
OpenMP Device Offloading
to FPGA Accelerators

Lukas Sommer, Jens Korinth, Andreas Koch
Embedded Systems and Applications Group / Computer Systems Group

Technische Universität Darmstadt

1. Motivation & Goals
Motivation

● FPGAs increasingly used for
implementation of accelerators
in HPC systems (e.g. Microsoft
Azure)

● Programming heterogeneous
systems is non-trivial

● Desirable: Programming with a
single, portable code base

Goals

● Implement toolflow to
automatically map target
regions to FPGA accelerators

● Extend LLVM OpenMP
Runtime [2,3] to manage data
transfers and FPGA execution

2. OpenMP Device Offloading

#pragma omp target \
map(to:x[0:SIZE]) \
map(tofrom:y[0:SIZE])

{
#pragma omp parallel for[...]

 for(i=0; i<SIZE; i++){
y[i] = a*x[i]+y[i];

}
 }

2

3

Target Region

1 Denote a region of code as
target region

1

2
Use map-clause to specify
which and how data is
mapped to the device

3 The target region can
contain parallel constructs

7. Conclusion & Outlook

● Fully functional implementation of OpenMP offloading to FPGAs

● Program FPGA-based heterogeneous systems with a single,
portable code base

● Future Work: Make use of coarse-grain parallelism by distributing
computations across multiple kernel instances (e.g., target teams
distribute)

5. Execution Flow 6. Evaluation

8. Contact & References

3. ThreadPoolComposer 4. Compilation Flow
● Custom Clang toolchain
compiles binary and extracts
kernel code from target region

● TPC-specific binary as entry
point for hardware execution,
launches accelerator

● Fully automated flow from
extracted kernel code to full
FPGA-bitstream with host-
and memory connectivity
using TPC facilities

1

2

3

1
Execution starts
on the host

2

Data is transferred
to/from accelerator
memory before/after
PE execution

3

TPC-specific binary
is loaded, transfers
arguments and
launches PE
execution

● Single-core execution on the Virtex 7 at 250 MHz leaves room for
improvement compared to quad-core execution on the x86-CPU at
4.0 GHz (6.7x/3.4x) → Distribute computation across multiple
kernels to close the gap

● Including Vivado HLS pipelining pragma results in 2x speedup

● Offloading overhead mainly dependent on size of data transferred to
device memory and back.

PDF version of this
poster:
https://goo.gl/qic8VP

Contact me:
sommer@esa.tu-darmstadt.de

Get open-source
release of
ThreadPoolComposer:
https://goo.gl/qTsU3B

[1] J. Korinth, D. d l Chevallerie, and A. Koch,
“An Open-Source Tool Flow for the
Composition of Reconfigurable Hardware
Thread Pool Architectures,” in 2015 IEEE
23rd Annual International Symposium on
Field-Programmable Custom Computing
Machines, 2015, pp. 195–198.

[2] Samuel F. Antao and Carlo Bertolli,
“Offloading Support for OpenMP in Clang
and LLVM,” in Third Workshop on the LLVM
Compiler Infrastructure in HPC, Salt Lake
City, UT.

[3] Samuel Antao et al., “OpenMP offload
infrastructure in LLVM.”. URL:
https://github.com/clang-
omp/OffloadingDesign .

4

4
Use of two-layered
TPC API ensures
portability

	Slide 1

