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Abstract—In recent years, FPGAs have been successfully
employed for the implementation of efficient, application-specific
accelerators for a wide range of machine learning tasks. In this
work, we consider probabilistic models, namely, (Mixed) Sum-
Product Networks (SPN), a deep architecture that can provide
tractable inference for multivariate distributions over mixed
data-sources. We develop a fully pipelined FPGA accelerator ar-
chitecture, including a pipelined interface to external memory, for
the inference in (mixed) SPNs. To meet the precision constraints
of SPNs, all computations are conducted using double-precision
floating point arithmetic. Starting from an input description,
the custom FPGA-accelerator is synthesized fully automatically
by our tool flow. To the best of our knowledge, this work is
the first approach to offload the SPN inference problem to
FPGA-based accelerators. Our evaluation shows that the SPN
inference problem benefits from offloading to our pipelined
FPGA accelerator architecture.

Index Terms—FPGA, SPN, Machine Learning, Graphical
Models, Deep Models

I. INTRODUCTION

The computational demand of many deep learning ap-
proaches, the currently predominating branch of machine
learning (ML), can only be satisfied by specialized acceler-
ators. Besides GPUs, which provide massive parallelism for
regular computations, and custom processors such as Google’s
TPU [1], which supports operations typical for ML now, but
is unable to adapt to advances in ML algorithms, FPGAs have
shown promise as an energy-efficient-yet-flexible alternative
[2]. Microsoft is the most prominent advocate of the FPGA-
centric strategy and has widely deployed its Catapult [3]
expansion boards across its data centers. While initially being
used to improve the quality of results of its Bing search
engine, Microsoft recently announced Project Brainwave [4],
which includes an FPGA-based processor tailored to accelerate
deep neural networks. Amazon and Baidu have also started to
employ FPGAs in their products and services [5].

A truly intelligent system, however, should be able to
deal with uncertain inputs (e.g. missing features) as well as
express its uncertainty over outputs. It is, therefore, no surprise
that probabilistic approaches have recently gained tremendous
momentum within deep learning. Corresponding approaches
such as variational autoencoders, deep generative models, and
generative adversarial nets (GANs), however, have limited
capabilities when it comes to probabilistic inference. Consider,

e.g. implicit likelihood models like GANs [6]. Even when
successful in capturing the data distribution, they do not allow
to compute the probability of a test sample. In contrast, Sum-
Product Networks (SPNs) [7] are a deep architecture that per-
mit exact and efficient probabilistic inference. More precisely,
they can compute any marginalization and conditioning query
in time linear to the model’s representation size, by evaluating
its computational graph representation—consisting of com-
putational nodes (addition & multiplication) and distribution
nodes—in a bottom-up fashion. This computational structure
and the need for efficient processing of batches of queries
in different Al application scenarios make SPNs a promising
candidate for FPGA-based acceleration.

Thus, the goal of the present paper is to develop a new,
pipelined FPGA accelerator architecture for the sum-product
network inference problem. This opens the door to local
(on-chip) model inference and in future work, even model
learning. The dynamic range of the probabilities and the need
to represent values with very small magnitude make the use
of high-precision floating-point arithmetic necessary. Besides
the pipelined accelerator architecture, we also develop an
automatic synthesis flow for SPNs. Our tool flow is a turn-
key solution that not only encompasses the actual synthesis of
a hardware datapath from an SPN description but also provides
crucial parts for any practically-usable FPGA accelerator,
i.e., a high-throughput memory system and accompanying
software APIs. In our experimental evaluation, we show that
our pipelined architecture can handle different model sizes and
still provide high throughput which is an essential feature of
scalable inference. To the best of our knowledge, this is the
first approach to offload the SPN inference problem to FPGA-
based accelerators.

We proceed as follows. Section II briefly reviews SPNs, how
they are learned from training data and how inference works.
Afterwards, we touch upon existing approaches to accelerate
probabilistic graphical models on various architectures. Sec-
tion IV then presents our pipelined accelerator architecture, our
automatic tool flow, and the integration into a heterogeneous
system. In section Section V we evaluate our accelerator
and compare it to other architectures and section Section VI
concludes the paper and looks forward to future work.
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Fig. 1: (a) An example of a valid SPN. Here, x1, x3 and x3 are random variables. The structure represents the joint distribution
P(x1,x2,3). (b) Intermediate representation of the SPN. Operators with n inputs are split into balanced trees of operators
with 2 inputs. Univariate distributions are modelled by histograms H;.

II. SUM-PRODUCT NETWORKS

Probabilistic Graphical Models (PGMs) have had a broad
impact on machine learning, both in academia and indus-
try. They can solve many ML problems by simply answer-
ing probabilistic queries. Consider, e.g., predictive model-
ing. One trains a PGM which then answers probabilistic
queries; for multi-class classification answering the query
arg max, P(class = c|data) gives us the most likely class
according to our model. Alternatively, as in one of our
benchmark datasets, we can ask which is the most likely
plant to grow in a particular location: argmax, P(plant =
pl|location). Unfortunately, inference in unrestricted PGMs is
often intractable. Motivated by the importance of efficient
inference for large-scale applications, a substantial amount of
work has been devoted to learning probabilistic models for
which inference is guaranteed to be tractable. Examples of
these model classes include sum-product networks (SPNs),
hinge-loss Markov random fields, and tractable higher-order
potentials. Being instances of Arithmetic Circuits (ACs), see
[8] for a discussion, SPNs are a deep architecture that can
represent high-treewidth models [9] and facilitate exact in-
ference for a range of queries in time linear in the network
size [7], [10]. They inherit universal approximation properties
from mixture models—a mixture model is simply a “shallow”
SPN with a single sum node. Consequently, SPNs can rep-
resent any prediction function, very much like deep neural
networks. Having exact probabilities offers an advantage not
present in other PGMs and deep neural networks. One can
compare the probabilities computed by different models and
not only solve classification or regression problems, but also
do anomaly detection at the same time while taking into
account the statistical nature of the data. Furthermore, SPNs
can compute measures such as Entropy, Mutual Information,
Information Gain, etc. Moreover, the Mixed Sum Product

Network (MSPN') proposed by Molina et al. [11], is a non-
parametric version of SPNs that opens the door for an efficient
FPGA implementation based on histograms.

A. Definition of SPNs

Formally, an SPN is a rooted directed acyclic graph, com-
prising sum, product, and leaf nodes as seen in Fig. la. The
scope of an SPN is the set of random variables appearing on
the network. An SPN can be defined recursively as follows:
(1) a tractable univariate distribution is an SPN; (2) a product
of SPNs defined over different scopes is an SPN; and (3),
a convex combination of SPNs over the same scope is an
SPN. Thus, a product node in an SPN represents a factor-
ization over independent distributions defined over different
random variables, while a sum node stands for a mixture
of distributions defined over the same variables. From this
definition, it follows that the joint distribution modeled by
such an SPN is a valid probability distribution, i.e., each
complete and partial evidence inference query produces a
consistent probability value [7], [12]. Computationally, the
number of arithmetic operations is different for the given
nodes. For product nodes, we have |children| — 1 number
of multiplications. For sum nodes, we have |children| — 1
number of additions and |children| number of multiplications.
The leave nodes require as many operations needed for a
look-up table of size |[domain(Variable;)|. The SPNs make no
restriction on reusing sub-structures as long as the consistency
rules are preserved.

B. Tractable Inference in SPNs

To answer probabilistic queries in an SPN, we evaluate
the nodes starting at the leaves. Given some evidence, the
probability output of querying leaf distributions is propagated
bottom up. For product nodes, the values of the child nodes
are multiplied and propagated to their parents. For sum nodes,

I github.com/alejandromolinaml/SPFlow
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Fig. 2: Example of a synthetic dataset, fitted using the SPN in
Fig. 1b. For illustration purposes, we present here P (X5, X3)
marginalizing X; out. H;(X;) represent the different his-
tograms in the MSPN. The histograms are free to overlap,
but the greedy learning algorithm attempts to represent dif-
ferent subsets of the data. Deeper MSPNs can represent more
complex datasets.

instead, we sum the weighted values of the child nodes.
The value at the root indicates the probability of the asked
query. To compute marginals, i.e., the probability of partial
configurations, we set the probability at the leaves for those
variables to 1 and then proceed as before. An example of such
marginalization is shown in Fig. 2, where we obtain a new
SPN that computes P(X, X3) = > P(X; = z, X5, X3)
and show how it can be used to fit a randomly generated
dataset. All these operations traverse the tree at most twice
and therefore can be achieved in linear time w.r.t. the size of
the SPN. In this work, we consider only datasets with discrete
variables, as they can be easily implemented with fast look-
up tables, however extending the histograms to the continuous
case is not difficult. We also focus on joint computations as
they are the basis for all other inference algorithms. These
operations at the leaves are then executed in constant time,
maintaining the tractability of the SPN.

C. Learning SPNs

While it is possible to craft the structure of a valid SPN
by hand, doing so requires domain knowledge and weight
learning afterward [7]. Here, we use the greedy, top-down ap-
proach of the MSPNs that directly learns both the structure and
weights of (tree) SPNs at once while making few assumptions
on the data.

It consists of three steps: (1) base case, (2) decomposition
and (3) conditioning. In the base case, if only one variable re-
mains, the algorithm learns a univariate normalized histogram
and terminates. Here, we represent univariate distributions by
normalized histograms. These histograms are then converted

to look-up tables, as they can be efficiently implemented on
FPGAs. We use the same implementation for the traditional
CPU code to keep the experiments as similar as possible. In
the decomposition step, it tries to partition the variables into
independent components. This decomposition is based on a
non-parametric independency test [13] that is run for every
random variable V; C V in a pair-wise fashion, creating
a graph of interactions among all the variables. We then
obtain the disconnected components of this graph, which
indicates that variables inside a component are tightly coupled
and variables among different components are independent.
From these components, we induce a product node such that
P(V) =TI, P (V;) and recurse on each child.

If the base case is not applicable and the decomposition step
cannot find independencies, then the algorithm partitions the
training samples into clusters (conditioning). This clustering
procedure first transforms the data to a higher-dimensional
space so that discrete variables fit the assumptions of normality
of the clustering algorithm. From the clusters, we induce a sum
node, and the algorithm recurses on each cluster. The weights
of the sum nodes then represent the data proportions in the
clusters. This learning algorithm does not reuse sub-structures,
however, the intermediate language representation used keeps
track of sub-tree references and the FPGA pipeline is aware of
them. Using a different algorithm or a pruning or compression
step can enable this capability.

This learning algorithm is typically pre-computed on a tradi-
tional CPU. Then the resulting SPN structure can be compiled
for inference into FPGAs, C++ code or even TensorFlow
graphs, as shown in section V.

D. Size of SPNs

The size of the SPN depends on the training dataset and the
learning parameters. The smallest multi-variate SPN is a prod-
uct node over all the random variables, giving a lower bound
on the network size of |Variables| + 1. Introducing binary sum
nodes doubles the size of the sub-graph by the number of
random variables in the node. The learning algorithm then
creates SPNs whose size is constrained by heuristics for early
stopping and the number of independencies recovered from
the data. Deeper SPNs are more expressive, but also more
computationally intensive, while shallower SPNs have fewer
parameters and use fewer resources. Controlling the depth of
the SPN impacts how well it fits the data. A very deep structure
tends to overfit, while a shallow structure does not have enough
expressive power to represent the training data.

In this work, we focus on the largest SPNs that we can fit
entirely in FPGAs in a fully spatial realization.

III. RELATED WORK

To the best of our knowledge, our work is the first automatic
synthesis tool to accelerate SPN inference on FPGAs.

Previous research has studied the FPGA acceleration of
other kinds of PGMs such as Bayesian Networks (BN) [14]
and Markov Random Fields (MRF) [15]. These approaches
are orthogonal to ours, as the inference problem, in general,



is not tractable for BNs and MRFs. A common theme in BN
accelerators is to design specialized processors, as inference
in large tree-width models is expensive. In contrast, the
arithmetic circuit (AC) representation of BNs [16] resembles
a datapath similar to an SPN, which Zermani et al. [17] first
compiled to C code and then used Vivado HLS to synthesize an
IP core to be used on a Zynq SoC. Other ACs implementations
for FPGAs can be found in ([18], [19]). However, ACs are
restricted to binary random variables, whereas our SPN-based
approach has no such restriction. Lastly, the recently presented
LibSPN [20] aims to bring multi-core and GPU acceleration
to SPNs by translating them to TensorFlow [21], but is not
yet publicly available and does not support histogram-based
representation at the leaf-nodes. For evaluation purposes, we
implemented our own TensorFlow-based GPU backend.

IV. APPROACH & IMPLEMENTATION

The goal of this work is to synthesize efficient acceler-
ators for the inference problem in sum-product networks.
In this section, we present our accelerator architecture, the
compilation flow that generates the accelerator using the SPN
structure learned as described in Section II-C as input and the
integration of our accelerator into a heterogeneous system.

A. System Overview

In this paper, we aim for a fully pipelined accelerator
architecture since we want to process a large number of queries
efficiently and each query is independent of other queries.

The vast amount of data required for the input values of
each query makes it inevitable to provide the accelerator with
access to the external memory on the FPGA board. We use
the open-source TaPaSCo framework [22], which provides a
standardized memory interface as well as an interface and
host-side API for the integration into a heterogeneous system
(cf. Section IV-B).

Our accelerator architecture consists of four main compo-
nents, depicted in Fig. 3. The controller is responsible for
managing the other components and provides the necessary
TaPaSCo slave interface (Section IV-B). Load and store unit
together make up the memory interface of the accelerator,
described in more detail in Section IV-D. The datapath im-
plements the computation represented by the sum-product
network, see Section IV-C for details on its construction. Load
unit, datapath, and store unit are decoupled by queues to
allow for the latency-insensitive, independent operation of the
different components.

B. TaPaSCo & Heterogeneous system integration

In order to integrate our accelerator into a heterogeneous
system, we use the TaPaSCo-framework [22] that has been
developed to fast-track the prototyping of FPGA-based accel-
erators. TaPaSCo defines AXI-based, standardized interfaces,
which are used to control the execution of the accelerator
(slave interface) and provide the accelerator with memory
access (master interface). TaPaSCo also includes an automated
tool-flow to assemble multiple instances of these accelerators

AXIl4 Slave
Interface
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External Memory

Fig. 3: Overview of the system architecture.

(processing elements, PEs) into a complete top-level design,
called threadpool, which is then wrapped with the connectivity
to host and memory. Regardless of its composition, every
threadpool can be controlled by an unified software interface,
the so-called TaPaSCO-API. This API provides basic functions
to transfer data to/from the device and launch jobs on the
accelerators in the threadpool.

To integrate our accelerator into the threadpool, we imple-
ment the necessary interfaces. Our controller (cf. Fig. 3) im-
plements an AXI4 slave interface, which is used by TaPaSCo
to transmit commands (e.g. the start-command) from the host
by reading/writing configuration register values and control
signals. Load and store unit in combination implement an
AXI4 master interface, which is connected to the external
memory on the FPGA board through the TaPaSCo infrastruc-
ture. The implementation of this interface is described in more
detail in Section IV-D. The host can transfer data to/from the
external memory on the device by using the TaPaSCo API.
Before the execution on the FPGA starts, all sample data is
transferred to the external memory on the FPGA board. After
the computation has completed, all result data is transferred
back to host memory.

We also use the API to control the execution of our
accelerator in the FPGA. This allows us to seamlessly integrate
the offloading to the FPGA accelerator into the host software
for SPN inference.

C. Compile flow & Datapath architecture

Our automatic tool-flow that maps SPNs to FPGA acceler-
ators starts from a textual representation of the SPN, which
describes the nodes of the SPN, their individual configuration,
and the connections between the different nodes in the tree-
structure of the SPN.

In a first step, we parse the textual input and construct a
graph-based intermediate representation of the SPN, as shown
in Fig. 1b for the example SPN from Fig. la. During the
construction of the graph IR, we decompose additions or
multiplications with more than two operands into balanced
trees of two-input operators, as can be seen for the three-input
multiplication on the right side of the example SPN.



As mentioned earlier in Section II-C, the random variables
with univariate distributions at the leaf nodes of the SPN
tree-structure are modeled with histograms. Each histogram
consists of multiple bins with corresponding probabilities, and
the bins match adjacent intervals of input feature values. If two
neighboring bins share the same probability value, our tool-
flow merges these bins, resulting in a bin which covers the
two adjacent intervals of the original bins.

The configuration of the histograms is also part of another
optimization implemented in our tool-flow: The sample values
stored in memory are used to index into the bins of the
different histograms. Based on the largest possible value for
the input features, which is determined by the upper bound
of the last bin, we can optimize the input bitwidth. Across
all histograms, we can calculate the minimum number of bits
n, necessary to represent the highest possible input value, at
compile time. All input values are then stored in memory using
n bits. This optimization reduces the pressure on the memory
interface, as less bandwidth is required to read the input values
for each sample from memory. If, for example, the highest
possible input values across all histograms was 212, we could
represent all input values with only eight bit, reducing the
memory bandwith requirement by a factor of four compared
to a generic representation with 32 bit.

Before we map the tree to hardware operators, we de-
compose weighted adders into corresponding combinations
of multipliers and adders. In the next step, we now map
the SPN tree structure to the actual hardware datapath. As
we aim for maximum throughput in this first version of our
synthesis tool, we use a fully-spatial, statically scheduled
microarchitecture for our datapaths. That is, every operation
in the SPN is implemented by its own operator module on the
device, and no resource-sharing occurs. For the scheduling
of the fully-spatial microarchitecture, a simple as-soon-as-
possible strategy suffices to obtain an optimal (concerning
the latency) static schedule for the datapath. Our pipelined
schedule assumes that the memory interface can provide an
input sample in every clock cycle. However, depending on
the number of input features and the bitwidth of the memory
interface (cf. Section IV-D), this might not be the case. We
therefore introduce a shift register into our datapath, which
keeps track of valid samples in the pipeline to make sure we
only write back correct output values to memory.

For the pipelined implementation of the histograms at the
leaf-nodes of the SPN, we use a simple look-up table approach.
The values for each index are computed at compile time,
and the discrete values of the input features are used to
index the look-up table. The arithmetic operations inside the
tree (additions and multiplications) are realized with pipelined
operators from the FloPoCo-library [23]. Regarding the pre-
cision, a worst case scenario arises from the inference of a
low-probability instance such as an anomaly or an outlier data
point evaluated on a shallow SPN consisting of one product
over all the univariate features. Furthermore, the number of
discrete values or bins in the look-up table can have a negative
impact as they represent a normalized distribution. This has

Fig. 4: Example SPN mapped to HW operators. To balance
the different branches of the tree, some intermediate results
need to be preserved in shift registers. Look-up tables for the
histograms are indexed with the input feature values read from
memory.
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these values, which have a very small magnitude, the whole
computation within the datapath is completely done in the
FloPoCo floating point format, using 11 bits for the exponent
and 52 bits for the mantissa. Aside from subnormal numbers,
this format is equivalent to a double-precision floating-point
format. The final conversion to IEEE-754 double precision
format for use in the host is done right before the values
are written back to memory. In practice, the SPNs used in
the experimental section did not suffer underflows, however,
bigger SPNs might have to do computations in log-space. The
size of the SPNs is limited to the FPGA capabilities and
implementing exp and log functions, would reduce the size
of the SPNs that we could implement on-chip.

The mapping to the hardware datapath for the example from
Fig. 1 is given in Fig. 4. The height of the operators in the
diagram indicates their scheduled start time, with the first time
step at the bottom. All look-up tables used to implement the
histograms are placed in the first time step and will be indexed
by the discrete values for the three input variables read from
memory. As one can see from the IR-graph in Fig. 1b, the
different branches of the tree have different heights/latencies.
We need to balance the different branches to match partial
results from the different branches at the merge points. To
this end, we insert pipelined shift registers into the datapath
that work as intermediate storages for partial results (labeled
SR in the diagram).

D. Memory Interface

As explained in Section IV-B, TaPaSCo provides each pro-
cessing element, such as our accelerator, with a standardized
AXI4-interface which we use to connect our accelerator to the
external memory on the FPGA-board.



TABLE I: FPGA implementation results, all numbers are post-place&route.

Dataset Cols Adds Muls Depth Freq. MHz) LUT (%) Reg (%) Slices (%) BRAM (%) DSP (%)
Accidents 111 27 217 99 200 61.49 32.92 75.87 4.66 36.17
Audio 100 12 275 99 200 72.26 37.65 89.32 4.66 45.83
Netflix 100 11 231 115 190 67.60 36.12 87.84 4.66 38.50
MSNBC200 17 30 165 245 200 51.64 27.24 66.01 4.66 27.50
MSNBC300 17 17 102 163 200 36.82 21.76 46.52 4.66 17.00
NLTCS 16 27 152 150 200 4791 26.72 61.99 4.66 25.28
Plants 69 14 256 206 200 68.89 34.88 86.80 4.66 42.67
NIPS5 5 1 10 38 200 17.96 8.87 24.12 4.80 1.67
NIPS10 10 3 25 76 200 21.20 11.01 29.55 4.80 4.33
NIPS20 20 7 56 82 200 28.84 14.67 38.93 5.27 9.67
NIPS30 30 10 87 94 199 36.47 18.31 46.27 4.86 14.83
NIPS40 40 16 122 94 200 44.79 23.67 57.67 5.14 21.17
NIPS50 50 16 143 100 200 51.78 25.06 62.97 5.48 24.50
NIPS60 60 13 156 94 200 54.71 27.84 68.15 5.88 26.67
NIPS70 70 14 180 106 200 61.97 28.90 75.58 5.61 30.50
NIPS80 80 32 265 143 180 79.72 38.99 96.17 5.95 44.17

With our fully pipelined accelerator architecture, the goal is
to feed the pipeline with a new query every clock cycle. This
requires an efficient, pipelined load infrastructure, in particular
as the number of bits at the input of the datapath is typically
higher than at the output (due to the tree-structure of SPNs).
For an efficient supply of input data, we use AXI4 burst
requests to read the query input values from memory. The
load unit computes the addresses for the requests, relative to a
base address configurable from the host. The independence of
the different AXI4 channels allows us to issue the next burst
request before all data from the current one has been sent,
resulting in a continuous stream of input data.

Inside the load unit, a re-alignment unit converts from the
AXI4 data width (e.g. 512 bit in case of our evaluation on
the VC709 board) to the input width of the datapath. Here,
we have to consider three different cases: If the bitwidth of
a sample matches the bitwidth of the memory interface, we
can simply forward the read data. If the input bitwidth of the
datapath is smaller than the memory interface bitwidth, the
realignment unit buffers the read data and forwards chunks
of appropriate size to the datapath. In case the bitwidth at
the input of the datapath exceeds the maximum bitwidth of
the memory interface, multiple beats must be buffered, before
a complete sample can be forwarded to the datapath. In all
three cases, the realignment unit was designed to forward a
complete sample to the datapath as soon as a sufficient amount
of data was read/buffered. In the latter case, the bitwidth of the
memory interface limits the performance of our accelerator,
and we cannot start the computation for a new sample in
every clock cycle. After the computation inside the datapath
has completed, we need to store the results back to memory.
Here we buffer multiple output values and again use AXI4
burst requests, which can be handled more efficiently by the
memory interface, to write back a batch of values.

V. EXPERIMENTAL EVALUATION

A. Datasets

For the performance evaluation, we focused on datasets
of count and binary data types. For count data we used the

NIPS?2 corpus, containing 1,500 documents over the 100 most
frequent words. For binary data we evaluated our implemen-
tation on a range of six different datasets as pre-processed
and provided by [24] and [25]. Accidents is a dataset of
traffic accidents in Belgium for the period 1991-2000. The
Audio dataset consists of information about users that listened
or did not listen to a set of top 100 artists. The Netflix
dataset is a random subset of the Netflix challenge, focused
on the 100 most frequently rated movies and whether a
user rated a movie. The anonymized MSNBC data contains
information about whether a user visited a top-level MSNBC
page during a particular browsing session. The National Long
Term Care Survey (NLTCS) dataset contains variables that
measure whether a person can perform a set of daily living
activities. The Plants dataset indicates whether a given plant
can be found in a particular location.

B. FPGA implementation

For the evaluation of our FPGA implementation, we target
a Xilinx VC709 evaluation board, containing a Virtex7-device
(xc7vx690) and 4 GiB of RAM. The heterogeneous system
that we use for the performance evaluation of the FPGA in
Section V-D combines the FPGA-board with an Intel i7 6700K
CPU. We used Xilinx Vivado 2017.4 for the FPGA imple-
mentation with a target frequency of 200 MHz. The results
are given in Table I. Column Cols gives the number of inputs
to the datapath, Adds and Muls give the number of two-input
adders and multipliers in the datapath and Depth indicates
the depth of our computation pipeline. Besides the achieved
clock frequency, we also state the resource requirements on
the FPGA, for brevity those numbers are given relative to
the entire FPGA in percent’. We encounter a relatively low
demand for BRAMs and a moderate usage of registers. For the
other numbers, the resource requirements roughly correspond
to the size of the network. This can be seen from the NIPS-
examples in particular: Here, we add an increasing number of

2archive.ics.uci.edu/ml/datasets/bag+of+words
3The absolute number of resources available are 433200 (LUT), 866400
(Register), 108300 (Slices), 1470 (BRAM) and 3600 (DSP), respectively.



TABLE II: Performance comparison. Best end-to-end throughputs (T), excluding the cycle counter measurements, are denoted

bold.
Dataset Rows CPU T-CPU CPUF T-CPUF GPU T-GPU | FPGA FPGAC T-FPGAC FPGA T-FPGA
(us) (rows/ (us) (rows/ (us) (rows/ Cycle (us) (rows/ (us) (rows/
us) us) us) Counter us) us)
Accidents 17009 2798.27 6.08 2162.59 7.87 | 63090.94 0.27 17249 86.25 197.22 696.00 24.44
Audio 20000 4271.78 4.68 3683.71 5.43 | 78253.46 0.26 20317 101.59 196.88 761.00 26.28
Netflix 20000 4892.22 4.09 4098.88 4.88 | 67172.39 0.30 20322 106.95 187.00 654.00 30.58
MSNBC200 388434 | 15476.05 25.10 12713.55 30.55 | 62349.42 6.23 388900  1944.50 199.76  5008.00 77.56
MSNBC300 388434 | 10060.78 38.61 9418.29 41.24 | 50558.06 7.68 388810  1944.05 199.81  4933.00 78.74
NLTCS 21574 791.80 27.25 687.25 31.39 | 35544.39 0.61 21904 109.52 196.99 566.00 38.12
Plants 23215 3621.71 6.41 3521.04 6.59 | 67004.41 0.35 23592 117.96 196.80 778.00 29.84
NIPS5 10000 25.11  398.31 26.37 379.23 8210.32 1.22 10236 51.18 195.39 337.30 29.65
NIPS10 10000 83.60 119.61 84.39 118.49 | 11550.82 0.87 10279 51.40 194.57 464.30 21.54
NIPS20 10000 191.30 52.27 182.73 54.72 | 18689.04 0.54 10285 51.43 194.46 543.60 18.40
NIPS30 10000 387.61 25.80 349.84 28.58 | 25355.93 0.39 10308 51.80 193.06 592.30 16.88
NIPS40 10000 551.64 18.13 471.26 21.22 | 30820.49 0.32 10306 51.53 194.06 632.20 15.82
NIPS50 10000 812.44 12.31 792.13 12.62 | 36355.60 0.28 10559 52.80 189.41 720.60 13.88
NIPS60 10000 1046.38 9.56 662.53 15.09 | 40778.36 0.25 12271 61.36 162.99 799.20 12.51
NIPS70 10000 1148.17 8.71 1134.80 8.81 | 46759.26 0.21 14022 70.11 142.63 858.60 11.65
NIPS80 10000 1556.99 6.42 1277.81 7.83 | 63217.99 0.16 14275 78.51 127.37 961.80 10.40

input features (i.e. words) to the SPN, resulting in a bigger
network and thus in a higher resource consumption.

Most of the examples achieve the target frequency, but in
some examples the routing to the DSP-blocks used for the
realization of the floating-point multiplication in FloPoCo be-
comes critical. We were able to improve the routing by adding
one or two more pipeline stages to the multiplier; however,
we see a notable degradation of the operating frequency for
NIPSS80 and Netflix.

C. CPU & GPU Implementation

To have a complete performance comparison, we compiled
the same SPNs used in the FPGAs to both C++ and Tensor-
Flow [21]. Both implementations were executed on a Linux
workstation with an AMD Ryzen 1950X Processor, 128GB of
RAM and an NVIDIA 1080Ti GPU with 11GB of memory.
We implemented the C++ version via code generation, writing
inlined functions with look-up tables for the leaves. The rest
of the SPN was expressed as a single function of additions
and multiplications of the leaf functions. We compiled the
generated C++ source code using GCC 7.2.0 and the flag
-O3 and created two versions, one with the flag -ffast-math
enabled, called CPUF, and one without it, called CPU. Both
C++ implementations load all the data in memory and evaluate
each complete dataset 1000 times. We report the average time
for each instance of the dataset. For the GPU version, we
implemented a TensorFlow graph of additions and multiplica-
tions. For the leaves, we used a look-up table implemented as
a tf.gather operation over placeholders containing the data. We
then executed each complete dataset 1000 times and measured
execution times including data-transfer to the GPU, just as for
the heterogeneous system with the FPGA.

D. Performance evaluation

To compare the performance of our FPGA implementation
with the CPU and GPU, we report two different execution
times for the FPGA: One only for the actual SPN computation,
measured using a performance counter (Cycle Counter) inside
the accelerator, with the corresponding actual time shown as
(FPGAC). The second time (FPGA) is measured on the host
side and includes the time for data transfer to/from the device
memory and the launch of HW-execution. The performance
results are given in Table II, Rows gives the number of samples
processed for each example. Besides the execution time in
microseconds, we also report the throughput in samples per
microsecond (e.g. T-GPU).

The GPU performance clearly shows that the naive Tensor-
Flow parallelization model is not very suitable for the tree-
structure of the SPNs. The analysis of the traces shows that
most lanes are only used for a few operations and are idle most
of the time. Additionally, a lot of inter-lane communication
takes place, as the computation of the tree is spread across
multiple lanes. This a general problem of the TensorFlow
GPU-model, which is tailored more towards neural networks,
and not linked to a specific GPU. The comparison of CPU and
CPUF shows that, except for the two smallest networks, the
CPU execution profits from the compilation with the fastmath-
flag. Comparing the performance of CPU and the FPGA
performance counter, one can see that, aside from NIPSS5, the
pipelined computation in the FPGA outperforms the CPU im-
plementation regarding execution time and throughput. These
values also demonstrate the effectiveness of our pipelining:
Especially for the cases with binary input data, we are able
to achieve an almost perfect pipelining, where we process a
sample per clock cycle (equivalent to a throughput of 200
samples (rows) per us). From the NIPS-examples, one can
also see that the accelerator is memory bound: With a larger



number of input values, more data has to be loaded from
memory, and the pipeline cannot be fed every clock cycle.

The comparison of the performance counter and the total
FPGA execution time including interaction in the heteroge-
neous system shows that there is significant overhead for
data transfers to/from FPGA memory and the HW-launch.
However, the FPGA is still able to outperform the CPU for
all binary examples and most of the larger NIPS-examples
(NIPS50, NIPS70, NIPS80), demonstrating the potential of
offloading the inference in SPNs to the FPGA, in particular
for larger SPNs. Note that for platforms having true shared
memory between the CPU and the FPGA, such as the Xilinx
Zynq devices, or the Intel HARP2 systems, these explicit data
transfers between CPU and FPGA memory can be completely
avoided and the full speed-up (based on the FPGAC measure-
ment) realized.

VI. CONCLUSION AND FUTURE WORK

We have presented the first FPGA-based accelerator archi-
tecture for the inference problem in sum-product networks
(SPNs), a deep architecture for probability distributions. Our
automatic synthesis flow generates a fully-pipelined acceler-
ator from an input description of the SPN and also provides
a software interface for interaction with the accelerator in a
heterogeneous system. The accelerator architecture features
pipelined access to the external memory on the FPGA-
board and double-precision floating-point computation. The
results of our experimental evaluation demonstrate that the
pipelined computation in the FPGA can outperform CPU-
and TensorFlow-GPU-implementations, almost processing a
complete input sample per cycle for many examples.

There are several interesting avenues for future work. One
could extend our synthesis flow and hardware implementation
for resource-sharing of operators, in order to be able to
map bigger networks. One could also further optimize the
arithmetic operators, e.g., by using log-space computations,
a very common arithmetic optimization in the ML-domain.
Another interesting research avenue is pre-compiling a ran-
domly generated structure and doing weight optimization in
the FPGA, with the aim of having a full implementation of
a PGM in a chip. If the random structure is large enough it
could be retrained on different domains to fit any kind of data.
This could also account for domains with concept drifting.
Finally, other potential usage scenarios should be explored,
such as computing mutual information, maximum a posteriori
estimation and approximate queries within databases. These
scenarios require fast processing of many input combinations
but require less data-transfer from host to FPGA.
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