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= increase throughput by 
overlapping iterations
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• initiation interval (II)
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�3



J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e 
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e 
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Initiation
Interval (II)

0

7

8

10

6

1

9

4

2

3

5

0 1 2

ld [0]

ld [1]

add

st [2]

Iterations

Ti
m

e 
st

ep
s

ld [1]

ld [2]

add

st [3]

ld [2]

ld [3]

add

st [4]

Inter-iteration 
dependences

Modulo Scheduling
■ Loop pipelining 

= increase throughput by 
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences 
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■ Loop pipelining 

= increase throughput by 
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences 
• resource constraints
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Modulo Scheduling
■ Loop pipelining 

= increase throughput by 
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences 
• resource constraints

■ Minimise
1. initiation interval
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Modulo Scheduling
■ Loop pipelining 

= increase throughput by 
overlapping iterations

■ Modulo schedulers compute
• initiation interval (II)
• start times (= „schedule“)

■ Subject to
• inter-iteration dependences 
• resource constraints

■ Minimise
1. initiation interval
2. schedule length
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Formal Definition
An instance of the modulo scheduling 
problem (MSP) is defined by:
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• latency: 0 (combinatorial), 1, 2, …
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Formal Definition
An instance of the modulo scheduling 
problem (MSP) is defined by:

■ Operations i 
• latency: 0 (combinatorial), 1, 2, …

■ Edges i → j

• (delay), e.g. to control chaining

• <distance>, ≥ 1 for inter-iteration 

dependences („backedges“)
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Formal Definition
An instance of the modulo scheduling 
problem (MSP) is defined by:

■ Operations i 
• latency: 0 (combinatorial), 1, 2, …

■ Edges i → j

• (delay), e.g. to control chaining

• <distance>, ≥ 1 for inter-iteration 

dependences („backedges“)

■ Resource model

• distinct types with given #units

• unlimited operations
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Motivation

■ Modulo scheduling is usually applied to:
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Motivation

■ Modulo scheduling is usually applied to:
• Very-long-instruction-word (VLIW) architectures

• majority of literature targets VLIW compilers

• High-level synthesis (HLS)
• larger and denser dependence graphs
• not all operations are resource-constrained

■ Observed scalability issues in highly-tuned approach
→ Can’t we just simplify the problem?
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Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow
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Benchmark Set

■ 21 medium to large MSP instances
• from CHStone and MachSuite
• extracted from a typical HLS flow

■ Median values
• 471 operations

• 12% resource-limited operations
• 1578 edges

• 63% non-dataflow edges (memory 
dependences, chaining control)
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(Short) introduction to modulo scheduling 

	 Proposed preprocessing approach


	Results and insights
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Basic Insight

■ Some operations are critical for the scheduling 
result, as they influence the
• feasibility, and/or the
• objective value of the solution 
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Basic Insight

■ Some operations are critical for the scheduling 
result, as they influence the
• feasibility, and/or the
• objective value of the solution 

■ Others can always be scheduled ASAP
• find subgraphs of non-critical operations
• replace by a single edge with appropriate delay 
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1a) Determine Critical Operations

■ Feasibility
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1a) Determine Critical Operations

■ Feasibility
• resource-limited operations
• endpoints of backedges

■ Objective
• source and sink nodes
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1b) Construct New Edges

■ Single-pass data-flow analysis over dependence 
graph
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■ Single-pass data-flow analysis over dependence 
graph

■ For each operation, compute the longest paths to 
the nearest preceding critical operations
• „length“ = accumulated latencies and delays
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1b) Construct New Edges

■ Single-pass data-flow analysis over dependence 
graph

■ For each operation, compute the longest paths to 
the nearest preceding critical operations
• „length“ = accumulated latencies and delays
• paths are reset when encountering a critical 

operation
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1b) Construct New Edges
■ Example of data-flow analysis
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1b) Construct New Edges
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1b) Construct New Edges
■ Example of data-flow analysis
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1b) Construct New Edges

■ Construct edges between 
reachable critical operations
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1b) Construct New Edges

■ Construct edges between 
reachable critical operations
• need to subtract source 

operation’s delay
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1b) Construct New Edges

■ Construct edges between 
reachable critical operations
• need to subtract source 

operation’s delay

■ Backedges are copied over 
from original instance
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1c) Filter Redundant Edges

■ Precedence constraints may be 
modelled transitively
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1c) Filter Redundant Edges

■ Precedence constraints may be 
modelled transitively

■ Find and remove such edges
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2) Modulo Scheduling
■ Reduced instance is now scheduled with an 

arbitrary modulo scheduler

• Here: using exact formulations with integer linear 
programs (ILP)

• Eichenberger & Davidson (1997)	 	 „ED“

• Oppermann et al. (2016)		 	 	 	 „Moovac“

→ different approaches to model operations’ start 
times and resource limits
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3) Schedule Completion

■ Modulo scheduling the reduced instance yields:
• initiation interval
• start times for critical operations
→ feasible/optimal for original instance

■ To be computed: start times for non-critical 
operations
• fix start times of critical operations in original 

instance, and schedule!
→ easy (polynomially) to solve, because no longer 

resource-constrained
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Agenda

(Short) introduction to modulo scheduling 

	Proposed preprocessing approach


	 Results and insights
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Evaluation Setup

■ 21 instances from CHStone and MachSuite that 
took longer than 10 sec to schedule with ED or 
Moovac
• 167 other loops were scheduled optimally with 

both approaches in less time

■ Time limit (per candidate II): 3 minutes

■ CPLEX 12.6.3 as ILP solver, 8x multithreaded

■ Ran on 24-core Xeon E5-2680 v3, 
2.8 GHz, 64 GB RAM
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Results: Solution Quality
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# instances ED ED (red.) Moovac Moovac (red.)

optimal 11 14 13 12
optimal II 2 - 2 3
feasible 3 4 3 3

no solution 5 3 3 3

■ More instances are tractable for ED formulation

■ Again, minor regression for Moovac



J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is 

negligible

�23



J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is 

negligible

■ Moovac: ILP complexity dominated by resource-
limited operations
• not enough reduction potential to offset ILP 

solvers’ „performance variability“

�23



J. Oppermann, TU Darmstadt: Dependence Graph Preprocessing for Faster Exact Modulo Scheduling in HLS / 25

Discussion
■ ED: Significant benefits
• both in terms of runtime and solution quality
• additional effort for problem reduction is 

negligible

■ Moovac: ILP complexity dominated by resource-
limited operations
• not enough reduction potential to offset ILP 

solvers’ „performance variability“

■ Both now much closer performance-wise
• seem to complement each other
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Conclusion & Outlook

■ Can’t we just simplify the problem?
• Yes!
• other, similar ILP formulations exist

■ Long-term goal: an oracle
• select the „right“ modulo scheduler for a given 

instance
→ important to have different schedulers that scale 

roughly the same
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