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ABSTRACT
Molecular Docking is a methodology used extensively in modern
drug design. It aims to predict the binding position of two molecules
by calculating the energy of their possible binding poses. One of
the most cited docking tools is AutoDock. At its core, it solves an
optimization problem by generating a large solution space of possi-
ble poses, and searches among them for the one having the lowest
energy. �ese complex algorithms thus bene�t from paralleliza-
tion based run-time acceleration. �is work presents an OpenCL
implementation of AutoDock, and a corresponding performance
evaluation on two di�erent platforms based on multi-core CPU and
GPU accelerators. It shows that OpenCL allows highly e�cient
docking simulations, achieving speedups of ∼4x and ∼56x over
the original serial AutoDock version, as well as energy e�ciency
gains of ∼2x and ∼6x. respectively. To the best of our knowledge,
this work is the �rst one also considering the energy e�ciency of
molecular docking programs.
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1 INTRODUCTION
Molecular docking (MD) computations are used extensively in
structure-based drug design. �ey aim to predict the predominant
binding pose(s) of two molecules: a ligand and a receptor, both of
known three-dimensional structure. MD is used to identify ligands
that react as good inhibitors or drug candidates, in the interaction
with a given target receptor. MD is based on simulation, and mod-
els the interaction of these two molecules in great detail, allowing
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Figure 1: Molecular docking searches for multiple possible
docking poses for a ligand and a receptor.

�exibility for ligand modeling and detailed molecular mechanics for
energy calculation. In a general, a docking simulation starts with a
ligand placed randomly outside the target. During simulation the
ligand experiences translations, orientations and conformations,
until a suitable binding site is found (Figure 1).

�e molecular interaction is quanti�ed by a relatively complex
equation that is heavily utilized through the entire docking simu-
lation, typically requiring 2,500,000 energy calculations. Several
docking runs are required for a virtual drug candidate screening,
during which ligands of a large compound database are docked
one by one to the target. �is complex process thus bene�ts from
parallelization based run-time acceleration.

�ere are many docking so�ware tools available either as pro-
prietary or open-source. AutoDock, released as open source under
GNUGPL and developed by the Scripps Research Institute, is the
most cited docking so�ware according to the ISI Web of Science
database [13]. From an availability perspective, it is still preferred
over proprietary tools. Another open-source docking tool called
AutoDock Vina provides a more recent alternative to AutoDock.
While Vina already exploits multicore parallelism and can be up to
two orders of magnitude faster than its predecessor, AutoDock is
still widely used as it provides a wider range options controlling
the simulation. �is includes user-calculated maps, more extensi-
ble physics-based force �elds, and more control of the simulation
details (explicit water molecules, mutable atoms, etc.). Also, the
energy calculation functions used by AutoDock and Vina are di�er-
ent (molecular mechanics vs. knowledge-based), with Vina being
less precise (standard error [in Kcal mol−1]: 2.52 for AutoDock vs.
2.85 for Vina). �erefore, any of these tools may be preferable for a
speci�c problem [15].

As OpenCL supports a wide range of applications through a
portable abstraction, we consider an OpenCL implementation of
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AutoDock relevant as this can facilitate the portability of this appli-
cation to di�erent computing systems (e.g. multi-core CPU, GPU,
FPGA) with minimal code modi�cations.

In this article, we present an OpenCL implementation of AutoDock,
and a corresponding performance and energy evaluation on two
di�erent platforms based on CPUs and GPUs. �e remainder of
this article is organized as follows: Section 2 summarizes the main
MD concepts. Section 3 provides an overview of current state of
the art concerning hardware acceleration of AutoDock. Section 4
provides details on the employed parallelization strategy and the
performed code optimizations. Section 5 reports the experimen-
tal evaluation consisting of a preliminary validation of functional
correctness, followed by the measurement of execution times and
energy. Section 6 concludes and looks out to future work.

2 MOLECULAR DOCKING
Molecular Docking is an optimization problem that su�ers from
combinatorial explosion due to the many degrees of freedom of
molecules, i.e. all possible positions, orientations and conforma-
tions. A number of heuristics have been applied to systematically
search this solution space. One of these, Genetic Algorithms (GA),
are inspired by biological evolution processes. In the their use for
MD, the state variables of a ligand are de�ned by a set of values
describing its translation, rotation and conformation with respect
to the receptor. In GA, each state variable corresponds to a gene
and the ligand’state corresponds to a genotype. Any legal binding
pose between two molecules corresponds to an individual (also re-
ferred to as an entity), which in turn is represented by its genotype.
All calculated poses conform a population. New populations are
generated by mating individuals through a crossover operator. �e
o�spring may experience gene mutation and be selected for the
next generation. In order to evaluate and search for be�er binding
poses (stronger individuals), AutoDock employs a scoring function
and a search method.

A scoring function [8] models chemical interactions in order
to quantify the free energy of a given arrangement of molecules. It
uses a semi-empirical free-energy force �eld to evaluate molecule
conformations during simulation. �e force �eld V (Kcal mol−1) is
composed of four pair-wise energetic terms such as dispersion/re-
pulsion, hydrogen bonding, electrostatics, and desolvation:
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�e dimensionless weighting constantsWvdw ,Whbond ,Welec ,
andWsol are empirically determined using linear regression from
a set of receptor-ligand complexes with known binding constants.
�e following constants depend on the atom types: Ai j (Kcal mol−1

Å12) and Bi j (Kcal mol−1 Å6) correspond to the Lennard-Jones (12-
6) potential between neutral atoms i and j;Ci j (Kcal mol−1 Å12) and
Di j (Kcal mol−1 Å10) correspond to the hydrogen bonding (12-10)
potential between hydrogen atom and hydrogen-bond acceptor i
and j; S and V are respectively the solvation parameter and the
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Figure 2: AutoDock Grid Map used for calculating the inter-
molecular energy.

atom volume that shelters it from the solvent, while σ=3.5 Å is
an independent constant. E(t) is a directional weight function (di-
mensionless) of the angle t that provides directionality from ideal
hydrogen bonding geometry. Additionally, qi and qj are atomic
charges, while ϵ (ri j ) is a dielectric function of ri j (Coulomb’s law) ,
the interatomic distance between atoms i and j . �e whole interac-
tion comprises the summation performed over all pairs of ligand
and receptor atoms.

Based on the interaction between molecules, the force �eld can
be represented as a contribution of three energy components: in-
tramolecular energy of ligand and receptor, and an intermolecular
energy between both molecules. �e intramolecular energy of
the ligand can be calculated directly using equation Eq. 1. �e in-
tramolecular energy of the receptor is constant since this is treated
as a rigid molecule. �is allows minimizing calculations because
a given molecule can contribute to the force �eld by itself only if
the di�erence between energies of its bound and unbound states
is di�erent than zero. Similarly, the intermolecular energy could
be computed also using equation Eq. 1. However, in order to evalu-
ate it rapidly (even for a typically large number of ligand-receptor
atom pairs), Eq. 1 is replaced by a trilinear interpolation based on
pre-calculated grids (Figure 2) that model the energy contribution
of the receptor for each ligand atom-type [8].

A search method seeks the global minimum of the scoring
function, i.e., the predicted binding pose. AutoDock provides dif-
ferent search methods that can be classi�ed as global: Simulated
Annealing (SA), Distributed SA [3], Genetic Algorithm (GA); local:
Solis & Wets; and hybrid: Lamarckian GA (LGA) [8]. As depicted in
Figure 3, the LGA is basically a global-local optimization algorithm
that results from the combination of GA and Solis & Wets. �e GA
itself is a global method as it generates new entities, and selects
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the stronger ones from the whole population that survive through
generations. LGA is also a local method as it subjects a population
subset of user-de�ned size to an adaptive-iterative process that
improves (lower is be�er) the energy of the randomly chosen enti-
ties. �is process takes the genotype of an entity and generates a
new genotype by adding small deviations to it. �e entity’s energy
corresponding to the new genotype is compared to the original one.
If the energy is not improved, deviations are subtracted instead of
being added, and another comparison is performed. On each itera-
tion, the deviation variance is adapted depending on the number of
successful or unsuccessful search a�empts. In both, global and local
search methods, the selection of entities is based on their energies,
as shown in Listing 1. �e LGA was proven to the be more e�cient
and reliable than the other methods [8], which is why we picked it
for the proposed OpenCL implementation.

lamarckian_genetic_algorithm {

while stop condition is false {

// global

genetic_generation(population);

// local

for every entity in population subset

genotype = get_genotype(entity);

local_search(genotype);

}

}

local_search (genotype) {

while stop condition is false {

deviation = create_deviation(devpar);

newgenotype1 = genotype + deviation;

if (energy(newgenotype1) < energy(genotype))

success ++; fail = 0;

else

newgenotype2 = genotype - deviation;

if (energy(newgenotype2) < energy(genotype))

success ++; fail = 0;

else

success = 0; fail ++;

devpar = change_deviation_variance(success ,fail);

}

}

Listing 1: Pseudo-code of local search in the LGA.

3 RELATED WORK
�ere are several reported MD implementations on GPUs, FPGAs,
and multi-core CPUs. Here we report the most revelant ones.

Altuntaş et al. [1] present their own MD algorithm, implemented
with the Heterogeneous Programming Library (HPL). �e most
computationally expensive part of this algorithm is made of a
consumer-producer chain of subroutines: populate(), score(),
tournament(), mate(), and mutate(), as shown in Listing 2. �e
total number of threads is equal to the population size. Within each
subroutine, the parallelization is exploited by many active threads,
whose number depends on the number of entities processed by the
subroutine. �e search method is only global and it is provided by
the GA itself. In the experimental part, it performed speedup tests

for a di�erent number of docking runs (25, 50, 100) using only three
chemical compounds which di�er slightly from each other in the
number of torsions (7, 5, 8), and the number of atoms (25, 19, 28).
It achieves a speedup of around ∼14x using a Tesla C2050/C2070
GPU with respect to a single 2.13 GHz Xeon CPU core.
// N: size of population

population = populate(ligand); // N active threads

for every generation {

score(population , receptor); // N active threads

tournament(population); // N/4 active threads

mate(population); // N/8 active threads

mutate(population); // N active threads

}

Listing 2: Pseudo-code of genetic algorithm in [1].

Pechan et al. [10] present a CUDA implementation of AutoDock
composed of two main kernels that perform genetic generation()
and local search(). Both kernels utilize the same energy function
but di�er on how the degrees of freedom are generated. Basically,
CUDA thread blocks and threads were used for exploiting paral-
lelism at di�erent levels: high (HLP), medium (MLP), and low (LLP).
More speci�cally, entities were assigned to thread blocks, while an
active thread within a block performs many separate tasks for each
gene during energy calculation (Listing 3). In order to speedup the
GA, a di�erent selection scheme, i.e. binary tournament, is used
instead of the original proportional selection. Moreover, due to the
fact that local search is applied only to a selected subset (typically
6%) of the population, not all GPU multiprocessors are active during
this phase. In the experimental part, speedup tests were performed
for a di�erent number of runs (20, 40, 60, 80, 100) using a set of 60
molecules. Performance gains of ∼30x and ∼65x using a GeForce
GTX 260 GPU compared to a 3.2 GHz Intel Xeon CPU are reported.
for every docking run { // HLP

while stop condition is false

genetic_generation ();

local_search ();

}

genetic_generation {

for every new entity // MLP

for every degree of freedom // LLP

generate_dof ();

for every required rotation // LLP

rotate_atom ();

for every ligand atom // LLP

intermolecular_energy ();

for certain atom pairs // LLP

intramolecular_energy ();

}

local_search {

for every selected new entity // MLP

while local search stop condition is false

for every degree of freedom // LLP

generate_dof ();

for every required rotation // LLP

rotate_atom ();

for every ligand atom // LLP

intermolecular_energy ();

for certain atom pairs // LLP

intramolecular_energy ();

}

Listing 3: Pseudo-code of genetic algorithm in [10].
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Figure 4: Pipeline processing of genetic algorithm in [12].

Pechan et al. [12] came up with an FPGA implementation. �e
hardware architecture consists of a three-stage pipeline composed
of four modules (Figure 4). Speci�cally, the �rst module includes
a complex state machine for controlling the genetic generation
and local search. �e second module calculates the position of the
ligand atoms using the input gene values. Moreover, the third stage
is composed of modules three and four, that calculate the internal-
ligand and the intramolecular energy, respectively. All modules
consist of parallel and �ne-grained pipelines. �e fourth module
is the bo�leneck of the design since it requires reading grid maps
from o�-chip memory. �eir experiments were performed under
the same docking se�ings as in [10] using a Xilinx Virtex-4 FPGA
mounted on a SGI RASC RC100 module. It achieves ∼23x speedups
over a 3.2 GHz Intel Xeon CPU.

A hybrid parallelization of AutoDock targeting clusters was
proposed by Norgan et al. [9]. �is approach uses MPI (Message
Passing Interface) and OpenMP (Open Multi-Processing) at two
di�erent levels to accelerate virtual screening. MPI is used to par-
allelize the main() function by distributing docking jobs across a
system, while OpenMP enables multithreading of the LGA. �e
results showed that the design scales almost linearly up to 8192
CPU cores, reaching speedup values of ∼8192x over a single CPU.
�e evaluation system was composed of a IBM BlueGene/P system
and a 32-core IBM POWER7 server.

By reviewing the literature, we observed that there is no OpenCL
implementation of AutoDock. �e closest a�empt is the work in [1]
that is based on HPL, which in turns acts as a front-end of OpenCL.
It proposed a non-standard docking method and was validated un-
der a very reduced set of compounds (only three). In contrast to
other CUDA implementations as [7] and [14], the parallel version of
AutoDock in [10] includes the local search, and a validation using
a reasonably large (60) set of compounds. Despite these impor-
tant features, the lack of portability is its main drawback. Finally,
another important factor not addressed in all existing parallel im-
plementations of AutoDock, is the energy consumption by both
serial and accelerated versions.
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4 PARALLELIZATION
4.1 Parallelization opportunities
�e hotspots of AutoDock were already identi�ed in di�erent stud-
ies. As already reported in in [11], the AutoDock parallelization
can be exploited at three di�erent levels: high, medium and low,
as shown in Listing 3. In these approaches, the key concept is the
entity, i.e., an individual member of a population of possible binding
poses. In programming terms, this can be simply represented as a
variable holding a collection of position, angle, and rotation values
of the ligand.

�e high-level parallelization is the most trivial one. A single
docking job, i.e., a simulation corresponding to a given ligand-
receptor pair, executes up to 100 docking runs. �ese runs are
completely independent and can be executed simultaneously. For
every docking run, new entities are created according to the GA or
local search rules. �e medium-level parallelism can be expressed
by processing these entities concurrently. Additionally, entities
are generated by a sequence of three steps: calculation of ligand
conformation and position, inter- and intra-molecular energy cal-
culation. �is sequence is common for both the GA and the local
search. However, the degrees of freedom or genes are generated dif-
ferently. �e GA is applied on every entity, while the local search is
applied only on randomly selected ones. �e low-level parallelism
is present within the three steps, allowing the parallel execution of
the following: generation of genes of a new single entity and rota-
tion of di�erent atoms, the intermolecular energy contributions of
di�erent ligand atoms, and the intramolecular energy contributions
of di�erent ligand atom-pairs.

4.2 OpenCL implementation
Our design is based on the work in [12]. �e main di�erence is
the programming language used and the associated optimizations
for improving performance. While the reference implementation
is based on CUDA, ours is an OpenCL version, that due to the
language portability, allows switching easily between CPU and
GPU as kernel-execution device.

�e main idea behind the OpenCL data-parallel approach is
to assign AutoDock main functions and data to OpenCL process-
ing elements (kernels, work groups, work items) according to
the associated level of parallelism. For instance, the genetic al-
gorithm and local search are functions composed of main compu-
tation steps: generating or modifying new entities, and scoring
them (Figure 5). �erefore, they are processed by di�erent ker-
nels, K GENETIC GENERATIONAL and K LOCAL SEARCH
respectively, that execute sequentially within a given docking run.
�e execution of docking runs and the processing of entities are
controlled by nested loops in the original AutoDock. In the parallel
version, these loops were merged into a unique one, so that sev-
eral entities of di�erent runs can be processed simultaneously by
work-groups within each kernel, thus achieving high and medium
level parallelism. On the other hand, entities are processed by �ne-
grained tasks than can be assigned to work items, thus achieving
low-level parallelism (Listing 3). �e kernels communicate entities
and corresponding energy values through the globally shared mem-
ory. Moreover, both kernels utilize the same energy calculation
di�ering only in the rules for generating entities.

PERFORM LOCAL SEARCH

PERFORM GENETIC ALGORITHM

PERFORM DOCKING JOB

K GENETIC GENERATION K LOCAL SEARCH

STEP 1 STEP 2-4 STEP 1 STEP 2-4

Figure 5: Kernels that perform genetic generation and local
search.

4.3 OpenCL code optimizations
�e host code is in charge of the system initialization and general
management. �e program starts by reading input �les that can
be grouped based on content type. First, �les containing docking
parameters such as the number of docking runs, termination criteria
based on maximum number of energy evaluations and generations,
number of local search iterations, etc. Second, we read �les with
information on molecules such as initial spatial coordinates, electric
charges, atom types and grid values (Listing 4).
// 2cpp.pdbqt

REMARK 0 active torsions:

REMARK status: ('A' for Active; 'I' for Inactive)

ROOT

HETATM 1 C1 CAM A 422 46.508 44.528 14.647 1.00 16.04 0.024 C

HETATM 2 C2 CAM A 422 44.913 44.451 14.586 1.00 17.04 0.136 C

HETATM 3 O CAM A 422 44.197 44.497 15.571 1.00 17.69 -0.297 OA

HETATM 4 C3 CAM A 422 44.562 44.319 13.094 1.00 16.37 0.084 C

HETATM 5 C4 CAM A 422 45.987 44.434 12.432 1.00 16.57 0.001 C

HETATM 6 C5 CAM A 422 46.538 45.892 12.569 1.00 16.28 0.007 C

HETATM 7 C6 CAM A 422 46.856 45.977 14.100 1.00 15.77 0.018 C

HETATM 8 C7 CAM A 422 46.875 43.585 13.416 1.00 15.69 -0.029 C

HETATM 9 C8 CAM A 422 46.482 42.074 13.565 1.00 15.46 0.016 C

HETATM 10 C9 CAM A 422 48.396 43.529 13.036 1.00 16.20 0.016 C

HETATM 11 C10 CAM A 422 47.083 44.219 16.031 1.00 15.15 0.024 C

ENDROOT

TORSDOF 0

// 2cpp.gpf

npts 13 13 13 # num.grid points in xyz

gridfld 2cpp_protein.maps.fld # grid_data_file

spacing 0.375 # spacing(A)

receptor_types A C H HD N NA OA SA # receptor atom types

ligand_types C OA # ligand atom types

receptor 2cpp_protein.pdbqt # macromolecule

gridcenter 46.436 44.132 14.279 # xyz -coordinates or auto

smooth 0.5 # store minimum energy w/in rad(A)

map 2cpp_protein.C.map # atom -specific affinity map

map 2cpp_protein.OA.map # atom -specific affinity map

elecmap 2cpp_protein.e.map # electrostatic potential map

dsolvmap 2cpp_protein.d.map # desolvation potential map

dielectric -0.1465 # <0, AD4 distance -dep.diel;>0, constant

Listing 4: Autodock input �les of the 2cpp complex.

Upon initial docking setup, data for the actual docking is pre-
processed before it is sent to the device memory. �is is basically
a re-arrangement of data into arrays that aim to maximize the
data locality for improving memory access from the device. For
instance, the coe�cients of equation Eq. 1 can be grouped into
arrays containing A-C and B-D values, as second coe�cients (C,
D) in each coe�cient pair can be subsequently accessed a�er the
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�rst ones (A, B), depending on the presence of hydrogen bond-
ing. �en, the OpenCL framework is set, i.e., the platform and
device are identi�ed, the device memory is allocated, and kernels
along with their arguments and global/local sizes are de�ned. Af-
terwards, the re-arranged data is copied to device memory, and the
kernels K GENETIC GENERATION and K LOCAL SEARCH
execute until the termination criteria are met, i.e., when the execu-
tion reaches either a maximum number of energy evaluations, or a
maximum number of generations. Results are sent back to the host
for cluster analysis, i.e. entities having similar conformations are
clustered into groups listed in a energy-based descending order.

In order to increase execution performance compared to the
reference design [10], some optimizations were performed on both
host and device sides:

Size con�guration of processing elements. �e number of work
groups per kernel is equal to the number of entities to be processed
in all runs. As already described, all entities are processed in the
genetic generation, while only a subset of the population is selected
to undergo local search. Additionally, di�erent size con�gurations
of work groups lead to di�erent performance results. Our criterion
was based on the utilized device architecture. For instance, AMD
GPUs, which execute wavefronts of 64 fragments, produce be�er
results in con�guration using 64 work-items. Similarly, a 16 work-
item con�guration is faster for the CPU case (see Section 5). �is
di�ers from the reference design, where CUDA blocks were �xed
to 32 threads for all experiments.

Usage of native functions. OpenCL provides native versions for
math functions. Speci�cally, these are used in the score calculations
expressed by Eq. 1. As it is shown in Section 5, the quality of re-
sults is not diminished despite the lower accuracy, and the docking
program can run faster speeding-up almost by ∼2x with respect to
using their full-precision counterparts. �is is di�erent from the
reference design, which used full-precision arithmetic. However, it
has already been demonstrated in [12] that using lower accuracy
arithmetic in an FPGA-based accelerator does not decrease the qual-
ity of the actual docking solutions, so we can exploit this speedup
potential in our OpenCL solution.

Optimization of grid calculation. �e grid calculation applies a tri-
linear interpolation to grid values retrieved from the global memory
at addresses corresponding to the ligand position. By using a math-
ematically equivalent formulation (eliminating redundant terms
and be�er grouping of sub-expressions), we can reduce the number
of multiplications needed in the calculation of the grid address from
24 in the reference design to just 5 in our implementation.

Minimization of host-device communication using memory map-
ping. �e execution of the kernels K GENETIC GENERATION
and K LOCAL SEARCH is monitored by the host within the main-
computation loop according to the termination criteria. �e number
of evaluations corresponding to each run is stored by the device
in its global memory. As the host monitors the docking progress
on each cycle of a Lamarckian generation, it must read the evalua-
tion counters from the device. Instead of explicit copies of status
data from the device as in the reference design, we used instead
clEnqueueMapBu�er to minimize the device-to-host copy latency
which depends directly on the number of docking runs.

Table 1: Typical values of GA parameters

Population size 150
Max. number of energy evaluations 2 500 000
Max. number of generations simulated 27 000
Mutation rate 0.02
Crossover rate 0.80

Table 2: Typical values of local search parameters

Max. number of local search iterations 300
Local search rate 0.06
Lower bound of initial variance 0.01
Number of successes in a row
before a change in the variance 4
Number of failures in a row
before a change in the variance 4

5 EXPERIMENTAL EVALUATION
5.1 Test Description
From the many di�erent protocols possible for validating the func-
tional correctness of docking simulation, our experiment picks
so-called redocking studies. In that approach, already known com-
plexes are docked again. �is allows a comparison between the
well-known reference solutions and the results obtained by our MD
implementation. A set of 20 ligand-receptor complexes used during
tests were obtained from the Protein Data Bank (PDB) [2]. �ese
were preprocessed before docking following the standard protocol
using AutoDockTools [5]. AutoDockTools assists in preparing lig-
and and receptor �les, annotating them with features required for
AutoDock. For the ligand, the protocol consists of adding hydrogen
atoms, removing water molecules, merging non-polar atoms, and
choosing torsions. For the receptor, hydrogen atoms are added, and
the grid box is de�ned manually.

Regarding the overall docking con�guration, all parameters were
set according to the default GA and local search values speci�ed
in Table 1 and Table 2, respectively. From a performance point of
view, the most important parameters are the maximum number
of energy evaluations and the maximum number of generations,
because these control how long the docking program runs. For
ligands with up to 10 torsions (as in our case), the work in [4]
suggests to run the program until it reaches 250,000 - 25,000,000
energy evaluations, or 27,000 generations, whichever comes �rst.
�e local search variance speci�es the local search space size to
sample, i.e. the amount by which angle and torsion values change
on every cycle of local search. �e variance value can be initially
speci�ed by a user (typically 1), however it changes during local
optimization depending on the success of the search.

�e target system used in the experimental evaluation provides
two processing elements: First, an Intel i5-6600K CPU clocked at
3.5GHz. Second, an AMD R9-290X GPU with 2816 multiprocessors
and 44 active compute units. We use the CPU both to collect the
baseline characteristics of the original serial implementation, as
well as a target to execute the OpenCL-parallelized version.
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Table 3: Functional correctness: Energy (Kcal mol−1)

Ligand-receptor Serial OpenCL
complex Baseline CPU GPU

3ptb −5.55 −5.55 −5.55
1stp −8.37 −8.23 −8.32

4hmg −3.68 −3.85 −3.95
3c1x −13.61 −13.43 −13.29
3ce3 −11.59 −11.09 −11.08
3bgs −6.68 −6.54 −6.59

Table 4: Functional correctness: Spatial Deviation RMSD (Å)

Ligand-receptor Serial OpenCL
complex Baseline CPU GPU

3ptb 0.42 0.41 0.41
1stp 0.42 0.35 0.38

4hmg 0.97 0.87 0.81
3c1x 0.80 1.49 1.18
3ce3 0.93 0.87 0.77
3bgs 0.75 0.67 0.78

Table 5: Functional correctness: Size of best cluster

Ligand-receptor Serial OpenCL
complex Baseline CPU GPU

3ptb 100 50 72
1stp 100 100 100

4hmg 34 48 51
3c1x 90 62 63
3ce3 94 70 71
3bgs 95 86 90

5.2 Validating functional correctness
�ese experiments aim to verify the correct operation of our MD
implementation, accounting for three key aspects: energy, spatial
deviation, and cluster size. Table 3 shows the energy values of the
best poses obtained a�er 100 docking runs in all cases (lower is
be�er). �e spatial deviation is calculated as the Root Mean Square
Deviation (RMSD), that measures the deviation of the resulting lig-
and conformation with respect to that of the initial one. Basically,
it gives an estimation of the geometrical deviation considering for
each ligand atom, its initial and �nal position coordinates. A com-
monly accepted criterion for considering a docking as successful,
is a RMSD value smaller than 2 Å as shown in Table 4. Moreover,
�nal ligand conformations, each corresponding to a docking run,
are grouped into clusters according to a given RMSD tolerance
(typically 2 Å). �e sizes of the best clusters shown in Table 5,
indicate how successful the re-docking was to �nd similar ligand
conformations across di�erent independent runs (higher is be�er).
Similarly, a commonly accepted criterion for this is that the best
cluster size should be at least the 25% of the total number of runs
(25 over 100 runs in our case).

�e most noticeable di�erences are shown in Table 4 and 5, where
RMSD values (4hmg, 3c1x) and best-cluster sizes (3ptb, 3c1x, 3ce3)
di�er considerably for both implementations. We a�ribute these
variations to the selection scheme employed during genetic gen-
eration. AutoDock (serial) uses proportional selection, while our
OpenCL implementation uses binary tournament. In proportional
selection, entities are selected with a probability that is propor-
tional to their energy values. �ose entities with be�er energies
have a higher probability of being chosen for the next generation of
population. In binary tournament, two entities are selected ran-
domly from the whole population, and these two compete against
each other. �e entity with the be�er energy is included in the next
generation. �e underlying advantage of proportional selection is
that it preserves diversity in populations. However, if the initial
population already contains one or two stronger entities (having
lower energy), then these entities dominate, and prevent the whole
population from exploring other potential solutions. A tournament
scheme, however, is less susceptible to diversity loss, and provides
be�er performance compared to proportional selection [16]. As
a consequence, the more-diverse populations computed by from
our OpenCL version, lead in most cases to less dense clusters, and
to entities having di�erent positions, i.e. having di�erent (yet still
valid) RMSD values. Additionally, the inherent randomness of each
docking run, and the ligand size corresponding to each experiment,
create a diversity of scenarios that contribute, depending on how
the optimization randomly evolves, to results that may be both
somewhat be�er (smaller RMSD, larger best cluster) or somewhat
worse (bigger RMSD, smaller best cluster) compared to the results
from the original AutoDock.

5.3 Performance results
Results reported in this section represent complete program ex-
ecutions for both serial and parallel versions. As already shown
in Figure 3, the steps for reading input �les and analyzing results
requires less than 1% of the total execution time, and therefore
do not impose a signi�cant overhead. However, we observed that
kernel building (online compilation of the OpenCL source code) can
take a signi�cant fraction of the entire execution time depending
on the target device. For instance, considering the 3c1x complex
for a 32 work-items implementation executing 10 docking runs on
the CPU, the kernel building time is ∼13 s, representing ∼9% of
a corresponding total execution time of 146 s. In addition, kernel
build times increased as we reduced the number of work items in
our program on the CPU. For the case of 3c1x, these were 14 s
and 2 s for 16 and 64 work items, respectively. �e building time
duration for CPU was roughly the same for all compounds in our
test set, depending only by the work-group size selected. On the
other hand, for the GPU case, the building time was in all cases
∼1 s, regardless of the work-group size.

Our performance results are grouped into CPU and GPU cate-
gories. For each of them, work-group sizes of 16, 32, and 64 work-
items were tested, considering six compounds of di�erent sizes:
3ptb is the smallest (13 atoms, 2 rotatable bonds, 4 atom types),
while 3c1x is the largest one (46 atoms, 8 rotatable bonds, 6 atom
types). Our �rst experiment was to determine the impact of the
work-group size on the execution time for each computing platform.



IWOCL’17, May 2017, Toronto, Canada L. Solis-Vasquez et al.

●

●

●

●

●

●

10 20 40 60 80 100

1

2

3

4

5

●

●
●

● ● ●

Number of docking runs

S
pe

ed
up

 fa
ct

or
 o

ve
r 

ba
se

lin
e 

se
qu

en
tia

l

● 16 work−items
32 work−items
64 work−items

3ptb
3c1x

Figure 6: Achieved speedup on the CPU with di�erent work-
group sizes.

�e tendency in most of cases, as depicted in Figures 6 and 7, is that
be�er results are achieved with 16 and 64 work-items for CPU and
GPU, respectively. �e case of 3ptb on the GPU is an exception,
where a con�guration of 16/32 compared to 64 work-items led to
be�er speedups. �is can be explained by the limited degree of
parallelism provided by this very small molecule.

�en, using 16/64 work-group sizes for CPU/GPU, we analyzed
the speedup behavior for di�erent compounds. Figures 8 and 9 show
that the achieved speedup varies between compounds. In particular,
the algorithmic complexity is also dependent on the molecule size:
�rst, more energy calculations are needed for compounds having
more ligand atoms; second, a larger grid map is read for compounds
having more receptor atoms; and �nally, additional operations are
performed for calculating the ligand position for compounds with
more torsions. To illustrate this, consider that small compounds
(3ptb, 1stp) achieved be�er speedups than bigger ones (3ce3, 3c1x)
on the CPU. On the other hand, bigger compounds are executed
faster on GPUs, since they provide more data parallelism than can
be leveraged by the larger number of compute units: 44 on the
GPU vs. 4 on the CPU. On our complete set of 20 compounds, the
geometric mean of the speedup is ∼3.3x and ∼40.4x for CPU and
GPU, respectively.

In order to evaluate the optimality of the achieved speedup, we
investigated the utilization of computing resources by pro�ling
the executing of 100 docking runs on the 3c1x compound. For
the CPU case (16 work-items), the average CPU utilization was
∼97%, and the average DRAM throughput was just ∼0.42%. For the
GPU case (64 work-items), we observed cache hit-rates of ∼84% for
both kernels, as well as ∼57% and ∼20% of GPU time that the mem-
ory unit was active per each K GENETIC GENERATION and
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Figure 7: Achieved speedup on the GPU with di�erent work-
group sizes.

Table 6: Execution Time (s) and Speedup for 16/64 work-
items on CPU/GPU

Ligand-receptor Serial OpenCL Speedup
complex Baseline CPU GPU CPU GPU

3ptb 586.27 131.77 19.99 4.45 29.33
1stp 836.47 241.06 27.08 3.17 30.89

4hmg 1416.22 403.12 32.89 3.51 43.06
3c1x 2841.84 1265.72 50.96 2.25 55.77
3ce3 1867.69 617.00 36.15 3.03 51.67
3bgs 1102.88 312.20 28.29 3.53 38.98

K LOCAL SEARCH execution, respectively. �e higher memory-
access rate that characterizes the genetic generation is due to the
required creation of new entities for the next population. Specif-
ically, this kernel must access data of the entire current popula-
tion stored in the external memory at the beginning/end of the
genetic generation, as well as of grid maps and intramolecular
weights for calculating the energy of entities. On the other hand,
K LOCAL SEARCH consists itself an iterative process consuming
∼95% of total GPU execution time. However, its memory access rate
is much lower than K GENETIC GENERATION since it does not
need to retrieve all entities, but only a �xed subset consisting of 6%
of the population. �ese �ndings show that the performance of this
application is limited by the speed of the compute units. �e best
performance results are summarized in Table 6 and consistently
show a higher speedup achieved by the GPU.
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Figure 8: Achieved speedup on the CPU (16 work-items).
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Figure 9: Achieved speedup on the GPU (64 work-items).

5.4 Energy consumption results
We compute the energy required for the di�erent variants by sam-
pling the drawn power in 50 ms intervals, using power performance
counters both on the CPU and the GPU to avoid the inaccuracies
typically associated with external measurements (e.g., shunt-based).

Table 7: Measured power values (W) on the CPU

Execution type Power
Idle ∼4

Baseline: single CPU core ∼19
OpenCL: four CPU cores ∼48
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Figure 10: Power measurements on the GPU for 10 docking
runs using 3c1x (idle power: ∼17 W).

�e power samples are then integrated over time to derive the
energy.

Using this methodology, we discover that the power drawn by the
CPU for the di�erent scenarios (idle, baseline sequential, OpenCL-
parallelized) stays mostly constant over the entire execution time
of an MD run (Table 7). On the GPU, however, we observe power
draws between 75 W . . . 155 W over an execution. We a�ribute
this di�erent behavior to the algorithm switching between the
K GENETIC GENERATION and K LOCAL SEARCH kernels,
with the la�er having a much lower degree of parallelism that
the �rst. On the GPU, this will lead to some compute elements
becoming idle (drawing less power). On the CPU, however, even
this reduced degree of parallelism su�ces to keep all cores and
their internal ALUs/FPUs/LSUs busy, thus explaining the almost
constant power draw.

Our energy consumption results are grouped into CPU and GPU
categories. For each of them, work-group sizes of 16, 32, and 64
work-items were tested. Table 8 shows energy consumption for
serial and parallel execution in the case of selected compounds
for CPU and GPU. Despite the fact, that the GPU required higher
amount of power than CPUs during certain time periods, it achieved
greater energy savings than the most parallel version on the CPU.
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Table 8: Energy consumption (KJ) results and Energy e�-
cieny gain for 16/64 work-items on CPU/GPU

Ligand-receptor Serial OpenCL E�ciency gain
complex Baseline CPU GPU CPU GPU

3ptb 11.80 5.95 2.39 1.98 4.92
1stp 16.69 11.72 3.74 1.42 4.47

4hmg 28.07 19.43 4.81 1.44 5.84
3c1x 54.85 61.15 8.72 0.89 6.29
3ce3 36.27 30.39 5.84 1.19 6.21
3bgs 21.56 15.13 4.16 1.43 5.18

Figures 11 and 12 show the gain in energy e�ciency for di�erent
docking runs. In both CPU and GPU cases, the e�ciency gain
behaves similarly as the speedup presented previously, depending
as well on the compound’s complexity and the work-group size. In
particular, in the CPU accelerator, small compounds led to larger
energy savings (∼2x) compared to bigger ones (4hmg, 3ce3), while
the parallel execution using 3c1x saved no energy with respect to
the baseline case.

�is seeming anomaly for 3c1x can be explained by considering
the execution time (baseline: 2841.84 s, OpenCL CPU: 1265.72 s)
and their power measurements (baseline: ∼19 W, OpenCL CPU:
∼48 W) for 100 docking runs (Tables 6 and 7). OpenCL on the
CPU reduced the execution time by a factor of ∼2.2x, but this was
accompanied by a power draw ∼2.5x higher than for the serial
baseline, thus leading to a deterioration of energy of e�ciency for
this experiment.

Considering our complete set of 20 compounds, the geometric
mean of the energy savings compare to the sequential baseline is
∼1.4x for the CPU, and ∼5.4x for the GPU.

5.5 OpenCL on FPGAs
Initially, we had intended to complete this study by also includ-
ing FPGAs as a compute platform for OpenCL-based acceleration.
However, the OpenCL-to-FPGA compiler that we could employ
had signi�cant robustness problems. Code that ran perfectly on the
CPU or the GPU o�en led to the tool crashing in compilation, truly
excessive run-times (> week) and memory requirements (> 128
GB) during hardware generation, or crashes and execution errors
on two di�erent FPGA hardware platforms.

A�er much rewriting of the OpenCL code (and a number of com-
piler updates), we �nally arrived at an implementation that actually
executed correctly on the FPGA targets. However, it su�ered from a
severe slowdown over the sequential baseline, in the range of three
orders of magnitude. �is slowdown could not be alleviated even
when employing a completely di�erent parallelization strategy, us-
ing vendor-speci�c pragmas to formulate a task-parallel pipeline,
instead of the data-parallel approach we used for CPU and GPU.

As we a�ribute these di�culties to the still somewhat unstable
nature of the speci�c OpenCL-FPGA compiler available to us, we
will examine the use of other OpenCL-to-FPGA compilers to repeat
these experiments (see next section).
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Figure 11: Achieved energy e�ciency gains on the CPU (16
work-items).
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Figure 12: Achieved energy e�ciency gains on the GPU (64
work-items).

6 CONCLUSIONS AND FUTURE WORK
Evaluating our docking code with only minor modi�cations on
di�erent platforms was possible due to the inherent portability of
OpenCL. Our test consisted of di�erent number of docking runs,
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each for di�erent work-group sizes, using a set of 20 compounds
of di�erent sizes, to examine the behavior of our parallelized code
under di�erent conditions. For CPU and GPU, respectively, the
speedups reached maximum values of ∼4x and ∼56x, with geomet-
ric means of ∼3.3x and ∼40.4x. Additionally, energy consumption
savings reached values of ∼2x and ∼6.2x, with geometric mean of
∼1.4x and ∼5.4x, on the CPU and GPU, respectively. �is work
shows that the performance and energy consumption of a molecu-
lar docking program can be signi�cantly enhanced by parallelizing
using OpenCL.

In future work, we will both examine the newer Vina MD al-
gorithm, as well as make another a�empt to employ FPGAs as
compute targets (employing a newer version of the OpenCL com-
piler as well as also considering completely di�erent compilers,
such as [6]).
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