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Modulo Scheduling
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Modulo Scheduling
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Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:
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Formal Definition

An instance of the modulo scheduling
problem (MSP) is defined by:

= QOperations i
- latency: 0 (combinatorial), 1, 2, ...

= Edges/ —
- (delay), e.g. to control chaining

+ <distance>, = 1 for inter-iteration
dependences (,backedges®)

= Resource model
- distinct types with given #units
» unlimited operations
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= Modulo scheduling is usually applied to:

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25



= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
majority of literature targets VLIW compilers

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25



= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
- majority of literature targets VLIW compilers

- High-level synthesis (HLS)
- larger and denser dependence graphs
- not all operations are resource-constrained

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 5 /25



= Modulo scheduling is usually applied to:
- Very-long-instruction-word (VLIW) architectures
- majority of literature targets VLIW compilers

- High-level synthesis (HLS)
- larger and denser dependence graphs
- not all operations are resource-constrained

= Observed scalabillity issues in highly-tuned approach
— Can’t we just simplify the problem?
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Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow
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Benchmark Set

= 21 medium to large MSP instances
- from CHStone and MachSuite
- extracted from a typical HLS flow

= Median values
* 471 operations

- 12% resource-limited operations
- 1578 edges

- 63% non-dataflow edges (memory
dependences, chaining control)
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™ (Short) introduction to modulo scheduling
2 Proposed preprocessing approach

[J Results and insights
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Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25



Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25



Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP
- find subgraphs of non-critical operations

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 8 /25



Basic Insight

= Some operations are critical for the scheduling
result, as they influence the

- feasibility, and/or the
- objective value of the solution

= Others can always be scheduled ASAP
- find subgraphs of non-critical operations
- replace by a single edge with appropriate delay
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Approach Overview
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Approach Overview
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Approach Overview

\ a) b) c) \

Original determine critical || construct new filter redundant Reduced
instance operations edges edges instance

(1) construct reduced instance

]
— )
(2) Solution for (3) Solution for
Modulo reduced complete original
Scheduler iInstance schedule instance
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1a) Determine Critical Operations
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= Feasibility
)
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1a) Determine Critical Operations

= Feasibility
* resource-limited operations
- endpoints of backedges @

= Objective

« source and sink nodes @
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1b) Construct New Edges

= Single-pass data-flow analysis over dependence
graph
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1b) Construct New Edges

= Single-pass data-flow analysis over dependence
graph

= For each operation, compute the longest paths to
the nearest preceding critical operations

- ,length” = accumulated latencies and delays

- paths are reset when encountering a critical
operation
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1b) Construct New Edges

= Example of data-flow analysis
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1b) Construct New Edges

= Example of data-flow analysis

A

OuT| 0

path length to preceding
critical operation

,reset” paths to
other critical ops
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1b) Construct New Edges

= Example of data-flow analysis

A
IN | -
OuT| 0
D
IN | 1
OouT | 1
IN
ouT

path length to preceding
critical operation
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1b) Construct New Edges

= Construct edges between
reachable critical operations
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= Construct edges between
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1b) Construct New Edges

= Construct edges between
reachable critical operations

* need to subtract source
operation’s delay

= Backedges are copied over
from original instance
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1c) Filter Redundant Edges

= Precedence constraints may be
modelled transitively
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1c) Filter Redundant Edges

= Precedence constraints may be
modelled transitively

= Find and remove such edges
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2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler
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2) Modulo Scheduling

= Reduced instance is now scheduled with an
arbitrary modulo scheduler

- Here: using exact formulations with integer linear
programs (ILP)

- Eichenberger & Davidson (1997) ,,ED”

* Oppermann et al. (2016) ,Moovac”“

— different approaches to model operations’ start
times and resource limits
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3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
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3) Schedule Completion

= Modulo scheduling the reduced instance yields:
* Initiation interval
- start times for critical operations
— feasible/optimal for original instance

= To be computed: start times for non-critical
operations

- fix start times of critical operations in original
Instance, and schedule!

— easy (polynomially) to solve, because no longer
resource-constrained
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Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25



Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25



Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25



Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

= CPLEX 12.6.3 as ILP solver, 8x multithreaded

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 18 /25



Evaluation Setup

= 21 instances from CHStone and MachSuite that
took longer than 10 sec to schedule with ED or
Moovac

- 167 other loops were scheduled optimally with
both approaches in less time

= Time limit (per candidate II): 3 minutes

= CPLEX 12.6.3 as ILP solver, 8x multithreaded

TECHNISCHE

= Ran on 24-core Xeon E5-2680 v3, [EEEEEN 1
2.8 GHz, 64 GB RAM
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Results: Graph Reduction
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Reduced to ...

Results: Graph Reduction
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= Time for complexity reduction: always < 0.5 sec
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Results: ILP Reduction

W ED: variables | ED: constraints Moovac: variables [ Moovac: constraints
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W ED: variables [ ED: constraints Moovac: variables [ Moovac: constraints
100 %
90 %
80 %
70 %
60 %
50 %
40 %
30 %
20 %
e L o L b
0 %
1 2 3 4 5 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Instance
Mean # ED ED (red.)
Variables 37.2 K 5.1 k
Constraints 113.4 k 26.7 Kk

J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS 20 /25



Results: ILP Reduction

W ED: variables | ED: constraints Moovac: variables [ Moovac: constraints

100 %
90 %
80 %
70 %
60 %
50 %
40 %

Reduced to ...

30 %
20 %
10 %

0 %
i 2 3 4 5 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Instance

ED (red.) Moovac Moovac (red.)
Variables 37.2 k 5.1k 8.4 k 7.9 K
Constraints 113.4 k 26.7 K 28.4 k 27.1 Kk
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Results: Runtime

B ED formulation " Moovac formulation
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Results: Runtime

B ED formulation " Moovac formulation
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Results: Runtime

B ED formulation " Moovac formulation
15
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Instance
ED ED (red.) Moovac Moovac (red.)
Accumulated runtime 328 min 268 min 290 min 285 min
Speed-up (geomean) 4.37X 0.8x
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Results: Solution Quality

# instances ED (red.) Moovac  Moovac (red.)
optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3
no solution 5 3 3 3
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Results: Solution Quality

# instances ED (red.) Moovac Moovac (red.)

optimal 13-
optimal II 9

feasible 3 3
no solution 5 o 3 3

= More instances are tractable for ED formulation

= Again, minor regression for Moovac
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Discussion

= ED: Significant benefits
* both in terms of runtime and solution quality

- additional effort for problem reduction is
negligible
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Discussion

= ED: Significant benefits
* both in terms of runtime and solution quality

- additional effort for problem reduction is
negligible

= Moovac: ILP complexity dominated by resource-
limited operations

* not enough reduction potential to offset ILP
solvers’ ,,performance variability*

= Both now much closer performance-wise
- seem to complement each other
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Conclusion & Outlook

= Can’t we just simplify the problem?
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Conclusion & Outlook

= Can’t we just simplify the problem?
* Yes!
- other, similar ILP formulations exist

= | ong-term goal: an oracle

- select the ,,right” modulo scheduler for a given
instance

— Important to have different schedulers that scale
roughly the same
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