristic** using an SDC and an explicit MRT

 - Start with a resource-**un**constrained schedule

 - Incrementally try to assign operations to MRT and add constraints to SDC

\[
\begin{align*}
\text{min} & \quad \cdots \\
\text{s.t.} & \quad v_j - v_i \leq 1 \\
& \quad \cdots
\end{align*}
\]
Modulo SDC

- **Heuristic** using an SDC and an explicit MRT
 - Start with a resource-unconstrained schedule
 - Incrementally try to assign operations to MRT and add constraints to SDC
 - Backtracking required if SDC becomes infeasible

\[
\begin{align*}
\min & \quad \ldots \\
\text{s.t.} & \quad v_j - v_i \leq 1 \\
& \quad \ldots
\end{align*}
\]
Heuristic using an SDC and an explicit MRT

- Start with a resource-unconstrained schedule
- Incrementally try to assign operations to MRT and add constraints to SDC
- Backtracking required if SDC becomes infeasible
- Successful if all resource-constrained ops fit in MRT

\[
\min \ldots \\
\text{s.t.} \\
\quad v_j - v_i \leq 1 \\
\quad \ldots
\]
Eichenberger’s Formulation

- **Exact** formulation
 general ILP with time-indexed binary variables
 \(a_{m,i} := “\text{operation } i \text{ starts in congruence class } m” \)

<table>
<thead>
<tr>
<th>Congruence classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{0,0})</td>
</tr>
<tr>
<td>(a_{1,0})</td>
</tr>
<tr>
<td>(a_{2,0})</td>
</tr>
<tr>
<td>(a_{\ll-1,0})</td>
</tr>
<tr>
<td>(a_{0,i})</td>
</tr>
<tr>
<td>(a_{1,i})</td>
</tr>
<tr>
<td>(a_{2,i})</td>
</tr>
<tr>
<td>(a_{\ll-1,i})</td>
</tr>
<tr>
<td>(a_{0,j})</td>
</tr>
<tr>
<td>(a_{1,j})</td>
</tr>
<tr>
<td>(a_{2,j})</td>
</tr>
<tr>
<td>(a_{\ll-1,j})</td>
</tr>
<tr>
<td>(a_{0,N})</td>
</tr>
<tr>
<td>(a_{1,N})</td>
</tr>
<tr>
<td>(a_{2,N})</td>
</tr>
<tr>
<td>(a_{\ll-1,N})</td>
</tr>
</tbody>
</table>

Operations: 0, i, j, N
Eichenberger’s Formulation

- **Exact** formulation
 general ILP with time-indexed binary variables
 \(a_{m,i} := \text{“operation } i \text{ starts in congruence class } m \” \)

- Example: Resource constraint for kind \(k \), congruence class 2
 fulfilled iff.

 \[\sum_x a_{2,x} \leq A_k \]

 for all operations \(x \) that use a \(k \)-resource
Moovac

- Moovac = Modulo Overlap Variable Constraints

- Adapted task scheduling formulation based on overlap variables
- Moovac = **Modulo Overlap Variable Constraints**
- Adapted task scheduling formulation based on overlap variables
- **Exact** formulation, general ILP
Moovac

- Moovac = **Modulo Overlap Variable Constraints**
- Adapted task scheduling formulation based on overlap variables
- **Exact** formulation, general ILP
- **Integer** variables model start times t_i
Let i, j be operations that require a resource of kind k
Let i, j be operations that require a resource of kind k

Resource assignment modelled by

- Integer variables
 - r_i resource instance ID $\in [0 \ldots A_k - 1]$
 - m_i congruence class ID $\in [0 \ldots \text{candidate II} - 1]$
Let i, j be operations that require a resource of kind k

Resource assignment modelled by

- Integer variables
 - r_i resource instance ID $\in [0 \ldots A_k - 1]$
 - m_i congruence class ID $\in [0 \ldots \text{candidate ll} - 1]$

- Binary overlap variables
 - $\varepsilon_{ij} := 1$ iff. $r_i < r_j$
 - $\mu_{ij} := 1$ iff. $m_i < m_j$
Let i, j be operations that require a resource of kind k

Resource assignment modelled by

- Integer variables
 - r_i resource instance ID $\in [0 \ldots A_k - 1]$
 - m_i congruence class ID $\in [0 \ldots \text{candidate II} - 1]$

- Binary overlap variables
 - $\varepsilon_{ij} := 1$ iff. $r_i < r_j$
 - $\mu_{ij} := 1$ iff. $m_i < m_j$

No resource conflict iff.

$$\varepsilon_{ij} + \varepsilon_{ji} + \mu_{ij} + \mu_{ji} \geq 1$$

“i and j are either assigned to different resource instances, or scheduled to different congruence classes”
- Tuples \((m_i, r_j) \Rightarrow \text{cell in MRT for operation } i\)
- Tuples \((m_i, r_j)\) \(\Rightarrow\) cell in MRT for operation \(i\)

- Overlap variables model relations between operations
- Tuples \((m_i, r_i)\) ⇒ cell in MRT for operation \(i\)

- Overlap variables model relations between operations

\[\mu_{uv} = 1 \]
- Tuples \((m_i, r_j)\) \(\Rightarrow\) cell in MRT for operation \(i\)

- Overlap variables model relations between operations

\[
\begin{align*}
\mu_{uv} &= 1 \\
\varepsilon_{uw} &= 1 \\
\mu_{uw} &= 1
\end{align*}
\]
- Tuples $(m_i, r_j) \Rightarrow \text{cell in MRT for operation } i$

- Overlap variables model relations between operations

\[\mu_{uv} = 1 \]

\[\varepsilon_{uw} = 1 \]

\[\mu_{uw} = 1 \]

\[\varepsilon_{vw} = 1 \]
Approaches At A Glance

Modulo SDC
Canis et al.

- Resource constraints are not part of the linear program
- Operations are assigned *heuristically* to MRT
Approaches At A Glance

Modulo SDC
Canis et al.

- Resource constraints are not part of the linear program
- Operations are assigned **heuristically** to MRT

Formulation by Eichenberger & Davidson

- **Exact** formulation
- Time-indexing → large number of binary variables, complicated constraints
Approaches At A Glance

- **Modulo SDC**
 - Canis et al.
 - Resource constraints are not part of the linear program
 - Operations are assigned *heuristically* to MRT

- **Formulation by Eichenberger & Davidson**
 - Exact formulation
 - Time-indexing \rightarrow large number of binary variables, complicated constraints

- **Moovac**
 - Oppermann et al.
 - Novel *exact* formulation
 - Uses fewer integer variables and overlap variables to model inequality between them
Evaluation

- Schedulers implemented with CPLEX 12.6.3
Evaluation

- Schedulers implemented with CPLEX 12.6.3
- Single-threaded execution on Intel Xeon E5-2667’s at 3.3 GHz
Evaluation

- Schedulers implemented with CPLEX 12.6.3
- Single-threaded execution on Intel Xeon E5-2667’s at 3.3 GHz
- Time limit of 5 min or 60 min per candidate II
 - increment II if no solution was found
Evaluation

- Schedulers implemented with CPLEX 12.6.3
- Single-threaded execution on Intel Xeon E5-2667’s at 3.3 GHz
- Time limit of 5 min or 60 min per candidate II
 - increment II if no solution was found
- Attempted to schedule 225 graphs from CHStone and MachSuite
 - up to 1124 operations / up to 107 resource-constrained operations
Results (Quality)

- **5 min time limit**

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Moovac vs. Modulo SDC</th>
<th>Moovac vs. Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shorter II found by …</td>
<td>shorter II found by …</td>
</tr>
<tr>
<td>Size</td>
<td>#</td>
<td>Moovac</td>
</tr>
<tr>
<td>all</td>
<td>225</td>
<td>6</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>1</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>
5 min time limit

Results (Quality)

<table>
<thead>
<tr>
<th></th>
<th>Moovac vs. Modulo SDC</th>
<th>Moovac vs. Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shorter II found by ...</td>
<td>shorter II found by ...</td>
</tr>
<tr>
<td>Size</td>
<td>Moovac</td>
<td>Same</td>
</tr>
<tr>
<td>all</td>
<td>225</td>
<td>6</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>1</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulo SDC delivers high-quality results
Results (Quality)

- 5 min time limit

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Moovac vs. Modulo SDC</th>
<th>Moovac vs. Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shorter II found by ...</td>
<td>shorter II found by ...</td>
</tr>
<tr>
<td>Size</td>
<td>#</td>
<td>Moovac</td>
</tr>
<tr>
<td>all</td>
<td>225</td>
<td>6</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>1</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulo SDC delivers high-quality results

Modulo SDC found schedules where Moovac ran out of time
Results (Quality)

- **5 min time limit**

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Moovac vs. Modulo SDC</th>
<th>Moovac vs. Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shorter II found by …</td>
<td>shorter II found by …</td>
</tr>
<tr>
<td>Size</td>
<td>#</td>
<td>Moovac</td>
</tr>
<tr>
<td>all</td>
<td>225</td>
<td>6</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>1</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

Modulo SDC delivers high-quality results

Exact schedulers should find same II, but E.B. hit time limit

Modulo SDC found schedules where Moovac ran out of time
Results (Time)

- Scheduling duration with 5 min time limit:

<table>
<thead>
<tr>
<th>Graphs Size</th>
<th>#</th>
<th>Moovac</th>
<th>Modulo SDC</th>
<th>Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>225</td>
<td>489</td>
<td>96</td>
<td>753</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>3</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>486</td>
<td>96</td>
<td>623</td>
</tr>
</tbody>
</table>
Results (Time)

- Scheduling duration with 5 min time limit:

<table>
<thead>
<tr>
<th>Graphs Size</th>
<th>#</th>
<th>Moovac</th>
<th>Modulo SDC</th>
<th>Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>225</td>
<td>489</td>
<td>96</td>
<td>753</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>3</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>486</td>
<td>96</td>
<td>623</td>
</tr>
</tbody>
</table>

Moovac is faster than the other approaches
Results (Time)

- Scheduling duration with 5 min time limit:

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Size</th>
<th>#</th>
<th>Moovac</th>
<th>Modulo SDC</th>
<th>Eichenberger’s ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>all</td>
<td>225</td>
<td>489</td>
<td>96</td>
<td>753</td>
</tr>
<tr>
<td>small</td>
<td>small</td>
<td>203</td>
<td>3</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>large</td>
<td>large</td>
<td>22</td>
<td>486</td>
<td>96</td>
<td>623</td>
</tr>
</tbody>
</table>

Moovac is faster than the other approaches

The timeouts dominate the overall time e.g. 96 x 5 min = 480 min
Results (Time)

- **Scheduling duration with 5 min time limit:**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>225</td>
<td>489</td>
<td>96</td>
<td>753</td>
<td>148</td>
<td>932</td>
<td>177</td>
</tr>
<tr>
<td>small</td>
<td>203</td>
<td>3</td>
<td>0</td>
<td>131</td>
<td>26</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>large</td>
<td>22</td>
<td>486</td>
<td>96</td>
<td>623</td>
<td>122</td>
<td>927</td>
<td>177</td>
</tr>
</tbody>
</table>

Moovac is faster than the other approaches.

The timeouts dominate the overall time e.g. 96 x 5 min = 480 min.

M. SDC seems to get stuck even on small graphs.
Insights

- How can an exact formulation be faster overall than the heuristic?
Insights

- How can an exact formulation be faster overall than the heuristic?
 - ILP solver “sees” whole problem, can prove infeasibility of scheduling attempt (often: fast)
Insights

How can an exact formulation be faster overall than the heuristic?

- ILP solver “sees” whole problem, can prove infeasibility of scheduling attempt (often: fast)
- Heuristic can only fail to find a solution in the given time budget
Insights

- Modulo SDC and Moovac complement each other
Insights

- Modulo SDC and Moovac complement each other
- “Synergistic scheduling”

Moovac: 489 min
Modulo SDC: 753 min
Combined: 429 min
Insights

- What makes Moovac better suited for HLS modulo scheduling than Eichenberger’s ILP?
What makes Moovac better suited for HLS modulo scheduling than Eichenberger’s ILP?

- Up to 1000+ operations, candidate IIs > 50 require humongous amounts of decision variables in time-indexed formulation
Insights

- What makes Moovac better suited for HLS modulo scheduling than Eichenberger’s ILP?
 - Up to 1000+ operations, candidate IIs > 50 require humongous amounts of decision variables in time-indexed formulation
 - Majority of ops is unconstrained, only subject to precedence constraints and exempt from all MRT handling in Moovac
Outlook

- Smarter search through the (rather large) II space
Outlook

- Smarter search through the (rather large) II space
 - Observation:
Smarter search through the (rather large) II space

- Observation:
- MaxII \(\rightarrow \) MinII ?

![Graph showing time to solution vs. candidate II]
- Smarter search through the (rather large) II space

 - Observation:
 - $\text{MaxII} \rightarrow \text{MinII}$?
 - Binary search?
Outlook

- Smarter search through the (rather large) II space
 - Observation:
 - MaxII \rightarrow MinII?
 - Binary search?

- Integrate II search into the Moovac formulation
Smarter search through the (rather large) II space

- Observation:
- MaxII \to MinII ?
- Binary search ?

Integrate II search into the Moovac formulation

- Time-indexed formulations:
 # decision variables dependent on candidate II
Conclusion

- Loop pipelining can reasonably be applied to wide range of HLS loops
Conclusion

- Loop pipelining can reasonably be applied to wide range of HLS loops
- The Modulo SDC heuristic delivers results on a par with exact formulations
Conclusion

- Loop pipelining can reasonably be applied to wide range of HLS loops
- The Modulo SDC heuristic delivers results on a par with exact formulations
- The novel, exact Moovac formulation is surprisingly practical in its time-limited mode
Conclusion

- Loop pipelining can reasonably be applied to wide range of HLS loops
- The Modulo SDC heuristic delivers results on a par with exact formulations
- The novel, exact Moovac formulation is surprisingly practical in its time-limited mode
- Diverse options to reduce the scheduling time even further exist
Thank you!

oppermann@esa.tu-darmstadt.de