
Automated Generation of Reconfigurable Systems-on-Chip by
Interactive Code Transformations for High-Level Synthesis

Silvano Brugnoni1, Thomas Corbat1, Peter Sommerlad1, Toni Suter1,
Jens Korinth2, David de la Chevallerie2, Andreas Koch2

1: IFS Institute for Software, FHO HSR Hochschule für Technik Rapperswil, Switzerland
2: Embedded Systems and Applications Group (ESA), TU Darmstadt, Germany

Abstract

Despite the advances in high-level hardware synthesis (HLS), the programming style required by the design tools for gen-
erating efficient hardware implementations still differs significantly from that used in conventional software development.
To ease the development of high-quality hardware accelerators using HLS, we propose the use of automated interactive
source code transformations. Guided by the user, the transformations help to avoid much of the tedious and potentially
error-prone manual code re-development process. The automation also takes aspects of the system-on-chip architecture
into account, e.g., addressing data-movement and the creation of heterogeneous pools of processing elements, which can
then be accessed in a multi-threaded manner from software. We demonstrate the technique targeting both reconfigurable
systems-on-chip, as well as PCIe Gen3-attached compute platforms.

Despite the advances in high-level hardware synthesis
(HLS), the programming style required by the design tools
for generating efficient hardware implementations still dif-
fers significantly from that used in conventional software
development. To ease the development of high-quality
hardware accelerators using HLS, we propose the use of
automated interactive source code transformations. Guided
by the user, the transformations help to avoid much of
the tedious and potentially error-prone manual code re-
development process. The automation also takes aspects
of the system-on-chip architecture into account, e.g., ad-
dressing data-movement and the creation of heterogeneous
pools of processing elements, which can then be accessed
in a multi-threaded manner from software. We demon-
strate the technique targeting both reconfigurable systems-
on-chip, as well as PCIe Gen3-attached compute platforms.

1 Introduction
The difficulties of increasing the performance of individual
processors, combined with the scalability problems when
attempting to employ many parallel processors to coop-
eratively execute an application, have led hardware archi-
tects to consider more heterogeneous architectures [1]. The
scalability problems of homogeneous parallel processing
can be alleviated here by being able to choose different
accelerators that are especially suitable for specific parts
of the application, e.g., dataflow, vector arithmetic, bit-
manipulation. The potential gains in performance (and of-

ten also energy efficiency) are offset, however, by an in-
creasing complexity of programming such systems. Dif-
ferent families of accelerators usually follow different pro-
gramming paradigms, often requiring multiple program-
ming languages. This is especially true for reconfigurable
computing using FPGAs: While they offer the greatest
flexibility for matching application needs, their program-
ming often requires expert knowledge in topics such as
computer architecture, digital logic design, and the use of
special EDA tools; all fields generally unfamiliar to appli-
cation software developers. To lower this barrier, high-level
synthesis (HLS) tools [2] attempt to translate more abstract
descriptions, usually conventional software programming
languages such as C or C++, into hardware descriptions
that can be mapped to FPGAs or ASICs. Despite these
advances, HLS tools are not yet completely successful in
relieving a software developer of the intricacies of hard-
ware, as the required source code often has to obey numer-
ous restrictions (e.g., with regard to pointer use), or has to
be written in a stylized fashion to be compiled into effi-
cient hardware [3]. Also, many HLS flows just create in-
dividual IP cores, and do not address the complex task of
actually integrating these into a complete systems-on-chip
(SoC). Thus, even using HLS has so far required significant
engineering effort to exploit the potential of reconfigurable
computing. In this work, we present tool support to reduce
this effort by two approaches: First, automated source code
transformation techniques encapsulate expertise of trans-
formations beneficial for HLS, and make them accessible
to non-expert developers (Section 4). Second, these code



transformations are aware of the system-level aspects, and
transform the code not just for HLS, but toward a portable
tool flow for the automatic assembly of entire heteroge-
neous parallel SoC architectures, including data movement,
operating system integration, and user-level APIs (Section
5).

2 Related Work
The compilation from high-level programming languages
to hardware implementations has been the subject of in-
tense study in both the academic as well as the commer-
cial domains. Some recent academic tools are LegUp [4],
Nymble [5], and PandA [6], while examples for commer-
cial efforts include Catapult C [7], PICO [8], and Vivado
HLS [9]. All of these tools attempt to translate from a
subset of C/C++ to hardware blocks for implementation
on ASICs and/or FPGAs. However, the compilers require
additional tool support to actually integrate the generated
blocks as usable accelerators into complete system-on-chip
architectures.

Recent examples of such tools are CMOST [10], ReconOS
[11], LEAP OS [12], MARC II [13], and the commer-
cial tool SDSoC [14]. Both ReconOS and SDSoC ex-
clusively target Xilinx Zynq-series FPGAs and provide no
support for PCIe devices. LEAP OS supports several PCIe
Gen2 devices, but neither PCIe Gen3 nor any current Xil-
inx FPGAs (i.e., 7-series). MARC II unifies accelerator
memory interfaces and low-level control/status registers,
but does not offer any higher-level abstractions. The ap-
proach most closely related to ours is the OpenCL-based
CMOST, which also does not support PCIe Gen3 or Zynq
devices. Furthermore, we use the ThreadPoolComposer [15]
toolchain to evaluate the accelerators, which does not de-
pend on availability of an OpenCL compiler for the target
platform.

Winterstein et al. have published a number of tools [16]
[17] that provide code transformations for enabling HLS of
unsupported C language features, such as dynamic heap-
allocated data structures. However, these tools do not pro-
vide extraction and generation of entire kernels. The trans-
formation tools described in our paper have been designed
to follow the usability guidelines established in [18] and
[19].

3 Selected Requirements on C Code
for HLS

Many current HLS tools raise the level of abstraction in
the description of the behavior of complex hardware mod-
ules (compared to classical HDLs such as Verilog, VHDL)
by providing support for C/C++ syntax. In theory, this al-
lows any programs written using these languages to be syn-
thesized for FPGA. However, several implicit and explicit
assumptions about the system infrastructure and execution

environment simply do not hold true in this context. Be-
cause of these principal differences, some language con-
structs exhibit different semantic behavior, and some others
are not supported at all. In order to be amenable to high-
level synthesis, program code must adhere to significant re-
strictions (cf. [3]): It must neither use any system calls, nor
dynamic memory (malloc/new) and the source code must
be available in its entirety, which excludes libraries in bi-
nary or pre-compiled form. Furthermore, all language con-
structs must be of fixed size and unambiguous implemen-
tation; this excludes, e.g., variable sized arrays and classes
with virtual methods, as well as most implementations of
common data structures (e.g., in the standard template li-
brary STL). Beyond that, several restrictions apply to the
use of pointer types.

Software code that actually adheres to all of these restric-
tions is hard to find and it often requires significant effort
to implement suitable workarounds in existing code. Each
transformation presented in the following addresses one
of the code restrictions and automates a workaround that
yields more efficiently synthesizable C/C++ code: Non-
array pointers that are not written to can be replaced by
scalar values of the pointed-to type by the Pointer Elim-
ination transformation; this yields a more efficient hard-
ware interface, since no bus master interface is required
for pass-by-value. The Pointer to Array transformation
can convert array pointers in the function signature to cor-
responding fixed-size arrays; this enables Vivado HLS to
correctly infer the address bit-width and synthesize bus
master interface(s) for memory access. Also, Vivado HLS
can synthesize efficient bus master interfaces that perform
burst transfers, but only for calls to memcpy; all other ac-
cesses are implemented as individual transfers with the
same bit-width as the array element type. Furthermore, Vi-
vado HLS considers pointers in the function signature as
off-chip memories, which limits parallel accesses. To rem-
edy these problems, the Memory Localization transfor-
mation generates a local buffer consisting of on-chip mem-
ories (BRAM, LUTs) that is transferred via memcpy at the
beginning and end of the kernel execution, which provides
highly parallel access to arrays.

Vivado HLS requires access to all code and data struc-
tures which are relevant to the kernel, which can be difficult
to achieve; unfortunately, Vivado HLS suffers from severe
stability and performance issues when dealing with huge
code bases. To alleviate this problem, the Kernel Extrac-
tion transformation isolates a user-selected portion of the
code, determines all its dependencies, and moves the code
and its dependencies into a separate self-contained transla-
tion unit, which can be used by Vivado HLS.

In the following section, we will illustrate these transfor-
mations in more detail, using a Sobel filter (cf. Listing 1)
as a running example, which is inspired by Canis’ discus-
sion in [20].



struct image { uint8_t data[WIDTH * HEIGHT ]; };
bool check_bounds(int32_t x, int32_t y) {...}
uint8_t bound(int32_t in_dir) {...}
int8_t const stencil_x [3][3] = ...;
int8_t const stencil_y [3][3] = ...;

void sobel(uint8_t const *in_image , uint8_t *out_image) {
for (size_t y = 0; y < HEIGHT; y++) {
for (size_t x = 0; x < WIDTH; x++) {
if (check_bounds(x, y)) {
int32_t x_dir = 0, y_dir = 0;
for (int8_t x_os = -1; x_os <= 1; x_os ++) {
for (int8_t y_os = -1; y_os <= 1; y_os ++) {
int32_t img_i = (y + y_os) * WIDTH + x + x_os;
uint8_t pixel = *( in_image + img_i);
x_dir += pixel * stencil_x [1 + x_os ][1 + y_os];
y_dir += pixel * stencil_y [1 + x_os ][1 + y_os];

}
}
uint8_t edge_weight = bound(x_dir) + bound(y_dir);
int32_t out_index = y * WIDTH + x;
*( out_image + out_index) = 255 - edge_weight;

}
}

}
}

int main() {
image * images = ..., results = ...;
for (size_t img_i = 0; img_i < NOF_IMAGES; img_i ++) {

sobel(images[img_i ].data , results[img_i].data);
}

}

Listing 1 Sobel filter example

4 C/C++ Code Transformations for
HLS

In this section, we present the code transformations for
HLS. For each transformation, we give a short statement
of its intent, followed by an overview of the transformation
actions, and conclude by illustrating the application of each
transformation on the Sobel filter example. The transfor-
mations are implemented as plug-ins for the Eclipse-based
Cevelop IDE [21], which provides a sophisticated analy-
sis and transformation infrastructure for C++. They can be
easily triggered by selecting the target source code element
in the code editor and invoking the corresponding transfor-
mation command in the Cevelop graphical user interface.
The Cevelop infrastructure, combined with the analyses
that were specifically developed for the presented transfor-
mations, provides a platform that can be used to implement
additional transformations for HLS.

4.1 Pointer Parameter Elimination
Most HLS tools are capable of dealing with a limited set
of pointer and array types; e.g., by convention, Vivado
HLS implements stack-allocated data in on-chip memory,
whereas pointers indicate off-chip memory [3]. Access to
the latter is usually implemented using a bus master inter-
face, i.e., via address and data channels, or streaming. This
approach is suitable for large amounts of data, but can incur
prohibitive overhead for small, isolated pieces of data and
limits parallelism. Unfortunately, even fundamental types
are often passed via pointers in code intended to run on
CPUs, since the dereferencing-overhead is negligible (for
modern compilers). To remedy the adverse effect of such
code on the resulting hardware circuits, we provide two

transformations to remove pointer parameters:

Pointer Elimination replaces a pointer parameter by a cor-
responding value parameter.

1. Replace the pointer parameter declaration with a value
parameter declaration:
void f(int *param) ⇒ void f(int param)

2. Remove all pointer dereference expressions in the
function body:
x = *param ⇒ x = param

Note that side-effects on the data may be lost at the call site,
since they are now local to the copied data in the kernel.

Pointer to Array Conversion replaces a pointer parameter
by an array parameter. It is composed of three transforma-
tion actions:

1. Replace the pointer parameter declaration with an ar-
ray parameter declaration:
void f(int *param) ⇒ void f(int param[SIZE])

2. Replace all pointer dereference expressions with cor-
responding array access expressions:
y = *(param + x) ⇒ y = param[x]

3. Introduce an offset variable for tracking modifications
of the parameter, if necessary:

x = *param ++; ⇒ int offset = 0;
x = param[offset++];

The results of this transformation when applied to the So-
bel example are shown in Listing 2: The type of the pa-
rameters input_image and output_image is replaced in the
function declarator. All array memory accesses are per-
formed using the index operator. Introduction of an offset

variable is not required because the pointers are not modi-
fied.
void sobel(uint8_t const in_image[WIDTH * HEIGHT],

uint8_t out_image[WIDTH * HEIGHT ]) {
...
uint8_t pixel = in_image[img_i ];
...
out_image[out_index] = 255 - edge_weight;

}

Listing 2 Replacement for pointer parameter

4.2 Memory Localization
As mentioned earlier, the differentiation between on-chip
and off-chip memories has significant impact on the perfor-
mance of HLS hardware and a suitable trade-off is impera-
tive. When dealing with large amounts of data, a common
hardware design technique is to repeatedly fetch a small
part of the data into a local buffer (using burst transfers, if
available) and then operate locally on the buffer. In HLS,



Figure 1 Interactive tool flow at the example of pointer elimination; User selected pointer parameter to eliminate and started the
transformation with a single click.

this can be expressed by copying a pointer parameter to a
stack allocated buffer variable; if memcpy is used to copy the
data, Vivado HLS will also generate burst transfers [3]. The
Memory Localization transformation can apply this tech-
nique automatically to pointer structures on the function
interface. It is composed of three transformation actions:

1. Rename the parameter:
void f(int x[5]) ⇒ void f(int param_x [5])

2. Add a local array with same name and size as the pa-
rameter prior to 1) to avoid further renaming.

3. Insert memory copy operations where necessary: For
input parameters, copy its data to the newly introduced
local array; for output parameters, copy the data back
from the local array. Only parameters serving as input
and output require both copy operations.

Example for actions 2 and 3:

void f(int param_x [5]) {
int x[5];
memcpy(x, param_x , sizeof(x)); // function start
...
memcpy(param_x , x, sizeof(x)); // function end

}

The results of this transformation when applied to the So-
bel example are shown in Listing 3. The data of in_image
is copied into the local scope. Conversely, the data of
out_image is copied back to the parameter, in order to re-
tain the side-effect on the parameter.
void
sobel(uint8_t const param_in_image[WIDTH * HEIGHT],

uint8_t param_out_image[WIDTH * HEIGHT ]) {
uint8_t out_image[WIDTH * HEIGHT ];
uint8_t in_image[WIDTH * HEIGHT ];
memcpy(in_image , param_in_image , sizeof(in_image ));
...
memcpy(param_out_image , out_image , sizeof(out_image ));

}

Listing 3 Local copy of in_image and out_image



Figure 2 Interactive tool flow for memory localization; User selected a function parameter and can generate the local copy with a
single click.

4.3 Kernel Extraction
Most traditional C/C++ code is not as neatly structured into
cohesive kernel functions as in the Sobel example. Individ-
ual pieces of a particular computation are often scattered
across several translation units, data structures, or classes.
We provide a Kernel Extraction transformation, which au-
tomatically prepares specific program sections for HLS.
When applied to a kernel function call, this transformation
extracts the function body and all of its code dependen-
cies, as well as any data pertaining to this particular func-
tion call, into a separate independent translation unit that
is ready for synthesis. The extraction process encompasses
the following steps:

1. Identify all data and code dependencies of the ker-
nel function and copy them into a separate translation
unit.

2. Generate the kernel interface and put it into the same
translation unit as the data dependencies.

3. Generate the kernel computation logic, based on the
target function, and put it into the translation unit.

4. Modify the function call site to use the newly gener-
ated kernel instead of the target function.

The interface of the extracted kernel consists of a data con-
tainer and three functions:

• kernel_data: This struct serves as a container for all
data that must be copied to and from the FPGA, to
ensure that all data transfers happen as a single DMA
operation.

• prepare(): This function stores the kernel arguments
in the data container prior to the kernel execution.

• retrieve(): This function fetches the computation
results from the data container after the kernel exe-
cution has finished.



Figure 3 Interactive tool flow for kernel extraction; User selected a function call site (blue selection below) and with a single click
the user can start the extraction of both code and data structures into separate compilation units, as well as generate the TPC API code
that replaces the original call site code and executes on the FPGA instead.

• apply(): This function contains the computation
logic that will be synthesized and executed on the
FPGA.

The translation unit generated during the extraction con-
sists of two files: a header containing the declarations of
the kernel interface as well as the declarations of the kernel
dependencies, and a source file containing the correspond-
ing definitions.

In the following, we illustrate the results of the kernel
extraction when applied to the Sobel filter example, that
has been preprocessed using the previously describe trans-
formations. Listing 4 shows the header of the extracted
sobel kernel: The data container, kernel_data_sobel,
contains the kernel input and output parameters, in_image
and out_image. The parameters are copied to and fetched
from the data container using prepare and retrieve, re-
spectively. In addition, the header contains the declarations

of any types, macros, typedefs, and constants, which the
kernel depends on.
extern const int8_t stencil_x [3][3];
extern const int8_t stencil_y [3][3];
struct kernel_data_sobel
{

uint8_t in_image[WIDTH * HEIGHT ];
uint8_t out_image[WIDTH * HEIGHT ];

};

inline void
prepare(kernel_data_sobel &data ,

const uint8_t in_image[WIDTH * HEIGHT ]) {
memcpy(data.in_image , in_image ,

sizeof(data.in_image ));
}

void apply(kernel_data_sobel &data);

inline void
retrieve(kernel_data_sobel &data ,

uint8_t out_image[WIDTH * HEIGHT ]) {
memcpy(out_image , data.out_image ,

sizeof(data.out_image ));
}

Listing 4 Extracted kernel header - kernel_sobel.h



Figure 4 Kernel extraction separates the extracted code from
the original code base; the user can select both name of the ker-
nel, as well as the location of the new source files containing
code and data definitions.

Listing 5 shows the source file of the extracted Sobel ker-
nel. It contains the definition of apply(), an adapted ver-
sion of the sobel function, where the parameters are re-
placed with the corresponding fields of the data container.
In addition, the source file contains the definitions of the
functions check_bounds() and bound(), which the kernel
depends on.
const int8_t stencil_x [3][3] = ...;
const int8_t stencil_y [3][3] = ...;
bool check_bounds(int32_t x, int32_t y) {...}
uint8_t bound(int32_t in) {...}

void apply(kernel_data_sobel &data) {
uint8_t out_image[WIDTH * HEIGHT ];
uint8_t in_image[WIDTH * HEIGHT ];
memcpy(in_image , data.in_image ,

sizeof(in_image ));
...
memcpy(data.out_image , out_image ,

sizeof(out_image ));
}

Listing 5 Extracted kernel source - kernel_sobel.cpp

The modified call site is shown in Listing 6. The sobel

function invocation is replaced by calls to the kernel in-

terface, which prepare the data, run the computation, and
retrieve its results. Furthermore, the Kernel Extraction
also generates calls into the TPC API (the software API
of ThreadPoolComposer, see Sec. 5) to launch the kernel on
an accelerator.
int main() {

...
FOO foo;
for (size_t img_i = 0;

img_i < NOF_IMAGES;
img_i ++) {

kernel_data_sobel data;
prepare(data , images[img_i ].data);
foo.launch(0, &data);
retrieve(data , results[img_i ].data);

}
}

Listing 6 Kernel extraction call site

5 System Environment for Accelera-
tors

A major advantage of the HLS-based approach to hard-
ware development is significantly increased productivity,
and thus reduced time to the first working prototype. This
time can be further reduced by using an automatic compila-
tion flow that generates the system-on-chip architecture re-
quired to organise multiple instances of the hardware mod-
ules generated by HLS tools. In the following, we use the
ThreadPoolComposer [15] compilation flow and system in-
frastructure to demonstrate this approach and evaluate the
transformations presented in previous sections.
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Figure 5 ThreadPoolComposer Compilation Flow

The overall flow is depicted in Fig. 5: Starting from a set
of standalone C/C++ kernels which have been prepared
for HLS using the software transformations described in
the previous sections, ThreadPoolComposer performs HLS
in batch mode to generate behaviorally equivalent IP Cores.
In the next step, ThreadPoolComposer composes a complete
design in two phases: First, the Architecture instantiates the
HLS IP cores (each instance is called Processing Element

(PE) in the following) and organizes them into a Thread-

Pool (cf. Fig. 6); the Architecture is the device-independent
part of the design, which can be re-used with different Plat-
forms. In the second phase, the chosen Platform instantiates
device-dependent infrastructure and connects the Thread-

Pool with the host system; i.e., it provides the host with
control access to the ThreadPool registers, the ThreadPool

with access to device memory (if required), and a basic
signaling interface from the ThreadPool to the host to no-
tify of completed tasks. The resulting design is a com-
plete system-on-chip, which is synthesized into a device
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bitstream by the vendor’s tool chain. This entire process is
automatic; the user can provide a Composition, i.e., specify
how many PEs of which kernels shall be instantiated.

Based on this Composition, ThreadPoolComposer can per-
form basic design space exploration (DSE), where the de-
sign space is defined by number of PEs on the one hand,
and design operating frequency on the other. During the
HLS step the IP cores generated for each of the kernels
are evaluated regarding their maximal frequency, as well
as their area utilization. The initial composition (specified
by the user) determines the overall distribution of kernel
PEs, which is kept (approximately) constant. On the area
axis, discrete steps can then be generated by enumerating
all compositions with the same distribution of PEs ranging
from at least one PE per kernel up to a platform-defined
utilization limit (e.g., 70% Slice LUTs for PEs). The steps
on the frequency axis are determined by the hardware, i.e.,
the oscillators and their multipliers on the device determine
which frequencies can be generated. This design space is
currently ordered by a very simplistic throughput metric:
On each platform we measured the average time for writ-
ing two control registers and the average interrupt response
time, i.e., the time between the hardware raising the inter-
rupt and user space being notified. In sum, this yields the
minimal kernel execution overhead. During the HLS step,
kernel runtimes are evaluated either statically (if runtime is
independent of the input) or dynamically (based on a user-
specified example input). Putting it all together, we can
now compute an estimate of the number of jobs per second
given the design frequency and number of parallel PEs for
each composition/frequency pair and use it as an idealized
metric M to order the design space:

M =
K

∑
i=1

Ni

tmin +
ti
F + tint

where K is the number of different kernels, Ni is the num-
ber of PEs for kernel i, ti is the runtime of kernel i in clock
cycles, F is the design frequency, tmin is the start time (i.e.,
writing two control registers) and tint is the interrupt re-
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Higher Layers and Application

Figure 7 ThreadPoolComposer Stack

sponse time. ThreadPoolComposer will iterate through the
design space ordered by M and stop at the first composi-
tion/frequency pair that achieves timing closure. This sim-
ple DSE process has been used in the following evaluation.

ThreadPoolComposer provides a two-level software stack
(see Figure 7) to close the remaining gap to the application:
The Platform API library manages the Platform parts of the
design; it provides abstractions for device memory manage-
ment, signaling and low-level access to the hardware via
the device driver. Both the device driver and the Platform

API need only be implemented once per Platform. Above
this layer resides the TPC API, which is the user-facing,
high-level API the application uses to launch jobs on the ac-
celerator (in style reminiscent of OpenCL, but much more
lightweight). A code example can be found in [15].

ThreadPoolComposer currently supports three different
Platforms for the following FPGA boards: The zedboard is
Zynq-7000 series SoC board featuring a Xilinx XC7Z020(-
1) FPGA and a dual core ARM Cortex A9, the ZC706 is
a larger version of the same system with a XC7Z045(-2)
FPGA; finally, the VC709 is a PCIe Gen3 device with a
XC7VX690T(-2).

6 Evaluation
In this section, we evaluate the Memory Localization trans-
formation (see Section 4.2) using the running example of
the Sobel filter in three steps: First, we observe the results
of our source code transformations on the high-level syn-
thesis results. Second, we observe the resulting effect on
the designs which can be built automatically by Thread-

PoolComposer using its DSE mode in terms of number of
PEs (∼ area) and design frequency. Finally, we evalu-
ate the real-world performance of the designs by compar-
ing the wall-clock runtimes of a multi-threaded benchmark
program.

Note that Vivado HLS does not use pipelining by default.



Variant F Latency ∝ BRAM

sobel 291 3256367 1.0× 0
sobel-ml 304 1176895 2.8× 16
sobel-p 288 291879 11.2× 0
sobel-p-ml 298 65831 49.5× 16

Table 1 High-Level Synthesis results for Sobel variants (ml =
w/memory localization, p = pipelined) on ZC706: Latency in
clock cycles, F = est. max. frequency in MHz.

As the Sobel algorithm is known to benefit significantly
from pipelining, we also provide additional results with ex-
plicitly activated pipelining (indicated by the suffixes).

6.1 Environment
The zedboard is an embedded system that features a Xil-
inx Zynq-7000 SoC with a dual ARM Cortex A9 running at
666 MHz and a FPGA frequency of up to 100 Mhz. Xilinx’
ZC706 evaluation kit is a larger version of the same system,
with the CPU running at 800 MHz and FPGA frequency of
up to 250 Mhz. Finally, the VC709 is a 8x PCIe Gen3 de-
vice that has been evaluated with an Intel Xeon E5 1620v2
host CPU @3.7 Ghz (3.9 GHz TurboBoost); maximum fab-
ric frequency is also 250 MHz. All three evaluation Plat-

forms are running Linux 3.19, the examples were compiled
with gcc 4.9.2, both for the x86_64 and the armv71 targets,
Vivado Design Suite 2015.2 was used for synthesis.

6.2 HLS Results
Table 1 shows the high-level synthesis results of the Mem-
ory Localization transformation in terms of latency for
the ZC706 (the results for zedboard and VC709 are very
similar and have been omitted for brevity). Compared to
the original version without pipelining, the buffers require
< 2% of the available BRAM18K resources; however, this
yields an improvement by 2.8× in terms of latency. When
applied to the pipelined version, the effect is more dra-
matic, yielding a 49.5× improvement compared to the orig-
inal version, and 4.4× compared to the pipelined version
without Memory Localization.

6.3 Full Design Synthesis Results
To quantify the effect of these changes on a complete de-
sign, we used ThreadPoolComposer [15] in DSE mode us-
ing the baseline Architecture, which uses only off-the-shelf
Xilinx AXI infrastructure IP. The results are shown in Ta-
ble 2, where the last column indicates the percentage of
area used for the PEs only vs. overhead for communica-
tion and infrastructure. Zynq designs scale well to large
numbers of PEs, all designs use > 50% of the total area for
the PEs. On the VC709, multiple clock-domains between
PCIe, DDR and user logic produce a significantly larger
overhead. Furthermore, the total area usage is below opti-
mal, which is due to the current ThreadPoolComposer limit

of 64 PEs.

6.4 Performance Results
Finally, Table 3 shows the wall-clock runtimes of a multi-
threaded benchmark program working on random data.
Speedups range from 2.3× up to 377.6× (with PCIe-based
VC709 benefiting most from the aggregated data transfers)
compared to the IP core resulting from the original source
code, which confirms that Memory Localization is a highly
useful, portable optimization for C/C++ HLS code.

7 Conclusion
We have shown that automated transformations on the
source code level are useful to accelerate the development
of hardware kernels using HLS, and that HLS-specific op-
timizations on this level are portable and can significantly
improve the overall performance. Implementing common
hardware design techniques as repeatable, interactive trans-
formations is a promising approach to tackle the severe dif-
ficulties HLS tools are facing and to reduce the gap be-
tween software code and hardware acceleration. In addi-
tion to the running example discussed above, the use of
the automated user-guided source code-transformations in
HLS-based design flows has already proven beneficial in
trial use at the industrial partners of [22]. This also holds
true for ThreadPoolComposer, which can not only be used
to create and access FPGA-based accelerators in a portable
manner, but also even more heterogeneous architectures
encompassing many-core processors and DSPs.

Availability of Tools: ThreadPoolComposer has been re-
leased as open-source and is currently available in the
Downloads section of www.esa.cs.tu-darmstadt.de.
The automated source code transformations described are
implemented as custom extensions to the Cevelop frame-
work, available at [21].
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