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Abstract—Future high-performance computing systems will
need to include multiple specialized accelerators in a single
heterogeneous system to overcome power-density limitations of
CPU performance.

To program such heterogeneous systems without the need
to maintain multiple code bases, OpenMP device offloading
constructs can be used to execute compute-intensive regions on
different kinds of accelerators.

In this work we present a proof-of-concept implementation of
OpenMP offloading for FPGA-based hardware accelerators. Our
implementation seamlessly integrates with the existing LLVM
offloading infrastructure, and enables the user to move compu-
tations to a custom FPGA accelerator by simply adding OpenMP
offloading directives to the input program.

I. INTRODUCTION

With new process technologies for CPUs no longer trans-
lating into performance improvements due to power density
limitations, the performance increase for CPUs has declined
in recent years. As a consequence, CPU-only systems are no
longer able to meet the ever-increasing demands for comput-
ing power, especially in high-performance computing (HPC)
scenarios.

In order to overcome these limitations and provide suffi-
cient computational power for future computing tasks, future
high-performance computing systems will need to incorporate
multiple dedicated, specialized accelerators into a single het-
erogeneous system. Each accelerator is suitable for a limited
set of operational tasks and is able to deliver a better power-
efficiency for this set of tasks than the general-purpose CPU.

Beyond the GPUs that are nowadays very common in
high-performance heterogeneous systems, dedicated FPGA-
based hardware accelerators have received increasing attention
recently. Their reconfigurability facilitates the adaptation of the
accelerator to multiple tasks, delivering better performance and
power-efficiency than general-purpose processors. An example
for the use of FPGAs in heterogeneous systems is the deploy-
ment of FPGAs in Microsoft’s Azure cloud [1].

However, programming heterogeneous systems is hard, as
each system comprises multiple (potentially varying) different
computational units. Adapting the software to each accelerator
and system requires significant rewriting of existing code
bases, resulting in high development effort and cost.

The use of a single input program for all kinds of accelera-
tors, on the other hand, is also challenging. This is especially
true as not all accelerators are suitable for all computational

tasks, and typically only the most computation-intensive sec-
tions (”hot-spots”) of a program should be offloaded to a
dedicated device, whereas more sequential or unsuitable (e.g.
control-flow intensive) regions of code should remain on the
general-purpose CPU.

The OpenMP target directive, introduced and refined in
recent versions of the standard [2], is a perfect fit for denoting
regions of code that should be offloaded to a device in a
heterogeneous system. The directive does not only allow to
specify the device-suitable regions of code by easy-to-use
pragmas, but the associated data mapping clauses also give the
programmer full control over what and how data is mapped
to the device. Therefore, the OpenMP target directive is a
good choice for the programming of heterogeneous systems
including an FPGA as dedicated hardware accelerator.

The LLVM compiler framework C/C++-language frontend,
Clang, is currently being extended for target directives. In
this work, we build on the existing Clang infrastructure to
provide support for offloading to FPGA-based accelerators
using OpenMP target directives. Our work is based on Thread-
PoolComposer (TPC) [3], an automated framework for the
synthesis and HW/SW interfacing of FPGA-based accelerators
(available from [4]). It uses Xilinx Vivado HLS for generat-
ing hardware accelerators from C/C++. Our implementation
enables the user to directly offload OpenMP target regions
that are compatible with the input restrictions of Vivado HLS
to FPGA hardware accelerators. The user is not required to
provide specialized code in the input program to interface with
the hardware accelerator and our implementation also manages
data mapping to the FPGA memory.

The rest of this work is structured as follows. Section II
gives an overview of related work and the existing OpenMP
offloading infrastructure in Clang/LLVM. Section III provides
a short introduction to the ThreadPoolComposer toolchain, on
which our work is based. In Section IV we describe our new
compile and runtime flow, which we evaluate and compare
in Section V. Section VI concludes our work and gives an
overview on future work.

II. PRIOR WORK

We will begin the discussion of related work by looking
at other tools which use OpenMP as input for High-Level
Synthesis targeting FPGAs and compare them to our approach.
Afterwards, we describe some efforts to implement OpenMP978-1-5090-4825-0/17/$31.00 c© 2017 IEEE



device offloading to non-FPGA targets and explain the existing
LLVM offloading infrastructure in more detail.

A. OpenMP-based FPGA-acceleration
OpenMP-annotated source code has been used as input

and starting point for a number of High-Level Synthesis
approaches targeting FPGAs. These approaches focus on
efficiently mapping parallel OpenMP-constructs to FPGA-
based hardware accelerators, either using a pure hardware-
flow or aiming for a mixed software/hardware-environment.
For example, in [5], [6] a dedicated accelerator is synthesized
for every OpenMP task in the program. Other efforts, such
as the ones presented in [7], [8], [9], [10], efficiently map
OpenMP worksharing loops to FPGA-accelerators capable of
executing computations from multiple threads in parallel.

However, none of these approaches makes use of the
OpenMP target directives to allow the user to specify which
regions to offload to the FPGA, or how to map data from the
host to the FPGA.

In contrast, the approach presented in this work uses the
OpenMP target directive to allow programming a hetero-
geneous system, including FPGA-based accelerators, with a
single, portable input code. The focus of our work is the of-
floading itself, i.e. the management of the on-device execution
and the efficient mapping of data from host- to device-memory.

Using the memory mapping specified by the user in the
appropriate pragma allows our tool to clearly determine which
data must be transferred to/from the device memory, whereas
the previously discussed approaches must employ a conserva-
tive approximation and tend to transfer more data than strictly
necessary.

For the mapping of the code inside the target region to
FPGA-accelerators, we currently rely on Vivado HLS. How-
ever, note that we could also integrate other HLS-approaches
(e.g., those already listed above or other generic HLS systems
such as Nymble [11], Bambu [12] etc.), to efficiently map the
code inside the target region, potentially containing parallel
OpenMP constructs, to the FPGA. Thus, our approach can be
seen as complementary to the ones discussed above in that it
can additionally provide the user with clearly defined means
to specify a memory mapping and denote regions that are to
be executed as FPGA-accelerators.

B. OpenMP Device Offloading
OpenMP device offloading has previously been imple-

mented within the LLVM infrastructure for a number of device
types. [13] presents results for OpenMP execution in a system
featuring a Xeon Phi accelerator. In [14], an implementation of
OpenMP target offloading for DSP accelerators is described.
The target architecture comprises of a multi-core, general-
purpose ARM CPU and a multi-core DSP. The volume of
data transferred is optimized by allocating a contiguous block
of physical memory that is shared between host and device,
making the transfer to/from the device obsolete.

In [15], Bertolli et al. present an extension of the Clang
language frontend and the LLVM OpenMP runtime, which fa-
cilitates the use of CUDA-enabled Nvidia GPUs for OpenMP

offloading. Code regions intended for offloading are auto-
matically translated to CUDA ptxas assembly, with OpenMP
parallel constructs transformed to parallel CUDA constructs.
The runtime uses the CUDA device driver to map data to/from
the device and to initiate computation on the GPU.

Finally, [16] presents a concerted effort for generic and
extensible support of OpenMP device offloading within the
Clang/LLVM compiler infrastructure. The implementation is
designed to provide easy access to common functionality,
and to be extended for further device types with limited
implementation effort.

During the compilation phase, a separate device-specific
translation is performed. The resulting binaries for all devices
and the host are then combined to a single “fat” binary.

Additionally, the LLVM OpenMP runtime has been ex-
tended by two-layered library support for device offloading,
with the design of the library described in [17]. The device-
agnostic libomptarget provides common functionality and of-
fers a standardized interface for data mapping and device
execution control. To this end, libomptarget interacts with the
device-specific plugins on the second layer of the library,
which each provide support for offloading for a certain kind
of device (e.g. CUDA-enabled GPUs).

Our own work integrates seamlessly with this LLVM of-
floading infrastructure. In Section IV we describe our custom
Clang compilation flow and the implementation of our libomp-
target device plugin.

III. THREADPOOLCOMPOSER

The ThreadPoolComposer [3] toolchain has been developed
to fast-track the prototyping of FPGA-based accelerators using
HLS tools, such as Vivado HLS. TPC automates the execution
of the HLS tool to synthesize hardware accelerators from
kernel code, and can assemble multiple instances of these
accelerators (processing elements, PEs) in a complete top-level
design, called threadpool, which also provides standardized
connectivity to host and device memory. Regardless of its
internal composition, every threadpool can be controlled by
a two-layered, unified software interface, consisting of the
user-facing TPC API and the internal Platform API. TPC
API provides basic functions to query the device bitstream
for available hardware modules, transfer data to/from the
device and launch jobs on the threadpool. Platform API is
only used to implement the TPC API and isolates platform-
specific code (e.g., to control infrastructure hardware). This
facilitates basic portability of TPC applications since the TPC
API is identical for all hardware platforms (write once, run
”everywhere”). Using TPC designs, the software programmer
can thus take advantage of the specific capabilities of the
executing platform, without having to rewrite any code. This
makes TPC an ideal low-level foundation for the implemen-
tation of higher-level, heterogeneous, parallel runtimes and
programming frameworks, such as OpenCL, or OpenMP.

In this work, we substantiate this claim by combining TPC
and the OpenMP target offloading infrastructure to implement
FPGA-based accelerators directly from OpenMP application



code. Our custom Clang toolflow (described in more detail in
the next section) extracts standalone C/C++ functions from the
OpenMP application code (marked with the target directive),
which are then fed into the TPC toolchain to generate a
hardware design. Our LLVM offloading plugin automatically
generates the TPC API calls to interface with the hardware,
enabling transparent offloading to the FPGA.

IV. OFFLOADING FOR FPGAS

In this section we describe the integration of our work into
the Clang/LLVM OpenMP offloading infrastructure. As stated
in Section II, our implementation consists of two parts, namely
a custom device toolflow for Clang and a device-specific
plugin implementation for libomptarget, both described in
detail in the following sections.
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Fig. 1. Custom device toolflow for Clang.

A. Compilation Flow

As indicated in Section II, the compilation of an input
program containing one or more OpenMP target directives
results in multiple calls to Clang toolflows. In addition to the
regular invocation for the host compilation, a distinct toolchain
is invoked for each offloading target selected in the original
call to the Clang driver. In contrast to the host compilation,
the scope of per-device compilation is limited to the target
regions present in the input program, which have each been
extracted to a separate function before.

In order to support FPGA-based OpenMP offloading, we
implement a custom Clang toolflow (see (a) in Fig. 1), which
is identified by a custom LLVM target-triple we introduced.
The output of our custom toolflow consists of three parts:

• A TPC-specific device software executable (Fig. 1.b),
which is included in the fat binary.

• An input file for Vivado HLS for each target region in
the original program (Fig. 1.d).

• A kernel description (Fig. 1.c) for each target region, used
to drive the TPC synthesis flow.

These output files are now described in greater detail.

TPC device software executable The device software exe-
cutable is the result of our custom code generation. It directly
interacts with TPC using functions from the TPC API (cf.
Section III). Its tasks are the transfer of parameter values
(e.g. pointers to arrays used within the target region) to the
FPGA, and the launch of the accelerator execution after a
job ID has been acquired. The additional level of indirection
introduced by this software executable (compared to direct
invocation of TPC from the libomptarget-plugin) is beneficial,
as it allows us to implement a more fine-grained control of
the interfacing between software and hardware. For example,
we could implement coarse-grain parallelism in the software
executable, distributing the computations of an OpenMP work-
sharing loops across multiple hardware processing elements
by acquiring and simultaneously launching multiple offloaded
jobs in the software executable.
Vivado HLS input file The Vivado HLS input files resulting
from our custom device compilation toolchain each contain
the code for a single target region of the original program,
extracted to a function. Our toolchain also preserves pragmas
unknown to Clang in this regions, allowing Vivado HLS
specific pragmas annotated by the user to be still present
in the Vivado HLS input file. These pragmas, indicating
e.g., pipelining or unrolling of a loop, could also be added
automatically in the future.
Kernel description The TPC-specific kernel description iden-
tifies the Vivado HLS input file and the target function for
each target region, and also lists the type (value or reference)
for each parameter of the target function.

From here on, TPC automates the entire design flow: Using
the kernel description and the target region code source file,
TPC synthesizes a hardware module for each target region in
the input program via Vivado HLS. TPC then automatically
assembles a complete top-level design with host connectivity
and memory access. The top-level can contain multiple hard-
ware instances of an individual kernel (so-called processing
elements), and also mix hardware instances of different kernels
(from distinct target regions), avoiding the need to dynamically
reconfigure the FPGA at runtime. Finally, the hardware design
is synthesized using the Vivado Design Suite. The resulting
bitstream can be directly loaded and accessed with the TPC
APIs (see Fig. 1.f).

In summary, our custom compilation flow allows users to
go from a single input code, with OpenMP target directives
annotated in the program code, to a complete FPGA-design
including memory- and host-connectivity, without the need for
the user to provide additional low-level specifications to the
flow.

B. Runtime flow

The OpenMP offloading model is a host-centric approach,
i.e., the execution starts on the host CPU. If a target region is
encountered, device execution is initiated by calling libomp-
target using calls from the LLVM OpenMP runtime library
interface. Should this be the first offload to a device, the
device is initialized now. Before the execution on the device
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can start, data needs to be made available on the device. The
OpenMP standard allows data to be shared between host and
device, as well as for separate data spaces. In our current
implementation, FPGA and host CPU do not share memory,
therefore we need to allocate and transfer mapped data to the
FPGA memory by invoking the TPC device plugin. During this
process, libomptarget is responsible for keeping track of the
mapping between host and device pointers for each variable
mapped to the device, and the TPC-specific device plugin
uses data transfer functions from the TPC API to initiate data
transfers with the DMA engine in the FPGA bitstream.

In the next step, the TPC device-specific software executable
is loaded and launched using libelf and libffi, a process similar
to the one used for offloading to ELF-compatible devices in
general. The loaded software executable in turn starts hard-
ware execution (cf. Section IV-A). After hardware execution
completes, data is copied back to the host memory, again using
TPC API calls and the DMA engine on the FPGA. The entire
runtime execution flow is shown in Fig. 2.

V. EVALUATION

For this initial proof-of-concept system, we use the Xilinx
VC709 board as accelerator. Here, an XC7VX690T FPGA,
attached to 4 GiB on-board memory, is connected to the host
via PCIe Gen3 x8. This platform uses the lightweight ffLink
PCIe Gen3 interface which achieves close-to-optimal data
transfer speeds [18]. The host uses a four core Intel Core-
i7-6700K at 4.0 GHz with 16 GiB of DDR4 RAM running a
Fedora 22 Linux with kernel 4.0.8.

We evaluate our approach using vector- and matrix-routines
from the Adept benchmark suite [19]. For each workload we
create two different hardware kernels: The first without any
optimisations, the second with loop pipelining for the inner-
most loop by manually inserting the loop pipelining pragma
available in Vivado HLS. All kernels run at a frequency of
250 MHz and the pipelined kernels were scheduled with an
initiation interval of 1. For all benchmarks, we were able to
offload the workload loop to the FPGA by just adding a simple
OpenMP target pragma, demonstrating both the functionality
and convenience of our implementation.

We compare our implementation to the x86-offloading im-
plementation present in LLVM. The x86-executables were
compiled with -O3 and use 4 cores for the OpenMP paral-
lelised workload in each benchmark. Runtimes (normalized to
the x86 offloading execution) are shown in Fig. 3. For the
current prototype, the offloaded FPGA execution is slower
(geomean ∼6.9x and ∼3.4x), with pipelining significantly

Fig. 3. Normalized runtime.

speeding up the hardware execution (geomean ∼2x improve-
ment over non-optimised kernel). However, bear in mind that
the x86 offloading execution uses 4 core CPU at 4.0 GHz,
whereas our current proof-of-concept implementation is still
limited to a single processing element at 250 MHz.

Fig. 4. Normalized runtime vs. data size in the vector scaling benchmark.

Despite being slower than the CPUs, the prototype is actu-
ally useful to evaluate the overhead of our offloading approach
compared to the x86 offloading implementation. We measure
the runtime for different data sizes, ranging from 0.5. . . 50 MiB
of the input vector in the vector scaling benchmark. The
bold black line in Fig. 4 depicts the unit diagonal between
input data size and runtime (note the logscale!). While the



overhead of offloading dominates for all three targets in
the case of 0.5 MiB, all targets exhibit a gradient <1 for
larger data sizes. Considering the fact that the overhead of
our offloading implementation includes hardware initialization,
data transfers via PCIe, and interrupt latencies, we conclude
that our offloading approach via TPC is competitive.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented the first fully functional
implementation of the OpenMP device offloading model for
FPGAs. Our implementation seamlessly integrates with the
existing LLVM offloading infrastructure, and enables users to
move computational workloads to a custom FPGA accelerator
by simply adding OpenMP target directives to their code.
Using our tool flow, which combines custom Clang extensions
and TPC’s automation of the hardware synthesis process,
the user can generate a complete FPGA-design, including
memory- and host-connectivity, from a single, portable input
code. Furthermore, the OpenMP memory mapping clauses
allow the user to precisely specify which data to transfer
to/from the device memory. Our evaluation then showed that
our approach does not introduce excessive overhead to the
offloading process.

In our current implementation, a single PE occupies less
than 1% of the FPGA’s resources (not including PCIe, memory
and host connectivity infrastructure). Therefore, in order to im-
prove the performance of FPGA offloading, we intend to make
use of coarse-grain parallelism in future work by automatically
distributing the computation of parallel OpenMP workloads,
such as target team distribute, across multiple identical PEs.

Beyond that, we intend to extend our implementation to
additional platforms supported by TPC, e.g., the Xilinx Zynq-
series reconfigurable SoC systems.
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