
Work in Progress:
GeMS: A Generator for Modulo Scheduling

Problems
Julian Oppermann∗, Sebastian Vollbrecht∗, Melanie Reuter-Oppermann†, Oliver Sinnen‡ and Andreas Koch∗

∗Embedded Systems and Applications Group, Technische Universität Darmstadt, Germany.
{oppermann, vollbrecht, koch}@esa.tu-darmstadt.de

†Discrete Optimization and Logistics Group, and Karlsruhe Service Research Institute,
Karlsruhe Institute of Technology, Germany. melanie.reuter@kit.edu

‡Parallel and Reconfigurable Computing Lab, University of Auckland, New Zealand. o.sinnen@auckland.ac.nz

Abstract—GeMS is a customisable, open-source toolkit for
generating random, yet constrained, modulo scheduling problems
with a known optimal initiation interval. These can then be used
to evaluate the behavior of different scheduling algorithms under
controlled conditions.

I. INTRODUCTION

Loop pipelining is an important technique used in VLIW
compilers and high-level synthesis systems to improve the
throughput of application kernels by partially overlapping the
execution of subsequent loop iterations. Modulo schedulers
produce suitable schedules, i.e. start times for the operations
in a loop’s body, which allow a new iteration to be started
after a constant initiation interval (II) while still honouring all
inter-iteration dependences and resource constraints imposed
by the kernel and the target architecture.

Modulo scheduling is an NP-hard problem. While compiler
implementors often prefer heuristic algorithms (e.g. [5]) for
their faster and more predictable runtimes, exact approaches
defined in mathematical frameworks such as integer linear
programs (ILP, e.g. [2], [3]) are capable of computing provably
optimal solutions. In prior work [3], [4], we found that exact,
ILP-based modulo schedulers, backed by modern solvers,
solve most of our benchmark problem instances in runtimes
that can be considered practical in the context of a typical
high-level synthesis (HLS) flow. Interestingly, the schedulers
evaluated in [4] show distinct strengths and weaknesses.
However, it remains unclear what constitutes a “hard” problem
for each of them, as the blackbox nature of commercial ILP
solvers prevents analytical approaches, and the set of problem
instances that can be extracted from benchmark applications
is too limited both in quantity and diversity to perform a
meaningful empirical evaluation.

To this end, we propose GeMS, a customisable, constructive
problem generator toolkit that can automatically create ran-
dom scheduling problem instances, while enforcing selected
modulo-scheduling specific constraints. GeMS is available1

1https://git.esa.informatik.tu-darmstadt.de/gems/gems

under an open-source license, as we hope it may help others to
tune existing and design new modulo scheduling approaches.

II. THE MODULO SCHEDULING PROBLEM

GeMS generates instances of the modulo scheduling prob-
lem (MSP) defined by:

1) A resource model, comprised of distinct resource types
r ∈ R that are modelled by a tuple r = (ar, Dr). There are
ar uniform and fully-pipelined instances of each type, and
the function performed by such an instance has a latency of
Dr time steps. A resource type may be considered unlimited
(ar =∞).

2) The set of operations O. The function ρ : O → R
associates every operation i ∈ O with a resource type. We
define Di := Dρ(i) as a shorthand notation for i’s latency.
Operation i reserves exactly one ρ(i)-instance in its start time
step.

3) The set of dependence edges E = {(i→j)} ⊆ O × O.
Edges may carry an edge delay dij , and have a distance βij .
Each edge models a precedence relation that has to be satisfied
βij iterations and dij time steps later. Edges with βij > 0
represent inter-iteration dependences (“backedges”), whereas
edges with a distance of 0 model intra-iteration dependences
(“forward edges”).

The solution to an MSP instance consists of an integer
initiation interval λ◦ and integer start times ti for all i ∈ O that
satisfy the precedence constraints imposed by the dependence
edges, ti+Di+ dij ≤ tj +βij ·λ◦, ∀(i→j) ∈ E, and ensure
that no resource type is oversubscribed in any congruence class
(modulo II).

The MSP’s main objective is to find an II as small as
possible, as the kernel’s performance (steady-state throughput)
is inversely proportional to the II. A common strategy across
modulo scheduling approaches is to determine a lower bound
λ⊥ for the II, e.g. as in [5], and try several candidate initiation
intervals λ ≥ λ⊥ in increasing order until a feasible schedule
is found. Secondary objectives, such as the minimisation of
the schedule length, are then considered only for a particular
candidate II.



depth

Res1

Res2

1) Build layer structure 2) Map resources

3) Determine λ⟘ 4) Construct edges

λ⟘ ≔ 3

Fig. 1. Generation steps

III. GENERATION APPROACH

GeMS automatically composes an MSP instance by gen-
erating a dependence graph (O,E) for an externally given2

resource model. To that end, we amend the classical layer-by-
layer graph generation approach [1] with modulo-scheduling-
specific extensions, as illustrated in Figure 1:

1) GeMS starts by instantiating the user-defined number
of operations, and assigns a depth value to each operation.
Operations with the same depth comprise a layer, and will
only be connected by forward edges to operations in a layer
below their own, i.e. with a greater depth value. The set of all
layers is called layer structure.

2) The mapping between operations and resource types ρ is
established.

3) Optionally, the instance’s lower bound λ⊥, and whether
it is feasible or infeasible at this II, can be defined. If the
requested II is greater than the lower bound implied by the
operations’ resource usage, GeMS constructs a cyclic subgraph
that forces the instance’s λ⊥ to the desired value.

Generating MSP instances with a known, feasible λ⊥ ef-
fectively suppresses the impact of an iterative search for the
smallest feasible II, as it is guaranteed that the same number
of candidate IIs, i.e. exactly one, have to be considered for
every instance. Generating infeasible MSPs is useful because
quickly determining the infeasibility of a candidate II is an
important quality to look out for in a scheduling algorithm, as
any time spent on infeasible candidate IIs is wasted.

4) Lastly, the graph’s edges are generated. As discussed,
forward edges are allowed only in the direction of increas-
ing depth. We then compute as-soon-as-possible start times
ASAP(i) on the graph induced by the generated forward
edges. We consider placing a backedge i → j only if
ASAP(i) > ASAP(j), as otherwise the constraint implied by
the edge will always be satisfied. If the user requested a certain
λ⊥ for the generated instance (cf. step 3), only edges that do
not change the desired II and its feasibility are constructed.

We designed GeMS to be a flexible toolkit rather than a
fixed tool, and defined interfaces for the four steps of the gen-

2While the resource model could be easily generated as well, it is usually
fixed by the compiler’s target architecture anyway.

TABLE I
SCHEDULING RESULTS FOR DIFFERENT LAYER STRUCTURES

#layers x #ops 48x1 24x2 16x3 12x4 8x6 6x8 4x12 2x24 1x48

avg time [s] 3.0 116.5 3600 3600 3600 3600 3600 3600 3600
avg gap [%] opt. opt. 29 45 61 69 77 88 88∗

Average over 10 random instances ∗) No solution found for 2 instances

eration process to control the variance introduced at the various
random decisions. We generally provide implementations that
use either predefined values (e.g. to clone certain aspects
of existing instances), or probability distributions. The latter
query a central pseudo-random number generator (PRNG)
initialised with a user-specified seed, and may additionally
consider properties generated in a prior step, e.g. the resource
mapping can take an operation’s depth value into account.

IV. CASE STUDY

In the following experiment, we evaluate how the Moovac
formulation [3] copes with the problem symmetry that occurs
when multiple operations compete for the same resource
instance(s) in the same range of time steps, but their actual
order has no influence on the objective (e.g. the schedule
length) to be minimised.

Let R = {rl} with a limited resource type rl = (2, 1)
having two available instances. We instantiate 48 operations
using rl, and let GeMS distribute them evenly over different
layer structures (Table I). We instruct GeMS to make the
instances feasible at λ⊥ = 24 as induced by the resource-
limited operations, and otherwise add forward edges between
operations with a probability of 0.05, and backedges with a
probability of 0.005, which yields graphs with roughly 110
edges in total. All edge delays are 0, and all backedges have
a distance of 1. For each layer structure, we generate 10
instances by using different PRNG seed values.

The hypothesis is that the more operations share the same
layer, the longer the scheduler runtime will be, due to the
increased amount of symmetry in the MSP.

We scheduled all instances individually with the Moovac
formulation, using Gurobi 8.0 with 24 threads and a timelimit
of 60 minutes, on 2x12-core Intel Xeon E5-2680 v3 systems
running at 2.8 GHz with 64 GB RAM. Table I summarises the
results: While the Moovac/Gurobi setup is able to find feasible
modulo schedules for almost all instances within the 60 min
time budget, the solver is only able to determine the optimality
for the two “narrowest” layer structures. ILP solvers establish
and try to improve a lower bound on the objective value of
any optimal solution, and maintain a gap value between this
bound and the incumbent solution. The smaller the gap value,
the closer the solver is to proving optimality for the current
solution. In our experiment, the gap values reached at the end
of time budget increase with the amount of resource-limited
operations per layer, indicating that these instances are indeed
harder to solve for Moovac/Gurobi.



V. CONCLUSION AND FUTURE WORK

We presented GeMS, which is, to the best of our knowl-
edge, the first publicly available toolkit for generating modulo
scheduling problem instances with a predefined initiation in-
terval. Besides using GeMS for a broad evaluation of different
modulo scheduling approaches, we plan to let users specify the
number of infeasible candidate IIs after λ⊥, and limits on the
input degrees of operations.

ACKNOWLEDGMENT

Calculations for this research were conducted on the Licht-
enberg high performance computer of the TU Darmstadt.

REFERENCES

[1] Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram,
Jean-Marc Vincent, and Frédéric Wagner. Random graph generation for
scheduling simulations. In 3rd International Conference on Simulation
Tools and Techniques, 2010.

[2] Alexandre E. Eichenberger and Edward S. Davidson. Efficient formula-
tion for optimal modulo schedulers. In Proceedings of the ACM SIGPLAN
’97 Conference on Programming Language Design and Implementation,
1997.

[3] Julian Oppermann, Andreas Koch, Melanie Reuter-Oppermann, and
Oliver Sinnen. ILP-based modulo scheduling for high-level synthesis. In
2016 International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, 2016.

[4] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, Oliver
Sinnen, and Andreas Koch. Dependence graph preprocessing for faster
exact modulo scheduling in high-level synthesis. In 28th International
Conference on Field Programmable Logic and Applications, FPL 2018,
2018.

[5] B. Ramakrishna Rau. Iterative modulo scheduling. International Journal
of Parallel Programming, 24(1), 1996.


