
A Case Study in Using OpenCL on FPGAs: Creating an Open-Source
Accelerator of the AutoDock Molecular Docking Software
Leonardo Solis-Vasquez and Andreas Koch
Technische Universität Darmstadt, Embedded Systems and Applications (ESA) Group, Darmstadt, Germany

Abstract

In recent years, OpenCL has been increasingly adopted as it enables software programmers to harness the performance
and power efficiency of FPGAs. Despite simplifying the FPGA programming challenge, achieving high performance
and energy efficiency with OpenCL is still a difficult task. In order to further contribute to the advance of the OpenCL
usage for FPGAs, we utilize a realistic application scenario as our case study: the AutoDock molecular docking software.
While OpenCL has proven its effectiveness in accelerating molecular docking on GPUs, for FPGA-based AutoDock
accelerators it struggles with difficult design patterns. Besides complex multiple-producers to single-consumer datapaths,
these include time-intensive loops with variable runtimes. Therefore, this work presents the design and optimization steps
for implementing AutoDock in OpenCL targeting an Arria-10 FPGA, as well as a corresponding execution runtime and
energy-efficiency evaluation. Applying these techniques improved the performance of the initial OpenCL implementation
for FPGAs by three orders of magnitude, with the final version of the code now yielding speed-ups of up to ∼2.7x, and
energy-efficiency gains of up to ∼1.8x over the original serial AutoDock version executing on a current-generation CPU∗.

1 Introduction

In recent years, the adoption of High-Level Synthesis
(HLS) approaches like OpenCL has increased significantly,
as they enable programmers without a deep knowledge of
the underlying FPGA architecture and Hardware Descrip-
tion Languages (HDLs) to harness the performance and
power efficiency of such devices. Although the higher level
of abstraction at the specification phase, achieving high-
performance or energy efficiency is still challenging due to
the lack of direct control of low-level characteristics such
as resource usage, placement and timing constraints [1] [2].
Most recent studies in use of OpenCL for FPGAs com-
prise implementations of different applications [3] [4] [5],
benchmarks [6] [7], and optimization analysis [2] [8]. As
already stated in [9], there is still a gap in understanding
which OpenCL constructs map well on FPGAs. This can
be noticed in cases where the performance obtained with
OpenCL is lower in comparison to what is achieved with
RTL-level HDLs. Moreover, most of the applications stud-
ied were code fragments.
Consequently, in this paper, in order to further contribute
to the advancement of the OpenCL usage for FPGAs, we
chose a Molecular Docking (MD) application as a more
realistic case study: the AutoDock software, one of the
most cited MD tools according to the ISI Web of Science
database [10]. AutoDock performs time-consuming cal-
culations and search methods that require complex design
patterns. Although our OpenCL version is not yet com-

∗This work was supported by the German Academic Exchange Ser-
vice (DAAD) and the Peruvian National Program for Scholarships and
Educational Loans (PRONABEC) as the ALEPRONA funding program
#57186883; as well as by Xelera Technologies by providing access to
FPGA boards.

petitive in terms of performance with respect to the best
HDL-based implementation of AutoDock [11], the design
and optimization steps described in this paper will be use-
ful in applying OpenCL to other more complex algorithms.
Our main contributions are as follows:

• First, we present a detailed development and explo-
ration of several design choices not extensively dis-
cussed in previous OpenCL studies on FPGAs, such
as complex multiple-producers to single-consumer
datapaths, as well as time-intensive loops with vari-
able runtime. Our focus is on task parallelism by ex-
ploring a pipeline architecture and specific optimiza-
tion techniques for FPGA-based accelerators.

• Second, to the best of our knowledge, we pro-
vide the first open-source OpenCL implementation
of AutoDock for FPGAs in [12]. It achieves speed-
ups of up to ∼2.7x with respect to the original
single-threaded CPU version. Considering that our
initial FPGA implementation, which was based on
OpenCL code already performing very well on CPUs
and GPUs ran almost 1000x slower than the origi-
nal single-threaded software version of AutoDock, the
improvements of using our suggested implementation
patterns of OpenCL for FPGAs are demonstrated.

The remainder of this article is organized as follows: Sec-
tion 2 introduces basic MD concepts. Section 3 presents
the related work. Section 4 describes our implementa-
tion in terms of design phases and optimization techniques.
Section 5 presents the experimental evaluation and dis-
cusses the runtime and energy efficiencies. Finally, Sec-
tion 6 concludes the article.

2 Background

Molecular docking simulations are used extensively in
structure-based drug design. They aim to predict the pre-
dominant binding pose(s) of two molecules: a ligand and
a receptor, both of known three-dimensional structure. A
MD software is used to identify ligands that react as good
inhibitors when interacting with a target receptor.
Predicting such predominant pose(s) involves solving an
optimization problem that suffers from combinatorial ex-
plosion due to the many degrees of freedom of molecules,
i.e., all possible positions, orientations and torsions. A
number of heuristics have been applied to systematically
search this solution space. Of these, Genetic Algorithms
(GA) are inspired by biological evolution processes. In
their use for MD, the state variables of a ligand are defined
by a set of values describing its translation, rotation and
torsion with respect to the receptor. In GA terms, each state
variable corresponds to a gene and the ligand state corre-
sponds to a genotype. Any legal binding pose corresponds
to an entity, which in turn is represented by its genotype.
All calculated poses form a population. New populations
are generated by mating entities through a crossover opera-
tor. The offspring may experience gene mutation and be se-
lected for the next generation. For evaluating and searching
for better binding poses, i.e., stronger entities, AutoDock
employs a scoring function and a search method.
The scoring function [13] models chemical interactions
to quantify the free energy of a given arrangement of
molecules. It uses a semi-empirical free-energy force
field F (Kcal mol−1) composed of four pair-wise ener-
getic terms such as dispersion/repulsion, hydrogen bond-
ing, electrostatics, and desolvation:

F = ∑
i, j

[
Wvdw

(Ai j

r12
i j
−

Bi j

r6
i j

)
+WhbE(t)

(Ci j

r12
i j
−

Di j

r10
i j

)
+

Wel

(qiq j

ε(ri j)ri j

)
+Wds

(
SiV j +S jVi

)
e
−r2

i j
2σ2

] (1)

The dimensionless weighting constants Wvdw, Whb, Wel ,
and Wds are empirically determined using linear regres-
sion on a set of ligand-receptor complexes with known
binding constants. The following constants depend on the
atom types: Ai j (Kcal mol−1 Å12) and Bi j (Kcal mol−1

Å6) correspond to the Lennard-Jones (12-6) potential be-
tween neutral atoms i and j; Ci j (Kcal mol−1 Å12) and
Di j (Kcal mol−1 Å10) correspond to the hydrogen bond-
ing (12-10) potential between hydrogen-bond acceptor and
donor atoms i and j; S and V are respectively the solvation
parameter and the atom volume that shelters it from the sol-
vent, while σ=3.5 Å is an independent constant. The E(t)
function represents the directional weight (dimensionless)
of the angle t that provides directionality from ideal hydro-
gen bonding geometry. Additionally, qi and q j are atomic
charges, while ε(ri j) is a dielectric function of ri j, the in-
teratomic distance between atoms i and j. The entire inter-
action comprises the summation performed over all pairs
of ligand and receptor atoms.
Based on the molecules’ interaction, the force field can be

represented as the contribution of three components. First,
the intramolecular energy of the ligand is calculated di-
rectly using (1). Second, the intramolecular energy of the
receptor is constant since this is treated as a rigid molecule.
Because a molecule can contribute to the force field by it-
self only if the difference between energies of its bound
and unbound states is non-zero, this component is not cal-
culated. Finally, the intermolecular energy could be com-
puted also using (1). However, since the number of ligand-
receptor atom pairs can be typically large (i.e., thousands),
(1) is thus replaced by a fast approximation, i.e., trilinear
interpolation of pre-calculated grids that model the contri-
bution of the receptor for each ligand atom-type [13].
The search method minimizes of the scoring function,
i.e., it seeks the lowest energy (highest score) that char-
acterizes the strongest entity. From the various search
methods provided by AutoDock, we picked the Lamar-
ckian Genetic Algorithm (LGA) as it proved to be more
efficient and reliable than other methods [13]. The LGA
is a global method that generates new entities, and se-
lects the stronger ones from the entire population that sur-
vive through generations. Additionally, the LGA is a local
method as it subjects a population subset of user-defined
size to an adaptive-iterative process that minimizes (im-
proves) the energy of randomly-chosen entities (Listing 1).

lamarckian_genetic_algorithm {
while lga-stop-condition is false {
genetic_generation (population); // global

for entity in random-subset (population) // local
local_search(get_genotype (entity));

update (population);
}

}

local_search (genotype) {
while ls-stop-condition is false {
delta = create_delta (step);
newgenotype1 = add_on_every_gene (genotype, delta);

if (energy (newgenotype1) < energy (genotype))
genotype = newgenotype1;
success++; fail = 0;

else
newgenotype2 = sub_on_every_gene (genotype, delta

);

if (energy (newgenotype2) < energy (genotype))
genotype = newgenotype2;
success++; fail = 0;

else
success = 0; fail++;

step = update_step (success, fail);
}

}

Listing 1 Pseudo-code of the LGA and local search.

This local search takes the genotype of an entity and gen-
erates a new genotype by adding small changes (delta) to
each of its genes. The energy of the new genotype is com-
pared to that of the original one. If the energy is not mini-
mized, changes are subtracted instead of being added, and
another energy comparison is performed. On each itera-
tion, the change step is adapted depending on the number
of successful or unsuccessful search attempts.

Module 1

Genetic

generation and

local search

Module 2

Calculation of

ligand position

Module 3

Calculation of

intramolecular

energy

Module 4

Calculation of

intermolecular

energy

Figure 1 Pipeline processing of the LGA in [11].

3 Related Work

Relevant studies in using OpenCL on FPGAs are re-
ported as follows. Yang et al. [9] examine design patterns
made of a set-of-producer to a set-of-consumer datapaths
in a molecular electrostatic application. Several Verilog
and OpenCL versions with different arbitration and hand-
shaking mechanisms are evaluated on an Arria-10 FPGA.
Their results show that while Verilog versions achieve up
to 80x of speedup factor over a single CPU core, OpenCL
designs are 13x slower while using twice the resources
when compared to Verilog ones. Moreover, Reza-Zohouri
et al. [8] evaluate the performance and power-requirements
of six Rodinia benchmarks targeting a Stratix-V FPGA
against a Xeon CPU and a Tesla K20c GPU. The effec-
tiveness of FPGA-specific optimizations, e.g., sliding win-
dows, is reflected in a power-efficiency gain of 3.4x com-
pared to the GPU, and better runtime and power efficiency
over the CPU. The authors highlight that the OpenCL
implementation of FPGA-specific strategies is completely
different from common OpenCL strategies on GPUs.
Concerning hardware acceleration of MD, the survey in
[14] provides a general overview of the applied paralleliza-
tion on several MD applications. However, in this section
we report only those corresponding to AutoDock. While
there are several GPU implementations (in OpenCL [15],
and in CUDA including [16] and excluding [17] local
search), to the best of our knowledge there has been only
one FPGA implementation of AutoDock published so far.
Using Verilog, Pechan et al. [11] implemented an archi-
tecture that consists of a three-stage pipeline composed of
four modules, each consisting of parallel and fine-grained
pipelines. (Fig. 1). Specifically, Module 1 controls the ge-
netic generation and local search. Module 2 calculates the
position of the ligand atoms. The third stage is composed
of Module 3 and Module 4, that calculate the intra- and
intermolecular energies, respectively. Performance gains
of ∼23x using a Virtex-4 FPGA compared to a 3.2 GHz
Xeon CPU core are reported.
Additionally, Solis-Vasquez et al. [15] created an initial
OpenCL implementation of AutoDock running on FPGAs
as well. However, it suffered from a severe slowdown over
the serial baseline (i.e., the original AutoDock running on
a single CPU core) in the range of three orders of mag-
nitude. In this article, we instead employ a task-parallel
approach which we believe is more suitable to the underly-
ing hardware. Furthermore, FPGA-specific optimization

techniques are exploited. The patterns required to opti-
mize our FPGA design made us consider several architec-
tural and micro-architectural choices using the high-level
abstractions of OpenCL. This evolved towards a paral-
lel AutoDock implementation with improved runtime and
energy-efficiency with respect to the serial baseline. The
techniques we present here may also be beneficial when
accelerating other applications.

4 Design and Optimization Method-
ology

The functionality of the serial baseline is represented in
Fig. 2. First, the structural descriptions of both molecules
as well as the docking parameters (e.g., number of dock-
ing runs, population size, number of energy evaluations
and generations, etc) are read from input files. Second,
for every docking run, a sequence of four main steps is ex-
ecuted during the global- and local-search. Step 1 gener-
ates new entities, represented by their genotypes, under dif-
ferent rules depending on the LGA phase being executed.
During global search, genotypes are subjected to crossover,
mutation, and selection operations. During local search,
new genotypes are generated by adding small variations to
their current values. The most computationally-intensive
tasks (> 90% of runtime) are represented as Steps 2, 3,
4 and calculate the ligand conformation, the inter- and
intramolecular energy, respectively. This sequence is re-
peated for every docking run. Finally, once all runs have
been executed, the results are clustered in order to assess
the reliability of the docking simulation (Section 5.2).

4.1 OpenCL implementation
Since pipeline processing is more suitable for FPGAs,
we adopted the design in [11] as our starting architecture
(Fig. 1). This architecture executes the entire docking job
sequentially, i.e., by starting a new docking run only af-
ter the previous one has finished, while pipelining the GA
calculations within each run. From the programming per-
spective, such architecture is achieved by following a task-
parallel approach, in which each task is coded as a sin-
gle work-item kernel. The actual OpenCL implementation
took place in the following four development phases, each
describing the design and optimization steps applied incre-
mentally over the previous ones. As described above, all
of the source code is available at [12] for further study.

4.1.1 First development phase
Fig. 3 represents our initial OpenCL design. The Step
1 of the genetic-generation (GG) and local-search (LS)
functions (Fig. 2) have been merged into a single GA
kernel. The GA kernel controls the overall functional-
ity of the system composed also of the Conform, In-
terE, and IntraE kernels that in turn correspond to Steps
2, 3, 4 (Fig. 2), respectively. The communication be-
tween all kernels is achieved through OpenCL pipes that
serve as channels passing genotype data from GA to
Conform (GG2C_genotype, LS2C_genotype), ligand-

DOCKING JOB[
num-docking-runs: 50

]

Step 1 (GG)
Create new
generation

GENETIC GENERATION[
crossover-rate: 0.80 | mutation-rate: 0.02

]
Step 2-3-4

Score entities

Step 1 (LS)
Modify degrees of
freedom of entity

Step 2-3-4
Score entities

Iterate over selected entities

LOCAL SEARCH[
max-num-iterations: 300 | search-rate: 0.06

]Iterate over GA generations

LAMARCKIAN GENETIC ALGORITHM[
population-size: 150 | max-num-energy-evals: 2’500’000 | max-num-generations: 27’000

]
Iterate over independent docking runs

Process input files

Cluster analysisStep 2
Ligand con-

formation

Step 3
Intermolecular

energy

Step 4
Intramolecular

energy

<1%Typical runtime distribution <10% >90%

Figure 2 AutoDock Block Diagram [15] with default values of LGA parameters.

position data from Conform to InterE (C2IE_position)
and to IntraE (C2IA_position), and the computed energy
values from InterE (IE2GG_energy, IE2LS_energy)
and IntraE (IA2GG_energy, IA2LS_energy) back to
GA.
This design forms a closed loop consisting of kernels
and channels that prevents the compiler from optimizing
any channel depth [18]. As an attempt to avoid this
scenario, we initially passed the feedback energies through
global memory, by instantiating a Store kernel (not
shown) in charge of receiving the computed energies
from InterE and IntraE, and writing these into the
off-chip memory, instead of sending them back to GA
via channels. For this to work, we resorted to OpenCL
fences (mem_fence(CLK_GLOBAL_MEM_FENCE))
on global memory accesses in Store and GA. Although
this worked correctly in emulation, it did not work on the
FPGA due to races in such global memory accesses, which
were consistent only within a single kernel. In order to
achieve a correct functionality on the FPGA, Store was
removed while the feedback channels were included back
in our design.
Another consideration regarding global memory was to
minimize the number of accesses. Particularly, GA up-
dates population data throughout an entire docking run,
so storing populations strictly off-chip would result in sig-
nificant lower performance. This was addressed by read-
ing/writing from/to global memory only at the start/end of
each docking run, while keeping intermediate populations
on-chip using OpenCL 2D local arrays ([population-size:
150][genotype-size: 38]). Conversely, for read-only data
such as grid maps, the number of global accesses could not
be minimized due to the following two issues: first, the
size of the grid data depends entirely on the docking space
under analysis. As such, on-chip storage might not be suf-
ficient for cases such as blind docking, where a map rep-
resenting an entire receptor molecule would be required.

GG2C_genotype

LS2C_genotype

C2IE_position

C2IA_position

populations grids

GA

Step 1

GG

LS

Conform

Step 2

InterE

Step 3

IntraE

Step 4

Global Memory (DDR3)

IA2GG_energy | IA2LS_energy

IE2GG_energy | IE2LS_energy

Figure 3 First development phase: initial OpenCL design.

Second, due to the irregular reads performed by InterE,
any caching strategy resulted in significant misses. A fur-
ther discussion of this aspect is provided in Section 4.2.

4.1.2 Second development phase
Since Conform, InterE, and IntraE turned out to be
the major bottleneck, we optimized their microarchitec-
ture separately. Each of these kernels was coded as a
sequence of the following operations: read from input-
channels, main computation-loop, and write to output-
channels. These kernels always execute together as a chain
of blocks, being invoked a number of times entirely con-
trolled by GA, i.e., by the maximum number of either en-
ergy evaluations or generations. In order to support such
termination criteria known only at runtime, all operations
within these kernels were enclosed by a while-loop con-
trolled by an active signal. Based on that, we aimed to min-
imize the initiation-interval (II, ideally =1) of each loop.
Different techniques such as shift registers, local-memory
banking, unrolling of inner loops resulted in significant re-
duction of data dependencies. In the case of Conform, we
could not remove the data dependency created for keep-

rand

rand

GG2C_genotype

LS2C_genotype

C2IE_position

C2IA_position

current and next genotypes

and their energies

IE2GG_energy

IE2LS_energy

IA2GG_energy

IA2LS_energy

IE2LS_energy

IA2LS_energy

IE2GG_energy

IA2GG_energy GA

GG

LS-control

Conform

InterE

IntraE

LS

LFSR-GG

LFSR-LS

Figure 4 Second development phase: local-search logic is
implemented as a separate kernel. From now on, feedback
channels are shown as dashed connections, while global-

memory accesses are omitted for simplicity.

ing track of the atoms to be rotated. Although this caused
a high initiation interval (II=36) of the main computation-
loop, the outer while-loop was fully pipelined (II=1). The
InterE and IntraE kernels involve long latencies such as
random accesses to off-chip grids, and single-precision
floating-point calculations required for (1), respectively.
Despite these, all their loops, i.e., outer while-loops and
inner computation-loops, were fully pipelined.
The next optimizations performed on the GA kernel aimed
to potentially increase the execution concurrency (Sec-
tion 4.1.3), leading to the architecture depicted in Fig. 4.
First, the local-search logic was moved out of GA and im-
plemented as the LS kernel, where each LS-execution is
triggered from within the LS-control loop. The LS ker-
nel reads genotypes from GA, performs the energy mini-
mization, and returns to GA new genotypes and their re-
spective energies. Similarly to GA, LS sends genotypes
via the LS2C_genotype channel to be evaluated by the
Conform-InterE-IntraE chain. Moreover, the pseudo-
random number generators initially implemented as inline
functions in the genetic-generation and local-search logic,
were converted into separated LFSR-GG and LFSR-LS
kernels, each featuring a 32-bit linear feedback shift regis-
ter.

4.1.3 Third development phase
Due to the iterative nature of the local search, we focused
first on its microarchitectural optimization. Although code-
refactoring guided by compiler suggestions [18] helped us
to pipeline the majority of inner LS-loops, we could not
pipeline its outmost loop due to dependencies created by
genotype-data carried through inner loops, and channel in-
vocations for energy calculation.
In order to compensate for this, we replicated LS, together
with its LFSR-LS and channel interconnects, three times
(Fig. 5). This architectural change has a particular conse-
quence described as follows. As already described (Sec-
tion 4.1.2), the initially single LS kernel invokes the ex-

rand

GG_ready

LS_ready (x3)

GG2C_genotype

LS genotypes

A2C_genotype

current and next genotypes

and their energies (x3)

IE2LS_energy (x3)

IA2LS_energy (x3)

IE2GG_energy

fro
m

In
te

rE
an

d
In

tra
E

IA2GG_energy

fro
m

In
te

rE
an

d
In

tra
E

rand (x3)

GA

GG

LS-control

Arbiter Conform

LS

LS2

LS3

LFSR-GG

LFSR-LS1

LFSR-LS2

LFSR-LS3

Figure 5 Third development phase: local-search kernels
are replicated three times, while an arbiter is added to han-

dle simultaneous energy-calculation requests.

ecution of the Conform-InterE-IntraE block chain very
much like GA during genetic generation. In this scenario,
GA and LS act as producers, whereas Conform acts as a
consumer of genotypes. Since the genetic-generation and
local-search functions are mutually exclusive during GA
execution, the arbitration in Conform was implemented
in the previous phases simply as a pair of non-blocking
channels, constantly guarding the status of both input chan-
nels, until any of them receives a complete genotype. On
the other hand, when multiple LS kernels are instantiated
(Fig. 5), multiple energy evaluations can be requested si-
multaneously resulting in a multiple-producers to single-
consumer datapath where the aforementioned arbitration
mechanism does not suffice. This was solved by insert-
ing an Arbiter kernel that reads a ready signal along with
its correspoding genotypes from each producer. The ready
signals identify the actual producers whereas the genotypes
corresponding to valid ready signals are accumulated using
local arrays and dispatched in order towards Conform.

4.1.4 Fourth development phase
The LS kernel was further replicated as long as the result-
ing circuit fit on the target FPGA (Fig. 6). The replication
factor was based on the upper bound of the LS-control
loop, whose default value is determined by the number
of entities that undergo local-search during a single GA
evolution, i.e., nine entities that represent a random subset
(6%) of the population size (150). As more LS instances
imply fewer loop-rounds, the LS replication factor was ex-
tended from three (Section 4.1.3), up to five and nine in
this phase.
Subsequently, Arbiter was optimized similarly as in [9],
where only ready signals are passed through this kernel.
Since many LS kernels can be simultaneously active, Ar-
biter queues at a given moment all producer IDs corre-
sponding to valid ready signals into an array. These array
values are sent sequentially to control the input multiplexer
in Conform that selects incoming genotypes directly from
a specific producer, instead of being accumulated and re-
ordered through Arbiter as was done in Section 4.1.3. Fur-
thermore, inferring a multiplexer in Conform instead of

rand

from LSFR-GG GG_ready

LS_ready (xN)

mode

GG2C_genotype

LS genotypes

current and next genotypes

and their energies (xN)

IE2LS_energy (xN)

IA2LS_energy (xN)

IE2GG_energy

fro
m

In
te

rE
an

d
In

tra
E

IA2GG_energy

fro
m

In
te

rE
an

d
In

tra
E

rand (xN)

fro
m

LF
S

R
-L

S
(x

N
)

GA

GG

LS-control

Arbiter

C
on

fo
rm

mux

LS

...

LSN

Figure 6 Fourth development phase: local-search kernels
are further replicated, while the arbitration mechanism is

improved.

Arbiter allows a deeper pipelining of the outermost-loop
in Conform, while still achieving II=1.

4.2 Further optimization techniques
In addition to the FPGA-specific optimizations tech-
niques [18] so far employed, we considered the following
three in greater detail:
First, all kernel constants were calculated in the host
and passed into kernels afterwards, e.g., scaled crossover,
mutation and selection rates (GA), reference orientation-
quaternions (Conform), offsets for indexing grid maps de-
pending on constant grid sizes (InterE). This technique
was applied throughout the entire OpenCL implementa-
tion.
Second, constant data was carefully allocated either into
the __constant (on-chip cache, default size: 16 KB)
or __global const (off-chip, maximum available:
16 GB) address space. If the size of the kernel’s
__constant arguments exceeds the cache size, accesses
to them suffer from larger performance penalties compared
to those of __global const, as the latter off-chip ac-
cesses are implemented with extra circuitry for tolerating
longer latencies. Our look-up tables in Conform, InterE,
and IntraE occupy only a total of 12 KB and can be allo-
cated to on-chip constant memory without the risk of cache
misses. On the other hand, larger data structures, such as
rotation list, grid maps, and the list of intramolecular con-
tributors (corresponding to Conform, InterE, and IntraE,
respectively), were allocated to off-chip global memory
with the __global const qualifier, as these altogether
require ∼270 KB, and would lead to significant thrashing
if allocated to the on-chip cache.
Finally, for most FPGA designs, fixed-point arithmetic
leads to faster designs compared to their floating-point
counterparts. However, for the InterE and IntraE kernels,
floating-point resulted in an overall faster design, which
can be attributed to the hardened floating-point DSP units
in the Arria-10 FPGA [19]. On the other hand, for Con-
form, which initially suffered from a latency of II=36 (Sec-
tion 4.1.2), a fixed-point representation reduced it down to
II=10. This can be explained by the fact that the 30 ad-

dition/subtraction operations of the problematic datapath
expressed in fixed-point were implemented using Adaptive
Logic Modules (ALMs) instead of the DSPs used for the
floating point version, thus avoiding the DSP latency of
four clock cycles each [19].
The last two techniques were introduced in the third devel-
opment phase and kept until the last one (Section 5.3).

5 Experimental Evaluation

5.1 Test description
From the many different protocols possible for the simu-
lation, our experiment picks the so-called redocking stud-
ies. In this approach, already known complexes are docked
again, allowing to test our design against well-known refer-
ence solutions. A set of five ligand-receptor complexes ob-
tained from the Protein Data Bank (PDB) [20] were tested
(PDB IDs: 3ptb, 1stp, 4hmg, 3ce3, 3c1x). All docking
parameters were set to the default values as specified in
AutoDockTools [21].
The hardware used for the serial baseline is composed of
a 3.5 GHz i5-6600K CPU with 16 GB RAM, while the
accelerator is a Gidel Proc10A card with an Arria-10 GX
1150 FPGA and 16 GB RAM. The Intel FPGA SDK for
OpenCL v16.0 (latest version suported by the correspond-
ing board support package) was used as OpenCL compiler.

5.2 Functional validation
Even though this study concentrates on the methodologi-
cal aspects, we need to show that our parallelized version,
especially with the changed arithmetic (mix of fixed and
floating point) operates correctly.
Since previous acceleration studies of AutoDock
[11] [15] [16] demonstrate that a reduced precision
does not diminish the docking quality with respect to the
original AutoDock (in double precision floating-point), we
utilized a 16.16 fixed-point format for the LS, Conform,
InterE, and IntraE kernels. This format allows simply
using the OpenCL int and long primitive types, and
was sufficient to represent genotypes and quaternions
generated in LS and Conform. For the InterE and IntraE
kernels, this format might not be sufficiently precise in
cases where energies might reach out-of-bound values,
i.e., when the dispersion/repulsion and hydrogen bonding
terms grow rapidly as the interatomic distances become
very short. However, the erroneous docking poses derived
from these incorrect out-of-bound values are so bad that
they will be discarded by the genetic algorithm anyway.
While we did not observe such precision issues in practice,
because the floating-point counterparts for the InterE
and IntraE kernels actually were faster than fixed point
(Section 4.2), we performed further experiments using
floating-point representation in such kernels (Table 2).
Thus, the resulting designs from each development phase
were compared against the serial baseline according to
three key aspects: energy, spatial deviation, and cluster
size of resulting poses. For the sake of simplicity, only
the validation of our largest design (nine LS kernels, Sec-

Table 1 Comparison of energy and size of best cluster

#
A

to
m

s

#
To

rs
io

ns

Energy Size of
of best pose best cluster

PDB (Kcal mol−1) (100 docking runs)
ID Serial OpenCL Serial OpenCL

baseline FPGA baseline FPGA
3ptb 13 2 −5.55 −5.53 100 66
1stp 18 5 −8.37 −7.76 100 69

4hmg 27 10 −3.68 −4.11 34 25
3ce3 37 5 −11.59 −10.88 94 48
3c1x 46 8 −13.61 −12.61 90 22

tion 4.1.4) is presented in Table 1. The energy values
(lower is better) correspond to the best poses obtained after
100 docking runs. The spatial deviation is calculated using
the resulting ligand conformation with respect to the initial
one. As all obtained deviations meet the commonly ac-
cepted criterion for a successful docking (<2 Å), these are
not reported. Moreover, final ligand conformations, each
corresponding to a docking run, are clustered according to
a typical spatial-deviation tolerance (2 Å). The sizes of the
best clusters indicate how successful the re-docking was
to find similar conformations across different independent
runs (higher is better). The discrepancies in the cluster size
are attributed to the different selection scheme used in this
work (binary tournament), compared to the original one
(proportional selection). As detailed in [15], a tournament
scheme chosen for better performance leads to more di-
verse populations, leading in turn to less dense clusters.
These smaller clusters obtained with the OpenCL version
are acceptable since they meet a practical usage criterion
of redocking (≥ 20% of total docking runs).

5.3 Design configurations and resource uti-
lization

Table 2 lists the four development phases and their respec-
tive design configurations (DC1, DC2, DC3, and DC4 {a,
b, c, d}) that summarize our most significant optimizations.
Such designs differ in the number of LS kernels being
replicated, i.e., DC1 (one), DC2 (one), DC3 (three), DC4a
(five), and DC4 {b, c, d} (nine); as well as in the arith-
metic representation for the listed kernels. Designs DC4
{b, c, d}, all with nine replicated LS kernels, are employed
to evaluate the impact of floating-point used in all replicas
of LS (DC4c), as well as in Conform (DC4d), both com-
pared to fixed-point (DC4b).
The largest designs, i.e., DC4 {b, c, d}, are composed of
27 kernels each: one GA, nine LS, nine LFSR-LS, four
LFSR-GG (used in selection, crossover, mutation, entity
selection for local-search), one Arbiter, one Conform, one
InterE, and one IntraE. Table 3 reports resource utilization
in terms of ALM, RAM, and DSP blocks. The resource re-
duction obtained when moving from DC1 to DC2 can be
attributed to the fact that implementing LS separately from
GA removes the hardware required to carry genotype data
in GG and LS, both initially managed within GA. On the
other hand, there is an expected overall increase in resource

Table 2 Development phases and design configurations

Arithmetic representation
Develop. Design # LS LS Conform InterE

phase config. replicas IntraE
First DC1 1 float float

float

Second DC2 1 float float
Third DC3 3 fixed fixed

Fourth

DC4a 5 fixed fixed
DC4b 9 fixed fixed
DC4c 9 float fixed
DC4d 9 float float

Table 3 FPGA resource utilization and max. frequency

Design ALMs RAMs DSPs Freq.
config. Total: 427 200 Total: 2 713 Total: 1 518 (MHz)
DC1 129 301 (30%) 1 075 (40%) 388 (26%) 215.2
DC2 128 018 (30%) 999 (37%) 262 (17%) 174.4
DC3 158 586 (37%) 1 799 (66%) 548 (36%) 187.5
DC4a 177 509 (42%) 1 826 (67%) 586 (39%) 172.6
DC4b 222 372 (52%) 1 880 (69%) 662 (44%) 187.5
DC4c 220 427 (52%) 1 898 (70%) 659 (43%) 185.7
DC4d 219 359 (51%) 1 944 (72%) 383 (25%) 185.7

usage when going from design DC3 through DC4a towards
DC4b, that directly corresponds to the increase of the LS-
replication. Moreover, it is shown that a fixed-point repre-
sentation of LS (DC4b), utilizes more DSP blocks (44%)
than its floating-point counterparts such as designs DC4c
(43%) and DC4d (25%).
Regarding the maximum frequency, designs DC3 and DC4
{b, c, d} reach comparable values (∼186 MHz). Smaller
designs (DC2 and DC4a, both at ∼173 MHz) do not al-
ways result in higher frequencies compared to larger ones
(DC4 {b, c, d} at ∼186 MHz). Furthermore, we observed
that higher frequencies do not necessarily imply faster cir-
cuits, e.g., DC1, capable of running at ∼215 MHz, is at
least ∼4.4x slower than the serial baseline (Table 4).

5.4 Execution runtime and energy-
efficiency results

Table 4 reports the full-program execution runtime for all
proposed designs. On one hand, the first two designs are
slower than the serial baseline. Analyzing the DC2 perfor-
mance with respect to that of DC1, there is an improve-
ment only for the case 3ptb, which can be attributed to
the lower frequency achieved (Table 3), and the increased
computation required by larger PDB complexes with more
than five torsions such as 1stp, 4hmg, 3ce3, and 3c1x.
Although DC2 seemed to be going in the wrong optimiza-
tion direction, it introduced the architectural modifications
(Section 4.1.2) that led to the improvements in later designs
DC3 and DC4. The significant runtime reductions when
going from DC2 to DC3 (e.g., a maximum difference of
∼8100 s for 3c1x) are the result of the LS replication, as
well as by the careful allocation of constant look-up tables
(Section 4.2).

Table 4 Execution runtime and best speed-up for 100
docking runs

Execution runtime (seconds)
Design Ligand-Receptor PDB ID
config. 3ptb 1stp 4hmg 3ce3 3c1x

Serial CPU 586 836 1416 1867 2841
DC1 2903 5784 6636 8519 12573
DC2 2550 6678 8121 9247 14502
DC3 376 739 1013 1364 1790
DC4a 315 563 788 1096 1496
DC4b 211 385 623 1077 1487
DC4c 215 388 634 1079 1491
DC4d 332 706 933 1250 1759

Best speed-up
DC4b 2.77x 2.17x 2.27x 1.73x 1.91x

On the other hand, when going from DC3 through DC4a
towards DC4b, there is progressive speed-up of the exe-
cution runtime resulting from the increase in the number
of replicated LS kernels. Comparing DC4b and DC4c,
which differ only in the representation of LS as fixed- and
floating-point respectively, it can be seen that both designs
provide comparable runtimes, with DC4b being slightly
superior than DC4c (e.g., a maximum difference of 11 s for
4hmg). On the other hand, a significant decrease in perfor-
mance with respect to DC4b occurs when Conform calcu-
lations are expressed in floating-point as in DC4d (e.g., a
maximum difference of 321 s for 1stp). These results are
due to the II increase of Conform’s outmost-loop achieved
with fixed-point (DC4b, II=10) vs. floating-point (DC4d,
II=36). The case of InterE and IntraE is the opposite, be-
cause expressing their calculations in fixed-point resulted
in ∼20% of performance decrease (Section 4.2), due to
larger hardware area that led to lower frequencies (<170
MHz) for a design comparable to DC3 in Table 3. More-
over, for these two kernels, relaxing the order of floating-
point operations and removing intermediate rounding op-
erations enabled through compiler flags (-fpc-relaxed
and -fpc respectively) provided no performance benefits.
The maximum and minimum speed-up obtained with our
fastest design (DC4b) was 2.77x and 1.73x for the cases
3ptb and 3ce3. This can be explained by the computa-
tion effort imposed by the PDB complex, which directly in-
creases in cases where more atoms and torsions are present
in the ligand.
Table 5 reports the energy consumption of the two plat-
forms used, i.e., the single CPU core, and the FPGA. For
the CPU case, the drawn power was sampled in 50 ms in-
tervals using power performance counters to avoid inac-
curacies typically associated with external measurements
(e.g., shunt-based). The power samples were then inte-
grated over time to derive the energy. For the FPGA
case, we used estimated power values from fully placed
and routed OpenCL projects using quartus_pow similarly
as in [8]. The power estimate of ∼30 W was multiplied
by the respective runtime (Table 4) to obtain the energy.
Clearly, bigger/smaller energy-efficiency gains (1.86x for
3ptb, 1.12x for 3ce3) correspond to bigger/smaller speed-
up factors (2.77x for 3ptb, 1.73x for 3ce3) as already

Table 5 Energy consumption and best energy-efficiency
gains for 100 docking runs

Energy consumption (KJ)
Design Ligand-Receptor PDB ID
config. 3ptb 1stp 4hmg 3ce3 3c1x

Serial CPU 11.80 16.69 28.07 36.27 54.85
DC4b 6.33 11.50 18.69 32.31 44.61

Best energy improvement
DC4b 1.86x 1.45x 1.50x 1.12x 1.23x

shown in Table 4.

5.4.1 Comparison against state-of-the-art accelerated
AutoDock implementations

In comparison to the RTL-designed FPGA accelerator by
Pechan et al. [11], we achieved much lower arithmetically-
averaged speed-ups, i.e., ∼23.3x vs. ∼2.2x. The actual
execution times, though, are similar: our OpenCL version
achieves an average runtime of one docking run of ∼2.1 s
and ∼3.8 s for 3ptb and 1stp, respectively. These values
are comparable to the average of ∼3.1 s reported in [11],
but highly depend on the size and structure of the ligand.
However, despite all of our efforts, GPUs do an even better
job for accelerating the docking problem: In [15], Solis-
Vasquez et al. report a speed-up of ∼55.7x for 3c1x,
and an improvement of energy efficiency of ∼6.3x, over
the serial baseline. The fact that the optimal pipelining
(II=1) was achieved for each kernel of the bottleneck chain
(consisting of Conform, InterE, and IntraE), suggests that
the control mechanisms used in channel-based communi-
cations, such as our Arbiter kernel, are most likely not yet
optimal in our current FPGA design.

5.4.2 Tool support and productivity
In general, for each development phase, design specifi-
cation and its corresponding emulation-based verification
were as easy as with GPUs. Before generating FPGA bi-
naries, we extensively utilized the optimization reports pro-
vided by the tool, in order to assess the performance impact
of code modifications in terms of achieved II, and the es-
timated resource utilization. As a result, a fully-emulated
design for the first development phase (Section 4.1.1) was
completed in ∼four weeks.
However, during each development phase, the correspond-
ing hardware validation and subsequent optimization cy-
cles were much more involved. At this stage, we used the
hardware profiler to pinpoint bottlenecks caused by chan-
nels with unbalanced communication traffic between pro-
ducer and consumer kernels, as well as inefficient mem-
ory accesses. Although all designs were verified through
emulation, we observed this was not a guarantee that the
mapped designs would execute as expected on the FPGA.
Among the known emulator limitations [18], we found the
concurrency issue the most critical one.
To address it, it was essential to consider the possible
reorderings of operations potentially performed by the
OpenCL compiler. This is the case for our GA kernel,

where several read and write channel calls happen at dif-
ferent variable scopes throughout the entire docking exe-
cution. At first glance, the order of channel calls can be
enforced by using channel fences [18]. But in practice, this
mechanism worked only as long as these calls occurred at
the same variable scope. When such calls occurred be-
tween disjoint but still interdependent code blocks, the ex-
ecution order across these channel-enclosing blocks could
no longer be enforced by just using fences. Instead, we
had to explicitly introduce guard variables, which we have
to manually set/reset to enforce a valid execution order.
In summary, we spent a total of ∼five months on this de-
velopment, which was considerably delayed by the con-
currency issues, and of course by the non-negligible FPGA
synthesis and mapping times of ∼eight hours for each of
our largest designs.

5.4.3 Programming recipes and challenges for achiev-
ing higher performance

During the entire development, we aimed to achieve the
highest possible performance estimation (II=1) for each
single work-item kernel. Although this was not possible in
all parts of our design, the difficulty was alleviated by split-
ing large sections (GA in the first development cycle) into
smaller instances (as multiple LS and LFSR-LS kernels)
in order to harness the potential concurrency. Moreover,
appropriate data allocation on either on-chip or off-chip
memory, as well as arithmetic representation, were consid-
ered key tools for achieving higher performance. The ben-
efits of these general recipes are reflected in our most dras-
tic performance improvements, i.e., moving from DC2,
through DC3 towards DC4b (Section 5.3).
From the software-programming perspective, a big chal-
lenge faced during development was the required aware-
ness of the underlying hardware. First, there was the
need for explicit synchronization between multiple read
and write channels within single work-item kernels for en-
suring correctness. Second, the need for re-arranging the
local memory layout for increasing II. Finally, the need for
code-refactoring using hardware constructs such as shift-
registers, for better pipelining and unrolling loops.
Since compiler features are already available to support
such manual transformations, and the fact that a develop-
ment using a mix of OpenCL and RTL specifications is
possible, reinforce the impression that one still needs to be
aware of the underlying FPGA characteristics, even when
using OpenCL.

6 Conclusion and Future Work

In addition to the OpenCL-on-FPGA design techniques we
presented above, a key result of our study is the lack of
performance portability of OpenCL. The data-parallel ap-
proach that allows the GPU implementation [15] to reach
its impressive speed-ups leads to a slow-down of three or-
ders of magnitude when used on the FPGA.
However, the complex docking code makes for an inter-
esting subject for methodology studies. The improvements
we show from the initial to the final version of OpenCL

on FPGA were achieved by following a set of design and
optimization steps for a task-parallel pipeline architecture,
composed of single work-item kernels which communicate
through channels.
We explored several FPGA-specific techniques to tackle
the intrinsic termination-criteria known only at runtime
of docking nested-loops; as well as different architectural
choices, such as kernel replication and channel arbitra-
tion, to improve the efficiency of the encountered multiple-
producers-to-single-consumer datapath.
In order to further improve the performance, and come
closer to that of the RTL design [11], there is evidence [9]
that control logic as complex as our Arbiter kernel may
carry a high performance penalty. We will investigate al-
ternative solutions to circumvent this issue.
Acknowledgment. The authors would like to thank Andreas En-
gel from ESA, and Miguel Quiliano-Meza from Universidad de
Navarra for their valuable inputs for this work.

7 Literature
[1] Wang, G. et al.: Performance and productivity evaluation of hybrid-

threading HLS versus HDLs, High Performance Extreme Comput-
ing Conference (HPEC), IEEE, 2015

[2] Weller, D. et al.: Energy Efficient Scientific Computing on FPGAs
Using OpenCL, Field-Programmable Gate Arrays, ACM/SIGDA
International Symposium on, 2017

[3] Kono, F. et al.: Performance Evaluation of Tsunami Simulation Us-
ing OpenCL on GPU and FPGA, Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), IEEE 11th International Symposium
on, 2017

[4] Wang, D. et al.: PipeCNN: An OpenCL-based open-source FPGA
accelerator for convolution neural networks, Field Programmable
Technology (ICFPT), International Conference on, 2017

[5] Kenter, T. et al.: Flexible FPGA design for FDTD using OpenCL,
Field Programmable Logic and Applications (FPL), 27th Interna-
tional Conference on, 2017

[6] Ndu, G. et al.: CHO: towards a benchmark suite for OpenCL FPGA
accelerators, 3rd International Workshop on OpenCL (IWOCL),
2015

[7] Gautier, Q. et al.: Spector: An OpenCL FPGA benchmark suite,
Field-Programmable Technology (FPT), International Conference
on, 2016

[8] Zohouri, H. R. et al.: Evaluating and Optimizing OpenCL Kernels
for High Performance Computing with FPGAs, SC16: International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2016

[9] Yang, C. et al.: OpenCL for HPC with FPGAs: Case Study in
Molecular Electrostatics, IEEE High Performance Extreme Com-
puting Conference (HPEC), 2017

[10] Sousa, S. F. et al.: Protein-ligand docking: Current status and fu-
ture challenges, Journal of Proteins: Structure, Function, and Bioin-
formatics, Wiley Online Library, 2006

[11] Pechan, I. et al.: FPGA-based acceleration of the AutoDock molec-
ular docking software, 6th Conference on Ph.D. Research in Micro-
electronics Electronics, 2010

[12] OCLADock-FPGA, https://git.esa.informatik.
tu-darmstadt.de/docking/ocladock-fpga

[13] Morris, G. M. et al.: Automated docking using a Lamarckian ge-
netic algorithm and an empirical binding free energy function, Jour-
nal of Computational Chemistry, Wiley Online Library, 1998

[14] Pechan I. et al.: Hardware Accelerated Molecular Docking: A Sur-
vey, Bioinformatics, InTech, 2012

[15] Solis-Vasquez, L. et al.: A Performance and Energy Evaluation of
OpenCL-accelerated Molecular Docking, 5th International Work-
shop on OpenCL (IWOCL), 2017

[16] Pechan, I. et al.: Molecular Docking on FPGA and GPU Platforms,
21st International Conference on Field Programmable Logic and

https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga
https://git.esa.informatik.tu-darmstadt.de/docking/ocladock-fpga

Applications, 2011
[17] Kannan, S. et al.: Porting Autodock to CUDA, IEEE Congress on

Evolutionary Computation, 2010
[18] Intel, Intel FPGA SDK for OpenCL, 2017
[19] Intel, Intel Arria 10 Device Overview, 2017
[20] Berman, H.M. et al.: The Protein Data Bank, https://www.

rcsb.org, 2000
[21] Huey, R. et al.: Using AutoDock 4 and AutoDock Vina with

AutoDockTools: A Tutorial, 2012

https://www.rcsb.org
https://www.rcsb.org

	Introduction
	Background
	Related Work
	Design and Optimization Methodology
	OpenCL implementation
	First development phase
	Second development phase
	Third development phase
	Fourth development phase

	Further optimization techniques

	Experimental Evaluation
	Test description
	Functional validation
	Design configurations and resource utilization
	Execution runtime and energy-efficiency results
	Comparison against state-of-the-art accelerated AutoDock implementations
	Tool support and productivity
	Programming recipes and challenges for achieving higher performance

	Conclusion and Future Work
	Literature

