Dependence Graph Preprocessing
for Faster Exact Modulo
Scheduling in High-level Synthesis

Julian Oppermann, Melanie Reuter-Oppermann,
Lukas Sommer, Oliver Sinnen, Andreas Koch

THE UNIVERSITY OF
iy AUCKLAND
1|..Jl Tamaki Makaurau

*

Te Whare Wananga o

%5 TECHNISCHE
SG/=\ UNIVERSITAT
&

%) DARMSTADT

NEW ZEALAND

2 (Short) introduction to modulo scheduling
] Proposed preprocessing approach

[J Results and insights

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 2 /25

Modulo Scheduling

= Loop pipelining
= increase throughput by
overlapping iterations

Time steps
(@ oo ~ (®)) @) BEN w N

—
o

[terations
1

[1d [0]]

[td [11]

[add |

[td [11]

[st [2]]

[1d [2]]

[add |

[1d [2]]

[st [3]]

[1d [31]

| add |

[st [4]]

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS

3 /25

Modulo Scheduling

= Loop pipelining
= increase throughput by

overlapping iterations 0

= Modulo schedulers compute ;
- Initiation interval (II) 3

- start times (= ,,schedule®) ;3)_ 4
@ s

£ ¢

7

8

9

10

[terations

[1d [0]]

[td [11]

/

———— Initiation
Interval (1I)

[add |

t

[st [2]]

\4

[1d [2]]

[1d [31]

| add |

[st [4]]

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS

3 /25

Modulo Scheduling

< Inter-iteration
dependences

/

= Loop pipelining [terations
= increase throughput by 0 1 2
overlapping iterations 0
,
= Modulo schedulers compute)
- Initiation interval (II) 3
- start times (= ,,schedule®) ;g} s |5 [2]]__‘
, ? 5 ld [2]
= Subject to S . [) " '[2]]
. inter-iteration dependences ™
p ! [St [3]] {/
8 [1d [3]]
9
10
\/

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS

3 /25

Modulo Scheduling

= Loop pipelining [terations
= increase throughput by 0 1 2 o
overlapping iterations o |{td [o]]
1
= Mc.>d.ullo.scl?edulers compute > |@@)
- initiation interval (1) 5 |(ad) (f@)
- start times (= ,,schedule) 3 4 |EL2]
| @ 5 1d (2]
= Subject to S [)
| _ | S 6 [add | [ud [2]]
* Inter-iteration dependences , =
S
* resource constraints
8 [1d [3]]
9 | add |
10 [st [4]]
\/

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 3 /25

Modulo Scheduling

Loop pipelining [terations
= increase throughput by 0 1 2 >
overlapping iterations o [[td t01) |
1 T Initiation
= Modulo schedulers compute o |[@) | nterval (1)
- initiation interval (II) s [(add) [@) V
- start times (= ,,schedule”) ;3)_ s |5t 120)
| @ 5 W [2]
= Subject to S [)
| _ | S 6 [add | [ud [2]]
* Inter-iteration dependences , EWE)
S
* resource constraints
8 [1d [3]]
« Minimise 9 add)
1. initiation interval 10 st 14]]
\/

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 3 /25

Modulo Scheduling

Loop pipelining [terations
= increase throughput by 0 1 2 _
overlapping iterations o |(td [0]) l
1
= Modulo schedulers compute > |@@) Schedule
e e length
- Initiation interval (II) 3 |(2ad) oot
- start times (= ,,schedule®) § s [T 120) |
. @ 5
= Subject to S -
* Inter-iteration dependences': ,
* resource constraints :
= Minimise 7
1. initiation interval 10
\/

2. schedule length

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 3 /25

Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 4 /25

Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:

= QOperations i
- latency: 0 (combinatorial), 1, 2, ...

latency

(] %%[hjﬂ
2] ()] (]

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 4 /25

Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:

= QOperations i
- latency: 0 (combinatorial), 1, 2, ...

= Edges/ —
- (delay), e.g. to control chaining

+ <distance>, = 1 for inter-iteration
dependences (,backedges®)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 4 /25

Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:

= QOperations i
- latency: 0 (combinatorial), 1, 2, ...

= Edges/ —
- (delay), e.g. to control chaining

+ <distance>, = 1 for inter-iteration
dependences (,backedges®)

= Resource model
- distinct types with given #units
» unlimited operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 4 /25

= Modulo scheduling is usually applied to:

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25

= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
majority of literature targets VLIW compilers

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25

= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
- majority of literature targets VLIW compilers

- High-level synthesis (HLS)
- larger and denser dependence graphs
- not all operations are resource-constrained

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25

= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
- majority of literature targets VLIW compilers

- High-level synthesis (HLS)
- larger and denser dependence graphs
- not all operations are resource-constrained

= Observed scalabillity issues in highly-tuned approach
— Can’t we just simplify the problem?

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25

Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 6 /25

Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

= Median values
* 471 operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 6 /25

Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

= Median values
* 471 operations
12% resource-limited operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 6 /25

Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

= Median values
* 471 operations

- 12% resource-limited operations
- 1578 edges

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 6 /25

Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

= Median values
* 471 operations

- 12% resource-limited operations
- 1578 edges

- 63% non-dataflow edges (memory
dependences, chaining control)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 6 /25

™ (Short) introduction to modulo scheduling
2 Proposed preprocessing approach

[J Results and insights

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 7 /25

Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25

Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25

Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP
- find subgraphs of non-critical operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25

Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP
- find subgraphs of non-critical operations
- replace by a single edge with appropriate delay

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25

Approach Overview

N\

Original
Instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 9 /25

Approach Overview

\ a) b) c) \

Original determine critical || construct new filter redundant Reduced
instance operations edges edges instance

(1) construct reduced instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 9 /25

Approach Overview

\ a) b) C) \

Original determine critical || construct new filter redundant Reduced
instance operations edges edges instance

(1) construct reduced instance

\
—)
(2) Solution for
Modulo reduced
Scheduler instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 9 /25

Approach Overview

\ a) b) c) \

Original determine critical || construct new filter redundant Reduced
instance operations edges edges instance

(1) construct reduced instance

]
—)
(2) Solution for (3) Solution for
Modulo reduced complete original
Scheduler iInstance schedule instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 9 /25

1a) Determine Critical Operations

P

= Feasibility
)
g

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 10 /25

1a) Determine Critical Operations

= Feasibility
* resource-limited operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 10 /25

1a) Determine Critical Operations

= Feasibility

* resource-limited operations
- endpoints of backedges @

)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 10 /25

1a) Determine Critical Operations

P
= Feasibility

* resource-limited operations
- endpoints of backedges @

= Objective

)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 10 /25

1a) Determine Critical Operations

= Feasibility
* resource-limited operations
- endpoints of backedges @

= Objective

« source and sink nodes @

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 10 /25

1b) Construct New Edges

= Single-pass data-flow analysis over dependence
graph

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 11/25

1b) Construct New Edges

= Single-pass data-flow analysis over dependence
graph

= For each operation, compute the longest paths to
the nearest preceding critical operations

- ,length” = accumulated latencies and delays

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 11/25

1b) Construct New Edges

= Single-pass data-flow analysis over dependence
graph

= For each operation, compute the longest paths to
the nearest preceding critical operations

- ,length” = accumulated latencies and delays

- paths are reset when encountering a critical
operation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 11/25

1b) Construct New Edges

= Example of data-flow analysis

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 12 /25

1b) Construct New Edges

= Example of data-flow analysis

A

OuT| 0

path length to preceding
critical operation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 12 /25

1b) Construct New Edges

= Example of data-flow analysis

A

OuT| 0

path length to preceding
critical operation

,reset” paths to
other critical ops

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 12 /25

1b) Construct New Edges

= Example of data-flow analysis

A
IN | -
OuT| 0
D
IN | 1
OouT | 1
IN
ouT

path length to preceding
critical operation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 12 /25

1b) Construct New Edges

= Construct edges between
reachable critical operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 13 /25

1b) Construct New Edges

= Construct edges between
reachable critical operations

* need to subtract source
operation’s delay

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 13 /25

1b) Construct New Edges

= Construct edges between
reachable critical operations

* need to subtract source
operation’s delay

= Backedges are copied over
from original instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 13 /25

1c) Filter Redundant Edges

= Precedence constraints may be
modelled transitively

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 14 /25

1c) Filter Redundant Edges

= Precedence constraints may be
modelled transitively

= Find and remove such edges

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 14 /25

2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 15 /25

2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

- Here: using exact formulations with integer linear
programs (ILP)

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 15 /25

2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

- Here: using exact formulations with integer linear
programs (ILP)

- Eichenberger & Davidson (1997) ,,ED”

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 15 /25

2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

- Here: using exact formulations with integer linear
programs (ILP)

- Eichenberger & Davidson (1997) ,,ED”

* Oppermann et al. (2016) ,Moovac”“

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 15 /25

2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

- Here: using exact formulations with integer linear
programs (ILP)

- Eichenberger & Davidson (1997) ,,ED”

* Oppermann et al. (2016) ,Moovac”“

— different approaches to model operations’ start
times and resource limits

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 15 /25

3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 16 /25

3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
— feasible/optimal for original instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 16 /25

3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
— feasible/optimal for original instance

= To be computed: start times for non-critical
operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 16 /25

3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
— feasible/optimal for original instance

= To be computed: start times for non-critical
operations

- fix start times of critical operations in original
Instance, and schedule!

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 16 /25

3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
— feasible/optimal for original instance

= To be computed: start times for non-critical
operations

- fix start times of critical operations in original
Instance, and schedule!

— easy (polynomially) to solve, because no longer
resource-constrained

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 16 /25

™ (Short) introduction to modulo scheduling
M Proposed preprocessing approach

? Results and insights

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 17 /25

Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25

Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25

Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25

Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

= CPLEX 12.6.3 as ILP solver, 8x multithreaded

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25

Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

= CPLEX 12.6.3 as ILP solver, 8x multithreaded

TECHNISCHE

= Ran on 24-core Xeon E5-2680 v3, [EEEEEN 1
2.8 GHz, 64 GB RAM

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25

Results: Graph Reduction

B # operations

100 %

90 %

80 %

70 %

60 %

50 %

40 %

Reduced to ...

30 %

20 %
10 %

0 %

(@) —————————(———

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 19 /25

Reduced to ...

Results: Graph Reduction

B # operations

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30 %

20 %
10 %

o LR
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

= Time for complexity reduction: always < 0.5 sec

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 19 /25

Results: ILP Reduction

W ED: variables | ED: constraints Moovac: variables [Moovac: constraints

100 %
90 %
80 %
70 %
60 %
50 %
40 %

Reduced to ...

30 %
20 %
10 %

0 %
i 2 3 4 5 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

Variables

Constraints
J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 20 /25

Reduced to ...

Results: ILP Reduction

W ED: variables [ED: constraints Moovac: variables [Moovac: constraints
100 %
90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
e L o L b
0 %
1 2 3 4 5 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Instance
Mean # ED ED (red.)
Variables 37.2 K 5.1 k
Constraints 113.4 k 26.7 Kk

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 20 /25

Results: ILP Reduction

W ED: variables | ED: constraints Moovac: variables [Moovac: constraints

100 %
90 %
80 %
70 %
60 %
50 %
40 %

Reduced to ...

30 %
20 %
10 %

0 %
i 2 3 4 5 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

ED (red.) Moovac Moovac (red.)
Variables 37.2 k 5.1k 8.4 k 7.9 K
Constraints 113.4 k 26.7 K 28.4 k 27.1 Kk

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 20 /25

Results: Runtime

B ED formulation " Moovac formulation

—_ 4 4 4 a4
© O =4 NN W &~ O

Speed-up

O -~ N W H 01 OO N ®©

i 2 3 4 &5 6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

Accumulated runtime

Speed-up (geomean)
J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 21 /25

Results: Runtime

B ED formulation " Moovac formulation

19 20 21

—_ 4 4 4 a4
© O =4 NN W &~ O

Speed-up

O -~ N W H 01 OO N ®©

Instance

ED ED (red.)

Accumulated runtime 328 min 268 min
Speed-up (geomean) 4.37X

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 21 /25

Results: Runtime

B ED formulation " Moovac formulation
15
14
13
12
11
10
o 9
>
3 8
o 7
“ 6
5
4
3
2
1
, InENENE _NNES NN ER.BEREEREREEEERERER R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Instance
ED ED (red.) Moovac Moovac (red.)
Accumulated runtime 328 min 268 min 290 min 285 min
Speed-up (geomean) 4.37X 0.8x

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 21 /25

Results: Solution Quality

instances ED (red.) Moovac Moovac (red.)
optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3
no solution 5 3 3 3

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 22 /25

Results: Solution Quality

instances ED (red.) Moovac Moovac (red.)
optimal 11 13 12
optimal II 2 2 3
feasible 3 3 3
no solution 5 3 3

= More instances are tractable for ED formulation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 22 /25

Results: Solution Quality

instances ED (red.) Moovac Moovac (red.)
optimal 13 12
optimal 11 2 3
feasible 3 3
no solution 5 o 3 3

= More instances are tractable for ED formulation

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 22 /25

Results: Solution Quality

instances ED (red.) Moovac Moovac (red.)

optimal 13-
optimal II 9

feasible 3 3
no solution 5 o 3 3

= More instances are tractable for ED formulation

= Again, minor regression for Moovac

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 22 /25

Discussion

= ED: Significant benefits
* both in terms of runtime and solution quality

- additional effort for problem reduction is
negligible

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 23 /25

Discussion

= ED: Significant benefits
* both in terms of runtime and solution quality

- additional effort for problem reduction is
negligible

= Moovac: ILP complexity dominated by resource-
limited operations

* not enough reduction potential to offset ILP
solvers’ ,,performance variability*

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 23 /25

Discussion

= ED: Significant benefits
* both in terms of runtime and solution quality

- additional effort for problem reduction is
negligible

= Moovac: ILP complexity dominated by resource-
limited operations

* not enough reduction potential to offset ILP
solvers’ ,,performance variability*

= Both now much closer performance-wise
- seem to complement each other

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 23 /25

Conclusion & Outlook

= Can’t we just simplify the problem?

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 24 /25

Conclusion & Outlook

= Can’t we just simplify the problem?
* Yes!

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 24 /25

Conclusion & Outlook

= Can’t we just simplify the problem?
* Yes!
- other, similar ILP formulations exist

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 24 /25

Conclusion & Outlook

= Can’t we just simplify the problem?
* Yes!
- other, similar ILP formulations exist

= | ong-term goal: an oracle

- select the ,,right” modulo scheduler for a given
instance

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 24 /25

Conclusion & Outlook

= Can’t we just simplify the problem?
* Yes!
- other, similar ILP formulations exist

= | ong-term goal: an oracle

- select the ,,right” modulo scheduler for a given
instance

— Important to have different schedulers that scale
roughly the same

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 24 /25

Thank youl

oppermann@esa.tu-darmstadt.de

TECHNISCHE
UNIVERSITAT
DARMSTADT

Karlsruhe Institute of Technology

THE UNIVERSITY OF

AUCKLAND

Te Whare Wananga o Tamaki Makaurau
NEW ZEALAND

