
GeMS: A Generator for Modulo
Scheduling Problems

Julian Oppermann1 Sebastian Vollbrecht1 Melanie Reuter-Oppermann2 Oliver Sinnen3 Andreas Koch1

{oppermann, vollbrecht, koch}@esa.tu-darmstadt.de melanie.reuter@kit.edu o.sinnen@auckland.ac.nz

1 Embedded Systems and Applications Group,
Technische Universität Darmstadt

3 Parallel and Reconfigurable Computing Lab,
University of Auckland

2 Discrete Optimization and Logistics,
Karlsruhe Institute of Technology

Why generate problems?

Source code available

Generation approach

Formal definition

Case study

Generating graphs with known MinII

Outlook

Code example
Resource resA = new Resource("A", 2, 2); Resource resB = new Resource("B", 1, 4);
Resource resC = new Resource("C", 0);

GraphGenerator gen = new GraphGenerator(
new FixedShapeLayerCreator(/* nodes in layer */ 1, 2, 4, 1),
new DistributionNodeCreator(new ProbabilityDistribution<>(resA, resB, resC)),
new EdgeCreator(

/* edge delay */ new ConstantValueComputer(0),
/* backedge delay */ new ConstantValueComputer(0),
/* backedge distance */ new ConstantValueComputer(1)),

/* forward edges */ new ProbabilityEdgeIncluder(0.0075),
/* backedges */ new ProbabilityEdgeIncluder(0.0030)

);
GraphFileUtils.graphToHatScheTFiles(gen.createGraph(/* seed */ 42), "graph");

▪ GeMS is a toolkit written in Java, offers no CLI
▪ Graph representation is simple (~nodes+edges)

⁃ supplied export facilities: DOT, and format used by HatScheT scheduler library

4

2

1

GeMS: HatScheT:

▪ Add support for specifying the number of incoming edges
(e.g. #operands)

▪ Finer control over the MSP’s II (e.g. “be feasible at MinII+3”)

▪ MinII = lower bound for optimal II, induced by cycles and
resource constraints
⁃ schedulers usually try several candidate IIs until a feasible

solution is found
⁃ important to keep number of tried candidate IIs the same

when comparing scheduler runtimes
▪ GeMS allows a desired MinII, and whether the MSP shall be

feasible or infeasible at that MinII, to be specified
⁃ if needed, picks operations to construct a cycle (step 3) to

raise the graph’s MinII
⁃ checks prevent that edges (generated in step 4) change the

desired MinII or its feasibility
⁃ the rest of the MSP is still randomly generated!

Fig. 1. Generation steps

III. GENERATION APPROACH

GeMS automatically composes an MSP instance by gen-
erating a dependence graph (O,E) for an externally given2

resource model. To that end, we amend the classical layer-by-
layer graph generation approach [1] with modulo-scheduling-
specific extensions, as illustrated in Figure 1:

1) GeMS starts by instantiating the user-defined number
of operations, and assigns a depth value to each operation.
Operations with the same depth comprise a layer, and will
only be connected by forward edges to operations in a layer
below their own, i.e. with a greater depth value. The set of all
layers is called layer structure.

2) The mapping between operations and resource types ⇢ is
established.

3) Optionally, the instance’s lower bound �
?, and whether

it is feasible or infeasible at this II, can be defined. If the
requested II is greater than the lower bound implied by the
operations’ resource usage, GeMS constructs a cyclic subgraph
that forces the instance’s �

? to the desired value.
Generating MSP instances with a known, feasible �

? ef-
fectively suppresses the impact of an iterative search for the
smallest feasible II, as it is guaranteed that the same number
of candidate IIs, i.e. exactly one, have to be considered for
every instance. Generating infeasible MSPs is useful because
quickly determining the infeasibility of a candidate II is an
important quality to look out for in a scheduling algorithm, as
any time spent on infeasible candidate IIs is wasted.

4) Lastly, the graph’s edges are generated. As discussed,
forward edges are allowed only in the direction of increas-
ing depth. We then compute as-soon-as-possible start times
ASAP(i) on the graph induced by the generated forward
edges. We consider placing a backedge i ! j only if
ASAP(i) > ASAP(j), as otherwise the constraint implied by
the edge will always be satisfied. If the user requested a certain
�
? for the generated instance (cf. step 3), only edges that do

not change the desired II and its feasibility are constructed.
We designed GeMS to be a flexible toolkit rather than a

fixed tool, and defined interfaces for the four steps of the gen-

2While the resource model could be easily generated as well, it is usually
fixed by the compiler’s target architecture anyway.

TABLE I
SCHEDULING RESULTS FOR DIFFERENT LAYER STRUCTURES

#layers x #ops 48x1 24x2 16x3 12x4 8x6 6x8 4x12 2x24 1x48

avg time [s] 3.0 116.5 3600 3600 3600 3600 3600 3600 3600
avg gap [%] opt. opt. 29 45 61 69 77 88 88⇤

Average over 10 random instances ⇤) No solution found for 2 instances

eration process to control the variance introduced at the various
random decisions. We generally provide implementations that
use either predefined values (e.g. to clone certain aspects
of existing instances), or probability distributions. The latter
query a central pseudo-random number generator (PRNG)
initialised with a user-specified seed, and may additionally
consider properties generated in a prior step, e.g. the resource
mapping can take an operation’s depth value into account.

IV. CASE STUDY

In the following experiment, we evaluate how the Moovac
formulation [3] copes with the problem symmetry that occurs
when multiple operations compete for the same resource
instance(s) in the same range of time steps, but their actual
order has no influence on the objective (e.g. the schedule
length) to be minimised.

Let R = {rl} with a limited resource type rl = (2, 1)
having two available instances. We instantiate 48 operations
using rl, and let GeMS distribute them evenly over different
layer structures (Table I). We instruct GeMS to make the
instances feasible at �

? = 24 as induced by the resource-
limited operations, and otherwise add forward edges between
operations with a probability of 0.05, and backedges with a
probability of 0.005, which yields graphs with roughly 110
edges in total. All edge delays are 0, and all backedges have
a distance of 1. For each layer structure, we generate 10
instances by using different PRNG seed values.

The hypothesis is that the more operations share the same
layer, the longer the scheduler runtime will be, due to the
increased amount of symmetry in the MSP.

We scheduled all instances individually with the Moovac
formulation, using Gurobi 8.0 with 24 threads and a timelimit
of 60 minutes, on 2x12-core Intel Xeon E5-2680 v3 systems
running at 2.8 GHz with 64 GB RAM. Table I summarises the
results: While the Moovac/Gurobi setup is able to find feasible
modulo schedules for almost all instances within the 60 min
time budget, the solver is only able to determine the optimality
for the two “narrowest” layer structures. ILP solvers establish
and try to improve a lower bound on the objective value of
any optimal solution, and maintain a gap value between this
bound and the incumbent solution. The smaller the gap value,
the closer the solver is to proving optimality for the current
solution. In our experiment, the gap values reached at the end
of time budget increase with the amount of resource-limited
operations per layer, indicating that these instances are indeed
harder to solve for Moovac/Gurobi.

▪ Question: How does the
Moovac formulation [CASES’16]
cope with symmetry?

▪ Experiment
⁃ 1 resource type with 2

instances
⁃ 48 operations in different

layer structures compete for
this resource type

▪ Result/insight
⁃ the more operations in

parallel, the harder for
Moovac to find/prove an
optimal solution

1 Build layer structure
depth

Layer 0

Layer 1

Layer 2

Layer 3

Limit ∞

0

Resource C

4

Latency 2 1

A

2

B

Resource model
MinII ≔ 3

2 Map operations to (user-
specified) resource types 3 Establish MinII (optional) 4 Construct edges

▪ Finding an optimal solution to the MSP is NP-hard
▪ But, we were stubborn…

⁃ observed most MSPs in a high-level synthesis context can
be solved with an exact, ILP-based scheduler

⁃ only a handful instances are slow or intractable, too few to
reason about

▪ Generated problems “fill the gaps” between the benchmark
instances
⁃ small/large, sparse/dense, few/many limited operations, …
⁃ investigate what’s “hard” for a particular scheduler
⁃ long-term goal: build an oracle that picks the “right”

scheduler for a given instance

1
1

1

1

edge
delay

distance1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

An instance of the modulo scheduling problem (MSP) is
defined by:

▪ Resources types r
⁃ latency
⁃ # available units (or ∞)

▪ Operations i
⁃ mapping to resource type

▪ Edges i → j
⁃ delay (e.g. to control operator chaining)
⁃ distance (≥ 1 for inter-iteration dependences)

▪ Solution: initiation interval (II), start times for operations

