Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in High-level Synthesis

<u>Julian Oppermann</u>, Melanie Reuter-Oppermann, Lukas Sommer, Oliver Sinnen, Andreas Koch

(Short) introduction to modulo scheduling

Proposed preprocessing approach

Results and insights

Loop pipelining

Loop pipelining

- Modulo schedulers compute
 - initiation interval (II)
 - start times (= "schedule")

Loop pipelining

- Modulo schedulers compute
 - initiation interval (II)
 - start times (= "schedule")
- Subject to
 - inter-iteration dependences

Loop pipelining

- Modulo schedulers compute
 - initiation interval (II)
 - start times (= "schedule")
- Subject to
 - inter-iteration dependences
 - resource constraints

Loop pipelining

- Modulo schedulers compute
 - initiation interval (II)
 - start times (= "schedule")
- Subject to
 - inter-iteration dependences
 - resource constraints
- Minimise
 - 1. initiation interval

Loop pipelining

- Modulo schedulers compute
 - initiation interval (II)
 - start times (= "schedule")
- Subject to
 - inter-iteration dependences
 - resource constraints
- Minimise
 - 1. initiation interval
 - 2. schedule length

- Operations i
 - latency: 0 (combinatorial), 1, 2, …

- Operations i
 - latency: 0 (combinatorial), 1, 2, …
- Edges $i \rightarrow j$
 - (delay), e.g. to control chaining
 - <distance>, ≥ 1 for inter-iteration dependences ("backedges")

- Operations i
 - latency: 0 (combinatorial), 1, 2, ...
- Edges $i \rightarrow j$
 - (delay), e.g. to control chaining
 - <distance>, ≥ 1 for inter-iteration dependences ("backedges")
- Resource model
 - distinct types with given #units
 - unlimited operations

Modulo scheduling is usually applied to:

- Modulo scheduling is usually applied to:
 - Very-long-instruction-word (VLIW) architectures
 - majority of literature targets VLIW compilers

- Modulo scheduling is usually applied to:
 - Very-long-instruction-word (VLIW) architectures
 - majority of literature targets VLIW compilers
 - High-level synthesis (HLS)
 - larger and denser dependence graphs
 - not all operations are resource-constrained

- Modulo scheduling is usually applied to:
 - Very-long-instruction-word (VLIW) architectures
 - majority of literature targets VLIW compilers
 - High-level synthesis (HLS)
 - larger and denser dependence graphs
 - not all operations are resource-constrained
- Observed scalability issues in highly-tuned approach
 → Can't we just simplify the problem?

- 21 medium to large MSP instances
 - from CHStone and MachSuite
 - extracted from a typical HLS flow

- 21 medium to large MSP instances
 - from CHStone and MachSuite
 - extracted from a typical HLS flow
- Median values
 - 471 operations

- 21 medium to large MSP instances
 - from CHStone and MachSuite
 - extracted from a typical HLS flow
- Median values
 - 471 operations
 - 12% resource-limited operations

- 21 medium to large MSP instances
 - from CHStone and MachSuite
 - extracted from a typical HLS flow
- Median values
 - 471 operations
 - 12% resource-limited operations
 - 1578 edges

- 21 medium to large MSP instances
 - from CHStone and MachSuite
 - extracted from a typical HLS flow
- Median values
 - 471 operations
 - 12% resource-limited operations
 - 1578 edges
 - 63% non-dataflow edges (memory dependences, chaining control)

(Short) introduction to modulo scheduling

Proposed preprocessing approach

Results and insights

- Some operations are critical for the scheduling result, as they influence the
 - feasibility, and/or the
 - objective value of the solution

- Some operations are critical for the scheduling result, as they influence the
 - feasibility, and/or the
 - objective value of the solution
- Others can always be scheduled ASAP

Basic Insight

- Some operations are critical for the scheduling result, as they influence the
 - feasibility, and/or the
 - objective value of the solution
- Others can always be scheduled ASAP
 - find subgraphs of non-critical operations

Basic Insight

- Some operations are critical for the scheduling result, as they influence the
 - feasibility, and/or the
 - objective value of the solution
- Others can always be scheduled ASAP
 - find subgraphs of non-critical operations
 - replace by a single edge with appropriate delay

Approach Overview

Approach Overview

Approach Overview

Feasibility

- Feasibility
 - resource-limited operations

- Feasibility
 - resource-limited operations
 - endpoints of backedges

Feasibility

- resource-limited operations
- endpoints of backedges

Objective

- Feasibility
 - resource-limited operations
 - endpoints of backedges
- Objective
 - source and sink nodes

1b) Construct New Edges

 Single-pass data-flow analysis over dependence graph
- Single-pass data-flow analysis over dependence graph
- For each operation, compute the longest paths to the nearest preceding critical operations
 - "length" = accumulated latencies and delays

- Single-pass data-flow analysis over dependence graph
- For each operation, compute the longest paths to the nearest preceding critical operations
 - "length" = accumulated latencies and delays
 - paths are reset when encountering a critical operation

 Construct edges between reachable critical operations

- Construct edges between reachable critical operations
 - need to subtract source operation's delay

- Construct edges between reachable critical operations
 - need to subtract source operation's delay
- Backedges are copied over from original instance

1c) Filter Redundant Edges

Precedence constraints may be modelled transitively

1c) Filter Redundant Edges

- Precedence constraints may be modelled transitively
- Find and remove such edges

Reduced instance is now scheduled with an arbitrary modulo scheduler

- Reduced instance is now scheduled with an arbitrary modulo scheduler
 - <u>Here</u>: using exact formulations with integer linear programs (ILP)

- Reduced instance is now scheduled with an arbitrary modulo scheduler
 - <u>Here</u>: using exact formulations with integer linear programs (ILP)
 - Eichenberger & Davidson (1997) "ED"

- Reduced instance is now scheduled with an arbitrary modulo scheduler
 - <u>Here</u>: using exact formulations with integer linear programs (ILP)
 - Eichenberger & Davidson (1997) "ED"
 - Oppermann et al. (2016) "Moovac"

- Reduced instance is now scheduled with an arbitrary modulo scheduler
 - <u>Here</u>: using exact formulations with integer linear programs (ILP)
 - Eichenberger & Davidson (1997) "ED"
 - Oppermann et al. (2016) "Moovac"

→ different approaches to model operations' start times and resource limits

- Modulo scheduling the reduced instance yields:
 - initiation interval
 - start times for critical operations

- Modulo scheduling the reduced instance yields:
 - initiation interval
 - start times for critical operations
 - → feasible/optimal for original instance

- Modulo scheduling the reduced instance yields:
 - initiation interval
 - start times for critical operations
 - → feasible/optimal for original instance
- To be computed: start times for non-critical operations

- Modulo scheduling the reduced instance yields:
 - initiation interval
 - start times for critical operations
 - → feasible/optimal for original instance
- To be computed: start times for non-critical operations
 - fix start times of critical operations in original instance, and schedule!

- Modulo scheduling the reduced instance yields:
 - initiation interval
 - start times for critical operations
 - → feasible/optimal for original instance
- To be computed: start times for non-critical operations
 - fix start times of critical operations in original instance, and schedule!
 - → easy (polynomially) to solve, because no longer resource-constrained

(Short) introduction to modulo scheduling

Proposed preprocessing approach

Results and insights

 21 instances from CHStone and MachSuite that took longer than 10 sec to schedule with ED or Moovac

- 21 instances from CHStone and MachSuite that took longer than 10 sec to schedule with ED or Moovac
 - 167 other loops were scheduled optimally with both approaches in less time

- 21 instances from CHStone and MachSuite that took longer than 10 sec to schedule with ED or Moovac
 - 167 other loops were scheduled optimally with both approaches in less time
- **Time limit** (per candidate II): 3 minutes

- 21 instances from CHStone and MachSuite that took longer than 10 sec to schedule with ED or Moovac
 - 167 other loops were scheduled optimally with both approaches in less time
- **Time limit** (per candidate II): 3 minutes
- CPLEX 12.6.3 as ILP solver, 8x multithreaded

- 21 instances from CHStone and MachSuite that took longer than 10 sec to schedule with ED or Moovac
 - 167 other loops were scheduled optimally with both approaches in less time
- **Time limit** (per candidate II): 3 minutes
- CPLEX 12.6.3 as ILP solver, 8x multithreaded
- Ran on 24-core Xeon E5-2680 v3,
 2.8 GHz, 64 GB RAM

Results: Graph Reduction

Results: Graph Reduction

Time for complexity reduction: always < 0.5 sec</p>

Results: ILP Reduction

			E	D: va	ariable	es	E	ED: co	onstr	aints		Mo	ovac:	varia	ables		Мс	ovac	: con	strair	nts	
	100 %																					
Reduced to	90 %																					
	80 %																					
	70 %																					
	60 %																					
	50 %																					
	40 %																					
	30 %																					
	20 %																					
	10 %																					
	0 %																					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
								In	Instance													
	Mean #																					
	Variables																					
Constraints																						

Results: ILP Reduction

Results: ILP Reduction

Results: Runtime

Results: Runtime

Results: Runtime

Results: Solution Quality

# instances	ED	ED (red.)	Moovac	Moovac (red.)
optimal	11	14	13	12
optimal II	2	_	2	3
feasible	3	4	3	3
no solution	5	3	3	3
Results: Solution Quality

# instances	ED	ED (red.)	Moovac	Moovac (red.)
optimal	11	14	13	12
optimal II	2		2	3
feasible	3	- 4	3	3
no solution	5	3	3	3

More instances are tractable for ED formulation

Results: Solution Quality

# instances	ED	ED (red.)	Moovac	Moovac (red.)
optimal	11	14	13	12
optimal II	2	/-	2	3
feasible	3	- 4	3	3
no solution	5	3	3	3

More instances are tractable for ED formulation

Results: Solution Quality

# instances	ED	ED (red.)	Moovac	Moovac (red.)
optimal	11	14	13	12
optimal II	2	/-	2	3
feasible	3	- 4	3	3
no solution	5	3	3	3

More instances are tractable for ED formulation

Again, minor regression for Moovac

Discussion

- ED: Significant benefits
 - both in terms of runtime and solution quality
 - additional effort for problem reduction is negligible

Discussion

- ED: Significant benefits
 - both in terms of runtime and solution quality
 - additional effort for problem reduction is negligible
- Moovac: ILP complexity dominated by resourcelimited operations
 - not enough reduction potential to offset ILP solvers' *"performance variability"*

Discussion

- ED: Significant benefits
 - both in terms of runtime and solution quality
 - additional effort for problem reduction is negligible
- Moovac: ILP complexity dominated by resourcelimited operations
 - not enough reduction potential to offset ILP solvers' *"performance variability"*
- Both now **much closer** performance-wise
 - seem to complement each other

• Can't we just simplify the problem?

- Can't we just simplify the problem?
 - Yes!

- Can't we just simplify the problem?
 - Yes!
 - other, similar ILP formulations exist

- Can't we just simplify the problem?
 - Yes!
 - other, similar ILP formulations exist
- Long-term goal: an oracle
 - select the "right" modulo scheduler for a given instance

- Can't we just simplify the problem?
 - Yes!
 - other, similar ILP formulations exist
- Long-term goal: an oracle
 - select the "right" modulo scheduler for a given instance
 - important to have different schedulers that scale roughly the same

Thank you!

oppermann@esa.tu-darmstadt.de

