
Dependence Graph Preprocessing
for Faster Exact Modulo

Scheduling in High-level Synthesis

Julian Oppermann, Melanie Reuter-Oppermann, 
Lukas Sommer, Oliver Sinnen, Andreas Koch

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Agenda

(Short) introduction to modulo scheduling

	Proposed preprocessing approach

	Results and insights

�2

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Inter-iteration
dependences

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Inter-iteration
dependences

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences
• resource constraints

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Inter-iteration
dependences

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences
• resource constraints

■ Minimise
1. initiation interval

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Inter-iteration
dependences

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Schedule
length

Modulo Scheduling
■ Loop pipelining 

= increase throughput by
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences
• resource constraints

■ Minimise
1. initiation interval
2. schedule length

�3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Formal Definition
An instance of the modulo scheduling
problem (MSP) is defined by:

�4

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

Formal Definition
An instance of the modulo scheduling
problem (MSP) is defined by:

■ Operations i
• latency: 0 (combinatorial), 1, 2, …

�4

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

1
1

1

1

edge
delay

distance1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

Formal Definition
An instance of the modulo scheduling
problem (MSP) is defined by:

■ Operations i
• latency: 0 (combinatorial), 1, 2, …

■ Edges i → j

• (delay), e.g. to control chaining

• <distance>, ≥ 1 for inter-iteration

dependences („backedges“)

�4

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

1
1

1

1

edge
delay

distance1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

1
1

1

1

edge
delay

distance1

2 3

4

7a

9

5

8

10

11

6
7b7c7d

latency

Formal Definition
An instance of the modulo scheduling
problem (MSP) is defined by:

■ Operations i
• latency: 0 (combinatorial), 1, 2, …

■ Edges i → j

• (delay), e.g. to control chaining

• <distance>, ≥ 1 for inter-iteration

dependences („backedges“)

■ Resource model

• distinct types with given #units

• unlimited operations

�4

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Motivation

■ Modulo scheduling is usually applied to:

�5

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Motivation

■ Modulo scheduling is usually applied to:
• Very-long-instruction-word (VLIW) architectures

• majority of literature targets VLIW compilers

�5

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Motivation

■ Modulo scheduling is usually applied to:
• Very-long-instruction-word (VLIW) architectures

• majority of literature targets VLIW compilers

• High-level synthesis (HLS)
• larger and denser dependence graphs
• not all operations are resource-constrained

�5

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Motivation

■ Modulo scheduling is usually applied to:
• Very-long-instruction-word (VLIW) architectures

• majority of literature targets VLIW compilers

• High-level synthesis (HLS)
• larger and denser dependence graphs
• not all operations are resource-constrained

■ Observed scalability issues in highly-tuned approach
→ Can’t we just simplify the problem?

�5

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

�6

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

■ Median values
• 471 operations

�6

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

■ Median values
• 471 operations

• 12% resource-limited operations

�6

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

■ Median values
• 471 operations

• 12% resource-limited operations
• 1578 edges

�6

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

■ Median values
• 471 operations

• 12% resource-limited operations
• 1578 edges

• 63% non-dataflow edges (memory
dependences, chaining control)

�6

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Agenda

(Short) introduction to modulo scheduling

	 Proposed preprocessing approach

	Results and insights

�7

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Basic Insight

■ Some operations are critical for the scheduling
result, as they influence the
• feasibility, and/or the
• objective value of the solution

�8

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Basic Insight

■ Some operations are critical for the scheduling
result, as they influence the
• feasibility, and/or the
• objective value of the solution

■ Others can always be scheduled ASAP

�8

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Basic Insight

■ Some operations are critical for the scheduling
result, as they influence the
• feasibility, and/or the
• objective value of the solution

■ Others can always be scheduled ASAP
• find subgraphs of non-critical operations

�8

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Basic Insight

■ Some operations are critical for the scheduling
result, as they influence the
• feasibility, and/or the
• objective value of the solution

■ Others can always be scheduled ASAP
• find subgraphs of non-critical operations
• replace by a single edge with appropriate delay

�8

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Original
instance

Approach Overview

�9

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Original
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

Approach Overview

�9

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Original
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

(2)
Modulo

Scheduler

Solution for
reduced
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

Approach Overview

�9

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Original
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

(2)
Modulo

Scheduler

Solution for
reduced
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

(3)
complete
schedule

Solution for
original
instance

(2)
Modulo

Scheduler

Solution for
reduced
instance

(1) construct reduced instance

a)
determine critical

operations

b)
construct new

edges

c)
filter redundant

edges
Reduced
instance

Original
instance

Approach Overview

�9

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1a) Determine Critical Operations

■ Feasibility

�10

4

7a

5

8
7b7c7d

1

1

1

1

2 3

9 10

11

6

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1a) Determine Critical Operations

■ Feasibility
• resource-limited operations

�10

4

7a

5

8
7b7c7d

1

1

1

1

2 3

9 10

11

6

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1a) Determine Critical Operations

■ Feasibility
• resource-limited operations
• endpoints of backedges

�10

4

7a

5

8
7b7c7d

1

1

1

1

2 3

9 10

11

6

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1a) Determine Critical Operations

■ Feasibility
• resource-limited operations
• endpoints of backedges

■ Objective

�10

4

7a

5

8
7b7c7d

1

1

1

1

2 3

9 10

11

6

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1a) Determine Critical Operations

■ Feasibility
• resource-limited operations
• endpoints of backedges

■ Objective
• source and sink nodes

�10

4

7a

5

8
7b7c7d

1

1

1

1

2 3

9 10

11

6

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Single-pass data-flow analysis over dependence
graph

�11

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Single-pass data-flow analysis over dependence
graph

■ For each operation, compute the longest paths to
the nearest preceding critical operations
• „length“ = accumulated latencies and delays

�11

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Single-pass data-flow analysis over dependence
graph

■ For each operation, compute the longest paths to
the nearest preceding critical operations
• „length“ = accumulated latencies and delays
• paths are reset when encountering a critical

operation

�11

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges
■ Example of data-flow analysis

�12

A

J

D E

B0OUT
-IN
A

G

H

F

C

IN
0

B

OUT
-

D

1OUT
IN 1

0

H
-

A
2

OUT -
IN

E
2

-

OUT
IN 1

B

1

2

B
IN 2

OUT

IN 3
-OUT

J

0
-

B

IN
E
-

- 0

B

-

A
21

OUT

1

E
IN

OUT
1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges
■ Example of data-flow analysis

�12

A

J

D E

B0OUT
-IN
A

G

H

F

C

IN
0

B

OUT
-

D

1OUT
IN 1

0

H
-

A
2

OUT -
IN

E
2

-

OUT
IN 1

B

1

2

B
IN 2

OUT

IN 3
-OUT

J

0
-

B

IN
E
-

- 0

B

-

A
21

OUT

1

E
IN

OUT
1

path length to preceding
critical operation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges
■ Example of data-flow analysis

�12

A

J

D E

B0OUT
-IN
A

G

H

F

C

IN
0

B

OUT
-

D

1OUT
IN 1

0

H
-

A
2

OUT -
IN

E
2

-

OUT
IN 1

B

1

2

B
IN 2

OUT

IN 3
-OUT

J

0
-

B

IN
E
-

- 0

B

-

A
21

OUT

1

E
IN

OUT
1

path length to preceding
critical operation

„reset“ paths to
other critical ops

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges
■ Example of data-flow analysis

�12

A

J

D E

B0OUT
-IN
A

G

H

F

C

IN
0

B

OUT
-

D

1OUT
IN 1

0

H
-

A
2

OUT -
IN

E
2

-

OUT
IN 1

B

1

2

B
IN 2

OUT

IN 3
-OUT

J

0
-

B

IN
E
-

- 0

B

-

A
21

OUT

1

E
IN

OUT
1

path length to preceding
critical operation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Construct edges between
reachable critical operations

�13

A

J

E

B

HE
2IN 2
A B

IN 3

A
IN 1

B
21

0 1

2

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Construct edges between
reachable critical operations
• need to subtract source

operation’s delay

�13

A

J

E

B

HE
2IN 2
A B

IN 3

A
IN 1

B
21

0 1

2

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1b) Construct New Edges

■ Construct edges between
reachable critical operations
• need to subtract source

operation’s delay

■ Backedges are copied over
from original instance

�13

A

J

E

B

HE
2IN 2
A B

IN 3

A
IN 1

B
21

0 1

2

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1c) Filter Redundant Edges

■ Precedence constraints may be
modelled transitively

�14

A

J

E

B

H

1

0 1

2

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

1c) Filter Redundant Edges

■ Precedence constraints may be
modelled transitively

■ Find and remove such edges

�14

A

J

E

B

H

1

0 1

2

1

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

2) Modulo Scheduling
■ Reduced instance is now scheduled with an

arbitrary modulo scheduler

�15

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

2) Modulo Scheduling
■ Reduced instance is now scheduled with an

arbitrary modulo scheduler

• Here: using exact formulations with integer linear
programs (ILP)

�15

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

2) Modulo Scheduling
■ Reduced instance is now scheduled with an

arbitrary modulo scheduler

• Here: using exact formulations with integer linear
programs (ILP)

• Eichenberger & Davidson (1997)	 	 „ED“

�15

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

2) Modulo Scheduling
■ Reduced instance is now scheduled with an

arbitrary modulo scheduler

• Here: using exact formulations with integer linear
programs (ILP)

• Eichenberger & Davidson (1997)	 	 „ED“

• Oppermann et al. (2016)		 	 	 	 „Moovac“

�15

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

2) Modulo Scheduling
■ Reduced instance is now scheduled with an

arbitrary modulo scheduler

• Here: using exact formulations with integer linear
programs (ILP)

• Eichenberger & Davidson (1997)	 	 „ED“

• Oppermann et al. (2016)		 	 	 	 „Moovac“

→ different approaches to model operations’ start
times and resource limits

�15

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations

�16

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations
→ feasible/optimal for original instance

�16

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations
→ feasible/optimal for original instance

■ To be computed: start times for non-critical
operations

�16

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations
→ feasible/optimal for original instance

■ To be computed: start times for non-critical
operations
• fix start times of critical operations in original

instance, and schedule!

�16

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations
→ feasible/optimal for original instance

■ To be computed: start times for non-critical
operations
• fix start times of critical operations in original

instance, and schedule!
→ easy (polynomially) to solve, because no longer

resource-constrained

�16

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Agenda

(Short) introduction to modulo scheduling

	Proposed preprocessing approach

	 Results and insights

�17

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Evaluation Setup

■ 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

�18

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Evaluation Setup

■ 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac
• 167 other loops were scheduled optimally with

both approaches in less time

�18

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Evaluation Setup

■ 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac
• 167 other loops were scheduled optimally with

both approaches in less time

■ Time limit (per candidate II): 3 minutes

�18

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Evaluation Setup

■ 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac
• 167 other loops were scheduled optimally with

both approaches in less time

■ Time limit (per candidate II): 3 minutes

■ CPLEX 12.6.3 as ILP solver, 8x multithreaded

�18

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Evaluation Setup

■ 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac
• 167 other loops were scheduled optimally with

both approaches in less time

■ Time limit (per candidate II): 3 minutes

■ CPLEX 12.6.3 as ILP solver, 8x multithreaded

■ Ran on 24-core Xeon E5-2680 v3, 
2.8 GHz, 64 GB RAM

�18

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Graph Reduction

�19

Re
du

ce
d

to
 …

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

operations # edges

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Graph Reduction

�19

Re
du

ce
d

to
 …

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

operations # edges

■ Time for complexity reduction: always < 0.5 sec

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: ILP Reduction

�20

Re
du

ce
d

to
 …

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED: variables ED: constraints Moovac: variables Moovac: constraints

Mean #
Variables

Constraints

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: ILP Reduction

�20

Re
du

ce
d

to
 …

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED: variables ED: constraints Moovac: variables Moovac: constraints

Mean #
Variables

Constraints

ED
37.2 k

113.4 k

ED (red.)
Moovac5.1 k

26.7 k

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: ILP Reduction

�20

Re
du

ce
d

to
 …

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED: variables ED: constraints Moovac: variables Moovac: constraints

Mean #
Variables

Constraints

ED
37.2 k

113.4 k

ED (red.)
Moovac5.1 k

26.7 k

Moovac
8.4 k

28.4 k

Moovac (red.)
7.9 k

27.1 k

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Runtime

�21

Sp
ee

d-
up

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Instance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED formulation Moovac formulation

Accumulated runtime
Speed-up (geomean)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Runtime

�21

Sp
ee

d-
up

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Instance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED formulation Moovac formulation

Accumulated runtime
Speed-up (geomean)

ED
328 min

ED (red.)
268 min

4.37x

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Runtime

�21

Sp
ee

d-
up

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Instance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ED formulation Moovac formulation

Accumulated runtime
Speed-up (geomean)

ED
328 min

ED (red.)
268 min

4.37x

Moovac
290 min

Moovac (red.)
285 min

0.8x

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Solution Quality

�22

instances ED ED (red.) Moovac Moovac (red.)

optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3

no solution 5 3 3 3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Solution Quality

�22

instances ED ED (red.) Moovac Moovac (red.)

optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3

no solution 5 3 3 3

■ More instances are tractable for ED formulation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Solution Quality

�22

instances ED ED (red.) Moovac Moovac (red.)

optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3

no solution 5 3 3 3

■ More instances are tractable for ED formulation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Results: Solution Quality

�22

instances ED ED (red.) Moovac Moovac (red.)

optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3

no solution 5 3 3 3

■ More instances are tractable for ED formulation

■ Again, minor regression for Moovac

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is

negligible

�23

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is

negligible

■ Moovac: ILP complexity dominated by resource-
limited operations
• not enough reduction potential to offset ILP

solvers’ „performance variability“

�23

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is

negligible

■ Moovac: ILP complexity dominated by resource-
limited operations
• not enough reduction potential to offset ILP

solvers’ „performance variability“

■ Both now much closer performance-wise
• seem to complement each other

�23

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Conclusion & Outlook

■ Can’t we just simplify the problem?

�24

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Conclusion & Outlook

■ Can’t we just simplify the problem?
• Yes!

�24

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Conclusion & Outlook

■ Can’t we just simplify the problem?
• Yes!
• other, similar ILP formulations exist

�24

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Conclusion & Outlook

■ Can’t we just simplify the problem?
• Yes!
• other, similar ILP formulations exist

■ Long-term goal: an oracle
• select the „right“ modulo scheduler for a given

instance

�24

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Conclusion & Outlook

■ Can’t we just simplify the problem?
• Yes!
• other, similar ILP formulations exist

■ Long-term goal: an oracle
• select the „right“ modulo scheduler for a given

instance
→ important to have different schedulers that scale

roughly the same

�24

Thank you!
oppermann@esa.tu-darmstadt.de

