OpenMP Device Offloading
to FPGA Accelerators 2 Onversimar

DARMSTADT

TECHNISCHE

Embedded Systems & Applications Lukas Sommer, Jens Korinth, Andreas Koch
Embedded Systems and Applications Group / Computer Systems Group
Technische Universitat Darmstadt

1. Motivation & Goals 2. OpenMP Device Offloading
Motivation Goals @ .
Denote a region of code as

* FPGASs increasingly used for #pragma omp target \ target region

implementation of accelerators | *Implement tooltlow to map(to:x[0:SIZE]) |

in HPC systems (e.g. Microsoft autpmat;callzl)léén:p tarﬁjet t map(tofrom:y[0:SIZE]) Use map-clause to specify

Azure) regions 1o acceleralors which and how data is

| #pragma omp parallel for]...] maobed to the device

systems Is non-trivial Runtime [2,3] to manage data yli]l = a*x[1]+yl[i]; |

- Desirable: Programming with a transfers and FPGA execution } Target Region The target region can

single, portable code base contain parallel constructs

3. ThreadPoolComposer 4. Compilation Flow

ﬂ St‘f{gl,* '"t = « Custom Clang toolchain
E E compiles binary and extracts
kernel code from target region
ﬁ} IP-XACT l
E Ip IP Cores

Other
H H FPGA Design
—D

v
Host
compilation

ot TPC-specific * TPC-specific binary as entry
compilations clang tosichan point for hardware execution,

launches accelerator
HOSt Device TPC-speciﬁ? Kernel T Target-regioi
binary e binary | description | code * Fully automated flow from

Threadpool

Host Interface

Memory Interface

v o extracted kernel code to full
Sl () o UhedalLS. FPGA-bitstream with host-
| Infrastructure pinary e and memory connectivity
2%‘:’% Bitstroam FPGA bitstreanj using TPC facilities
5. Execution Flow 6. Evaluation

: @ 10x
Host binary EEm X86 Offload

Ox
- I TPC Offload
Execution starts od

B TPC Offload w/ pipelining

v on the host iﬁ
{ LLVM OpenMP Runtime J R
* Data is transferred 5X
Libomptarget e @ to/from accelerator ' 4X
{ (device-agnostic) memory before/after 3x
PE execution -
| oads & | Invokes N
LIOETetilel |aunches L

Normalized Runtime

TPC p|ugm TPC-specific binary n N
b'”ary |s loaded, transfers S e(\g,e \Q\oé‘)c’ © $°‘® S P\ . G
arguments and O 0% ¥ (o® c°
launches PE
TPC AP execution Single-core execution on the Virtex 7 at 250 MHz leaves room for
9 -ﬂ@- Improvement compared to quad-core execution on the x86-CPU at
4.0 GHz (6.7x/3.4x) — Distribute computation across multiple
Platform Use of two-layered kernels to close the gap
AP (4)TPC API ensures o . .
f portability * Including Vivado HLS pipelining pragma results in 2x speedup
» Offloading overhead mainly dependent on size of data transferred to
FPGA Platform device memory and back.
7. Conclusion & Outlook 8. Contact & References
. . . | |
« Fully functional implementation of OpenMP offloading to FPGAs -E PDF version of this i OnenSource Too! Flow forther - feoeh
pOSter: Composition of Reconfigurable Hardware
httpSZ//gOO.gllquSVP Thread Pool Architec_;tures,” in 201_5 IEEE

23rd Annual International Symposium on
Field-Programmable Custom Computing

* Program FPGA-based heterogeneous systems with a single,
Machines, 2015, pp. 195-198.

portable code base

Contact me: [2] Samuel F. Antao and Carlo Bertolli,
sommer@esa.tu-darmstadt.de “Offloading Support for OpenMP in Clang
_ _ _ _ _ and LLVM,” in Third Workshop on the LLVM
 Future Work: Make use of coarse-grain parallelism by distributing E Get open-source Compiler Infrastructure in HPC, Salt Lake
City, UT.

computations across multiple kernel instances (e.g., target teams

release of
distribute) [3] Samuel Antao et al., “OpenMP offload

Th read PoolCom pOSGI’: Infrastructure in LLVM.”. URL:
httpS ://gOO .0 |/C]TS U3B https://github.com/clang-

omp/OffloadingDesign .

	Slide 1

