
Automatic Synthesis of FPGA-based Accelerators for the Sum-Product
Network Inference Problem

Lukas Sommer 1 Julian Oppermann 1 Alejandro Molina 2 Carsten Binnig 3 Kristian Kersting 4 Andreas Koch 1

Abstract
In recent years, FPGAs have been successfully
employed for the implementation of efficient,
application-specific accelerators for a wide range
of machine learning tasks. In this work, we
consider probabilistic models, namely, (Mixed)
Sum-Product Networks (SPN), a deep architec-
ture that can provide tractable inference for mul-
tivariate distributions over mixed data-sources.
We develop a fully pipelined FPGA acceler-
ator architecture, including a pipelined inter-
face to external memory, for the inference in
(mixed) SPNs. To meet the precision constraints
of SPNs, all computations are conducted using
double-precision floating point arithmetic. Start-
ing from an input description, the custom FPGA-
accelerator is synthesized fully automatically by
our tool flow. To the best of our knowledge,
this work is the first approach to offload the SPN
inference problem to FPGA-based accelerators.
Our evaluation shows that the SPN inference
problem benefits from offloading to our pipelined
FPGA accelerator architecture.

1. Introduction
The computational demand of many deep learning ap-
proaches, the currently predominating branch of machine
learning (ML), can only be satisfied by specialized accel-
erators. Besides GPUs, which provide massive parallelism
for regular computations, and custom processors such as
Google’s TPU (Jouppi et al., 2017), which supports op-
erations typical for ML now, but is unable to adapt to
advances in ML algorithms, FPGAs have shown promise

1Embedded Systems and Applications Group, TU Darm-
stadt, Germany 2Machine Learning Group, TU Darmstadt,
Germany 3Data Management Lab, TU Darmstadt, Germany
4Machine Learning Group and Centre for Cognitive Science, TU
Darmstadt, Germany. Correspondence to: Alejandro Molina
<molina@cs.tu-darmstadt.de>.

Working Notes of a ICML/FAIM 2018 Workshop, Stockholm,
Sweden, 2018. Copyright 2018 by the author(s).

as an energy-efficient-yet-flexible alternative (Nurvitadhi
et al., 2017).

A truly intelligent system, however, should be able to deal
with uncertain inputs (e.g. missing features) as well as ex-
press its uncertainty over outputs. It is, therefore, no sur-
prise that probabilistic approaches have recently gained
tremendous momentum within deep learning. Correspond-
ing approaches such as variational autoencoders, deep gen-
erative models, and generative adversarial nets (GANs),
however, have limited capabilities when it comes to proba-
bilistic inference. Consider, e.g. implicit likelihood models
like GANs (Goodfellow et al., 2014). Even when success-
ful in capturing the data distribution, they do not allow to
compute the probability of a test sample. In contrast, Sum-
Product Networks (SPNs) (Poon & Domingos, 2011) are
a deep architecture that permit exact and efficient proba-
bilistic inference. More precisely, they can compute any
marginalization and conditioning query in time linear to
the model’s representation size, by evaluating its compu-
tational graph representation—consisting of computational
nodes (addition & multiplication) and distribution nodes—
in a bottom-up fashion. This computational structure and
the need for efficient processing of batches of queries in
different AI application scenarios make SPNs a promising
candidate for FPGA-based acceleration.

Thus, the goal of the present paper is to develop a
new, pipelined FPGA accelerator architecture for the sum-
product network inference problem. This opens the door to
local (on-chip) model inference and in future work, even
model learning. The dynamic range of the probabilities
and the need to represent values with very small magni-
tude make the use of high-precision floating-point arith-
metic necessary. Besides the pipelined accelerator archi-
tecture, we also develop an automatic synthesis flow for
SPNs. Our tool flow is a turn-key solution that not only
encompasses the actual synthesis of a hardware datapath
from an SPN description but also provides crucial parts
for any practically-usable FPGA accelerator, i.e., a high-
throughput memory system and accompanying software
APIs. In our experimental evaluation, we show that our
pipelined architecture can handle different model sizes and
still provide high throughput which is an essential feature
of scalable inference. To the best of our knowledge, this is

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

+

× ×

X1 + X1 X2 X3

× ×

X2 X3 X2 X3

0.4 0.6

0.3 0.7

(a)

+

× ×

H1 + H2 ×

× × H3 H4

H5 H6 H7 H8

0.4 0.6

0.3 0.7

(b)

Figure 1: (a) An example of a valid SPN. Here, x1, x2 and x3 are random variables. The structure represents the joint
distribution P (x1, x2, x3). (b) Intermediate representation of the SPN. Operators with n inputs are split into balanced trees
of operators with 2 inputs. Univariate distributions are modelled by histograms Hi.

the first approach to offload the SPN inference problem to
FPGA-based accelerators.

We proceed as follows. Section 2 briefly reviews SPNs,
how they are learned from training data and how inference
works. Afterwards, we touch upon existing approaches to
accelerate probabilistic graphical models on various archi-
tectures. Section 4 then presents our pipelined accelerator
architecture, our automatic tool flow, and the integration
into a heterogeneous system. In section Section 5 we eval-
uate our accelerator and compare it to other architectures
and section Section 6 concludes the paper and looks for-
ward to future work.

2. Sum-Product Networks
Probabilistic Graphical Models (PGMs) have had a broad
impact on machine learning, both in academia and in-
dustry. They can solve many ML problems by simply
answering probabilistic queries. Consider, e.g., predic-
tive modeling. One trains a PGM which then answers
probabilistic queries; for multi-class classification answer-
ing the query argmaxc P (class = c|data) gives us the
most likely class according to our model. Alternatively,
as in one of our benchmark datasets, we can ask which
is the most likely plant to grow in a particular location:
argmaxp P (plant = p|location). Unfortunately, inference
in unrestricted PGMs is often intractable. Motivated by
the importance of efficient inference for large-scale appli-
cations, a substantial amount of work has been devoted to
learning probabilistic models for which inference is guar-
anteed to be tractable. Examples of these model classes
include sum-product networks (SPNs), hinge-loss Markov
random fields, and tractable higher-order potentials. Being
instances of Arithmetic Circuits (ACs), see (Choi & Dar-

wiche, 2017) for a discussion, SPNs are a deep architec-
ture that can represent high-treewidth models (Zhao et al.,
2015) and facilitate exact inference for a range of queries in
time linear in the network size (Poon & Domingos, 2011;
Bekker et al., 2015). They inherit universal approxima-
tion properties from mixture models—a mixture model is
simply a “shallow” SPN with a single sum node. Conse-
quently, SPNs can represent any prediction function, very
much like deep neural networks. However, having exact
probabilities offers an advantage not present in other PGMs
and deep neural networks. One can compare the proba-
bilities computed by different models and not only solve
classification or regression problems, but also do anomaly
detection at the same time while taking into account the
statistical nature of the data. Furthermore, any measures
based on probabilities can be computed exactly. Among
those measures, we find Entropy, Mutual Information, In-
formation Gain, etc. Moreover, the Mixed Sum Product
Network (MSPN) proposed by Molina et al. (Molina et al.,
2018), is a non-parametric version of SPNs that opens the
door for an efficient FPGA implementation based on his-
tograms. This MSPN maintains the expressiveness while
representing a wide range of statistical data types.

2.1. Definition of SPNs

Formally, an SPN is a rooted directed acyclic graph, com-
prising sum, product, and leaf nodes as seen in Fig. 1.
The scope of an SPN is the set of random variables ap-
pearing on the network. An SPN can be defined recur-
sively as follows: (1) a tractable univariate distribution
is an SPN; (2) a product of SPNs defined over different
scopes is an SPN; and (3), a convex combination of SPNs
over the same scope is an SPN. Thus, a product node in
an SPN represents a factorization over independent dis-

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

2.5 5.0 7.5 10.0 12.5 15.0

0

10

20

30

H5(X2) H7(X2) H3(X2)

H
6 (X

3)
H

8 (X
3)

H
4 (X

3)

Figure 2: Example of a synthetic dataset, fitted using the
SPN in Fig. 1b. For illustration purposes, we present here
P (X2, X3) marginalizing X1 out. Hi(Xj) represent the
different histograms in the MSPN. The histograms are free
to overlap, but the greedy learning algorithm attempts to
represent different subsets of the data. Deeper MSPNs can
represent more complex datasets.

tributions defined over different random variables, while
a sum node stands for a mixture of distributions defined
over the same variables. From this definition, it follows
that the joint distribution modeled by such an SPN is a
valid probability distribution, i.e., each complete and par-
tial evidence inference query produces a consistent proba-
bility value (Poon & Domingos, 2011; Peharz et al., 2015).
This also implies that we can construct multivariate dis-
tributions from simpler univariate ones. Furthermore, any
node in the network could be replaced by any tractable mul-
tivariate distribution over the same scope, obtaining still
a valid SPN. Computationally, the number of arithmetic
operations is different for the given nodes. For product
nodes, we have |children| − 1 number of multiplications.
For sum nodes, we have |children|− 1 number of additions
and |children| number of multiplications. The leave nodes
require as many operations needed for a look-up table of
size |domain(Variablei)|. The SPNs make no restriction on
reusing sub-structures as long as the consistency rules are
preserved.

2.2. Tractable Inference in SPNs

To answer probabilistic queries in an SPN, we evaluate the
nodes starting at the leaves. Given some evidence, the
probability output of querying leaf distributions is prop-
agated bottom up. For product nodes, the values of the
child nodes are multiplied and propagated to their parents.
For sum nodes, instead, we sum the weighted values of

the child nodes. The value at the root indicates the prob-
ability of the asked query. To compute marginals, i.e.,
the probability of partial configurations, we set the prob-
ability at the leaves for those variables to 1 and then pro-
ceed as before. An example of such marginalization is
shown in Fig. 2, where we obtain a new SPN that computes
P (X2, X3) =

∑
x P (X1 = x,X2, X3) and show how it

can be used to fit a randomly generated dataset. All these
operations traverse the tree at most twice and therefore can
be achieved in linear time w.r.t. the size of the SPN. In this
work, we consider only datasets with discrete variables, as
they can be easily implemented with fast look-up tables,
however extending the histograms to the continuous case is
not difficult. We also focus on joint computations as they
are the basis for all other inference algorithms. These op-
erations at the leaves are then executed in constant time,
maintaining the tractability of the SPN.

2.3. Learning SPNs

While it is possible to craft the structure of a valid SPN
by hand, doing so requires domain knowledge and weight
learning afterward (Poon & Domingos, 2011). Here, we
use the greedy, top-down approach of the MSPNs that di-
rectly learns both the structure and weights of (tree) SPNs
at once while making few assumptions on the data.

It consists of three steps: (1) base case, (2) decomposition
and (3) conditioning. In the base case, if only one vari-
able remains, the algorithm learns a univariate distribution
and terminates. Here, we represent univariate distributions
by normalized histograms. These histograms are then con-
verted to look-up tables, as they can be efficiently imple-
mented on FPGAs. We use the same implementation for
the traditional CPU code to keep the experiments as similar
as possible. In the decomposition step, it tries to partition
the variables into independent components. This decompo-
sition is based on a non-parametric independency test (?)
that is run for every random variable Vj ⊂ V in a pair-wise
fashion, creating a graph of interactions among all the vari-
ables. We then obtain the disconnected components of this
graph, which indicates that variables inside a component
are tightly coupled and variables among different compo-
nents are independent. From these components, we induce
a product node such that P (V) =

∏
j P (Vj) and recurse

on each child.

If the base case is not applicable and the decomposition
step cannot find independencies, then the algorithm parti-
tions the training samples into clusters (conditioning). This
clustering procedure first transforms the data to a higher-
dimensional space so that discrete variables fit the assump-
tions of normality of the clustering algorithm. From the
clusters, we induce a sum node, and the algorithm recurses
on each cluster. The weights of the sum nodes then repre-

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

sent the data proportions in the clusters.

This learning algorithm does not reuse sub-structures, how-
ever, the intermediate language representation used keeps
track of sub-tree references and the FPGA pipeline is aware
of them. Using a different algorithm or a pruning or com-
pression step can enable this capability.

This learning algorithm is typically pre-computed on a tra-
ditional CPU. Then the resulting SPN structure can be com-
piled for inference into FPGAs, C++ code or even Tensor-
Flow graphs, as shown in section 5.

2.4. Size of SPNs

The size of the SPN depends on the training dataset and the
learning parameters. The smallest multi-variate SPN is a
product node over all the random variables, giving a lower
bound on the network size of |Variables| + 1. Introduc-
ing binary sum nodes doubles the size of the sub-graph by
the number of random variables in the node. The learning
algorithm then creates SPNs whose size is constrained by
heuristics for early stopping and the number of indepen-
dencies recovered from the data. Deeper SPNs are more
expressive, but also more computationally intensive, while
shallower SPNs have fewer parameters and use fewer re-
sources. Controlling the depth of the SPN impacts how
well it fits the data. A very deep structure tends to overfit,
while a shallow structure does not have enough expressive
power to represent the training data.

In this work, we focus on the largest SPNs that we can fit
entirely in FPGAs in a fully spatial realization.

3. Related Work
To the best of our knowledge, our work is the first auto-
matic synthesis tool to accelerate SPN inference on FP-
GAs.

Previous research has studied the FPGA acceleration of
other kinds of PGMs such as Bayesian Networks (BN)
(Alves et al., 2015) and Markov Random Fields (MRF)
(Choi & Rutenbar, 2016). These approaches are orthog-
onal to ours, as the inference problem, in general, is not
tractable for BNs and MRFs. A common theme in BN ac-
celerators is to design specialized processors, as inference
in large tree-width models is expensive. In contrast, the
arithmetic circuit (AC) representation of BNs (Darwiche,
2003) resembles a datapath similar to an SPN, which Zer-
mani et al. (Zermani et al., 2015) first compiled to C code
and then used Vivado HLS to synthesize an IP core to be
used on a Zynq SoC. Other ACs implementations for FP-
GAs can be found in ((Dormiani et al., 2005), (Geist et al.,
2014)). However, ACs are restricted to binary random vari-
ables, whereas our SPN-based approach has no such re-

Load
Unit

External Memory

Datapath Store
Unit

Controller

AXI4
Master
Read

AXI4
Master
Write

AXI4 Slave
Interface

Figure 3: Overview of the system architecture.

striction. Lastly, the recently presented LibSPN (Pronobis
et al., 2017) aims to bring multi-core and GPU acceleration
to SPNs by translating them to TensorFlow (Abadi et al.,
2015), but is not yet publicly available and does not support
histogram-based representation at the leaf-nodes. For eval-
uation purposes, we implemented our own TensorFlow-
based GPU backend.

4. Approach & Implementation
The goal of this work is to synthesize efficient accelerators
for the inference problem in sum-product networks. In this
section, we present our accelerator architecture, the com-
pilation flow that generates the accelerator using the SPN
structure learned as described in Section 2.3 as input and
the integration of our accelerator into a heterogeneous sys-
tem.

4.1. System Overview

In this paper, we aim for a fully pipelined accelerator archi-
tecture since we want to process a large number of queries
efficiently and each query is independent of other queries.

The vast amount of data required for the input values of
each query makes it inevitable to provide the accelerator
with access to the external memory on the FPGA board. We
use the open-source TaPaSCo framework (Korinth et al.,
2015), which provides a standardized memory interface as
well as an interface and host-side API for the integration
into a heterogeneous system (cf. Section 4.2).

Our accelerator architecture consists of four main compo-
nents, depicted in Fig. 3. The controller is responsible for
managing the other components and provides the necessary
TaPaSCo slave interface (Section 4.2). Load and store unit
together make up the memory interface of the accelerator,
described in more detail in Section 4.4. The datapath im-
plements the computation represented by the sum-product
network, see Section 4.3 for details on its construction.

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

Load unit, datapath, and store unit are decoupled by queues
to allow for the latency-insensitive, independent operation
of the different components.

4.2. TaPaSCo & Heterogeneous system integration

In order to integrate our accelerator into a heterogeneous
system, we use the TaPaSCo-framework (Korinth et al.,
2015).

The open-source TaPaSCo toolchain and framework has
been developed to fast-track the prototyping of FPGA-
based accelerators. TaPaSCo defines AXI-based, standard-
ized interfaces, which are used to control the execution
of the accelerator (slave interface) and provide the accel-
erator with memory access (master interface). TaPaSCo
also includes an automated tool-flow to assemble multiple
instances of these accelerators (processing elements, PEs)
into a complete top-level design, called threadpool, which
is then wrapped with the connectivity to host and memory.

Regardless of its composition, every threadpool can be
controlled by an unified software interface, the so-called
TaPaSCO-API. This API provides basic functions to trans-
fer data to/from the device and launch jobs on the acceler-
ators in the threadpool.

To integrate our accelerator into the threadpool, we imple-
ment the necessary interfaces. Our controller (cf. Fig. 3)
implements an AXI4 slave interface, which is used by
TaPaSCo to transmit commands (e.g. the start-command)
from the host by reading/writing configuration register val-
ues and control signals. Load and store unit in combination
implement an AXI4 master interface, which is connected
to the external memory on the FPGA board through the
TaPaSCo infrastructure. The implementation of this inter-
face is described in more detail in Section 4.4.

The host can transfer data to/from the external memory on
the device by using the TaPaSCo API. We also use the API
to control the execution of our accelerator in the FPGA.
This allows us to seamlessly integrate the offloading to the
FPGA accelerator into the host software for SPN inference.

4.3. Compile flow & Datapath architecture

Our automatic tool-flow that maps SPNs to FPGA acceler-
ators starts from a textual representation of the SPN, which
describes the nodes of the SPN, their individual configura-
tion, and the connections between the different nodes in the
tree-structure of the SPN.

In a first step, we parse the textual input and construct
a graph-based intermediate representation of the SPN, as
shown in Fig. 1b for the example SPN from Fig. 1a. During
the construction of the graph IR, we decompose additions
or multiplications with more than two operands into bal-

anced trees of two-input operators, as can be seen for the
three-input multiplication on the right side of the example
SPN.

As mentioned earlier in Section 2.3, the random variables
with univariate distributions at the leaf nodes of the SPN
tree-structure are modeled with histograms. Each his-
togram consists of multiple bins with corresponding prob-
abilities, and the bins match adjacent intervals of input fea-
ture values. If two neighboring bins share the same proba-
bility value, our tool-flow merges these bins, resulting in a
bin which covers the two adjacent intervals of the original
bins.

The configuration of the histograms is also part of another
optimization implemented in our tool-flow: The sample
values stored in memory are used to index into the bins
of the different histograms. Based on the largest possi-
ble value for the input features, which is determined by
the upper bound of the last bin, we can optimize the input
bitwidth. Across all histograms, we calculate the minimum
number of bits n, necessary to represent the highest possi-
ble input value. All input values are then stored in memory
using n bits. This optimization reduces the pressure on the
memory interface, as less bandwidth is required to read the
input values for each sample from memory. If, for example,
the highest possible input values across all histograms was
212, we could represent all input values with only eight bit,
reducing the memory bandwith requirement by a factor of
four compared to a generic representation with 32 bit.

Before we map the tree to hardware operators, we decom-
pose weighted adders into corresponding combinations of
multipliers and adders. In the next step, we now map the
SPN tree structure to the actual hardware datapath. As we
aim for maximum throughput in this first version of our
synthesis tool, we use a fully-spatial, statically scheduled
microarchitecture for our datapaths. That is, every opera-
tion in the SPN is implemented by its own operator mod-
ule on the device, and no resource-sharing occurs. For the
scheduling of the fully-spatial microarchitecture, a simple
as-soon-as-possible strategy suffices to obtain an optimal
(concerning the latency) static schedule for the datapath.
Our pipelined schedule assumes that the memory interface
can provide an input sample in every clock cycle. However,
depending on the number of input features and the bitwidth
of the memory interface (cf. Section 4.4), this might not
be the case. We therefore introduce a shift register into our
datapath, which keeps track of valid samples in the pipeline
to make sure we only write back correct output values to
memory.

For the implementation of the histograms at the leaf-nodes
of the SPN, we use a simple look-up table approach. The
values for each index are computed at compile time, and
the discrete values of the input features are used to index

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

LUT1 LUT5 LUT6 LUT7 LUT8 LUT2 LUT3 LUT4

0.3 0.7× × SR ×

× × × 0.6

+ ×

× 0.4

×

+

SR

SR

Figure 4: Example SPN mapped to HW operators. To bal-
ance the different branches of the tree, some intermediate
results need to be preserved in shift registers. Look-up ta-
bles for the histograms are indexed with the input feature
values read from memory.

the look-up table.

For the realization of the arithmetic operations inside the
tree (additions and multiplications), we use operators from
the FloPoCo-library (de Dinechin & Pasca, 2011). Regard-
ing the precision, a worst case scenario arises from the in-
ference of a low-probability instance such as an anomaly
or an outlier data point evaluated on a shallow SPN con-
sisting of one product over all the univariate features. Fur-
thermore, the number of discrete values or bins in the
look-up table can have a negative impact as they repre-
sent a normalized distribution. This has a lower bound of∏#features

i=0 min(histogrami(x)). To represent these values,
which have a very small magnitude, the whole computa-
tion within the datapath is completely done in the FloPoCo
floating point format, using 11 bits for the exponent and 52
bits for the mantissa. Aside from subnormal numbers, this
format is equivalent to a double-precision floating-point
format. The final conversion to IEEE-754 double precision
format for use in the host is done right before the values are
written back to memory.

In practice, the SPNs used in the experimental section did
not suffer underflows, however, bigger SPNs might have
to do computations in log-space. The size of the SPNs is
limited to the FPGA capabilities and implementing exp and
log functions, would reduce the size of the SPNs that we
could implement on-chip.

The mapping to the hardware datapath for the example
from Fig. 1 is given in Fig. 4. The height of the oper-
ators in the diagram indicates their scheduled start time,
with the first time step at the bottom. All look-up tables
used to implement the histograms are placed in the first

time step and will be indexed by the discrete values for
the three input variables read from memory. As one can
see from the IR-graph in Fig. 1b, the different branches of
the tree have different heights/latencies. We need to bal-
ance the different branches to match partial results from
the different branches at the merge points. To this end, we
insert pipelined shift registers into the datapath that work as
intermediate storages for partial results (labeled SR in the
diagram).

4.4. Memory Interface

As explained in Section 4.2, TaPaSCo provides each pro-
cessing element, such as our accelerator, with a standard-
ized AXI4-interface which we use to connect our accelera-
tor to the external memory on the FPGA-board.

With our fully pipelined accelerator architecture, the goal
is to feed the pipeline with a new query every clock cycle.
This requires an efficient, pipelined load infrastructure, in
particular as the number of bits at the input of the datap-
ath is typically higher than at the output (due to the tree-
structure of SPNs). For an efficient supply of input data,
we use AXI4 burst requests to read the query input values
from memory. The load unit computes the addresses for
the requests, relative to a base address configurable from
the host. The independence of the different AXI4 chan-
nels allows us to issue the next burst request before all data
from the current one has been sent, resulting in a continu-
ous stream of input data.

Inside the load unit, a re-alignment unit converts from the
AXI4 data width (e.g. 512 bit in case of our evaluation on
the VC709 board) to the input width of the datapath. Here,
we have to consider three different cases: If the bitwidth
of a sample matches the bitwidth of the memory inter-
face, we can simply forward the read data. If the input
bitwidth of the datapath is smaller than the memory inter-
face bitwidth, the realignment unit buffers the read data and
forwards chunks of appropriate size to the datapath. In case
the bitwidth at the input of the datapath exceeds the maxi-
mum bitwidth of the memory interface, multiple beats must
be buffered, before a complete sample can be forwarded to
the datapath. In all three cases, the realignment unit was
designed to forward a complete sample to the datapath as
soon as a sufficient amount of data was read/buffered. In
the latter case, the bitwidth of the memory interface lim-
its the performance of our accelerator, and we cannot start
the computation for a new sample in every clock cycle. As
explained in the previous section, our datapath is equipped
with a shift register to keep track of valid values in this
case.

After the computation inside the datapath has completed,
we need to store the results back to memory. Here we
buffer multiple output values and again use AXI4 burst re-

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

Table 1: FPGA implementation results, all numbers are post-place&route.

Dataset Cols Adds Muls Depth Freq.
(MHz) LUT (%) Reg (%) Slices (%) BRAM (%) DSP (%)

Accidents 111 27 217 99 200 61.49 32.92 75.87 4.66 36.17
Audio 100 12 275 99 200 72.26 37.65 89.32 4.66 45.83
Netflix 100 11 231 115 190 67.60 36.12 87.84 4.66 38.50
MSNBC200 17 30 165 245 200 51.64 27.24 66.01 4.66 27.50
MSNBC300 17 17 102 163 200 36.82 21.76 46.52 4.66 17.00
NLTCS 16 27 152 150 200 47.91 26.72 61.99 4.66 25.28
Plants 69 14 256 206 200 68.89 34.88 86.80 4.66 42.67
NIPS5 5 1 10 38 200 17.96 8.87 24.12 4.80 1.67
NIPS10 10 3 25 76 200 21.20 11.01 29.55 4.80 4.33
NIPS20 20 7 56 82 200 28.84 14.67 38.93 5.27 9.67
NIPS30 30 10 87 94 199 36.47 18.31 46.27 4.86 14.83
NIPS40 40 16 122 94 200 44.79 23.67 57.67 5.14 21.17
NIPS50 50 16 143 100 200 51.78 25.06 62.97 5.48 24.50
NIPS60 60 13 156 94 200 54.71 27.84 68.15 5.88 26.67
NIPS70 70 14 180 106 200 61.97 28.90 75.58 5.61 30.50
NIPS80 80 32 265 143 180 79.72 38.99 96.17 5.95 44.17

quests, which can be handled more efficiently by the mem-
ory interface, to write back a batch of values.

5. Experimental Evaluation
Our intention here is to investigate the performance of our
synthesis pipline.

5.1. Datasets

For the performance evaluation, we focused on datasets
of count and binary data types. For count data we used
the NIPS1 corpus, containing 1,500 documents over the
100 most frequent words. For binary data we evaluated
our implementation on a range of six different datasets as
pre-processed and provided by (Lowd & Davis, 2010) and
(Van Haaren & Davis, 2012). Accidents is a dataset of traf-
fic accidents in Belgium for the period 1991-2000. The
Audio dataset consists of information about users that lis-
tened or did not listen to a set of top 100 artists. The Netflix
dataset is a random subset of the Netflix challenge, focused
on the 100 most frequently rated movies and whether a user
rated a movie. The anonymized MSNBC data contains in-
formation about whether a user visited a top-level MSNBC
page during a particular browsing session. The National
Long Term Care Survey (NLTCS) dataset contains vari-
ables that measure whether a person can perform a set of
daily living activities. The Plants dataset indicates whether
a given plant can be found in a particular location.

1archive.ics.uci.edu/ml/datasets/bag+of+words

5.2. FPGA implementation

For the evaluation of our FPGA implementation, we tar-
get a Xilinx VC709 evaluation board, containing a Virtex7-
device (xc7vx690) and 4 GiB of RAM. The heterogeneous
system that we use for the performance evaluation of the
FPGA in Section 5.4 combines the FPGA-board with an
Intel i7 6700K CPU. We used Xilinx Vivado 2017.4 for the
FPGA implementation with a target frequency of 200 MHz.
The results are given in Table 1. Column Cols gives the
number of inputs to the datapath, Adds and Muls give the
number of two-input adders and multipliers in the datapath
and Depth indicates the depth of our computation pipeline.
Besides the achieved clock frequency, we also state the re-
source requirements on the FPGA, for brevity those num-
bers are given relative to the entire FPGA in percent2.

We encounter a relatively low demand for BRAMs and a
moderate usage of registers. For the other numbers, the re-
source requirements roughly correspond to the size of the
network. This can be seen from the NIPS-examples in par-
ticular: Here, we add an increasing number of input fea-
tures (i.e. words) to the SPN, resulting in a bigger network
and thus in a higher resource consumption.

Most of the examples achieve the target frequency, but in
some examples the routing to the DSP-blocks used for the
realization of the floating-point multiplication in FloPoCo
becomes critical. We were able to improve the routing by

2The absolute number of resources available are 433200
(LUT), 866400 (Register), 108300 (Slices), 1470 (BRAM) and
3600 (DSP), respectively.

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

Table 2: Performance comparison. Best end-to-end throughputs (T), excluding the cycle counter measurements, are de-
noted bold.

Dataset Rows CPU
(µs)

T-CPU
(rows/
µs)

CPUF
(µs)

T-CPUF
(rows/
µs)

GPU
(µs)

T-GPU
(rows/
µs)

FPGA
Cycle

Counter

FPGAC
(µs)

T-FPGAC
(rows/
µs)

FPGA
(µs)

T-FPGA
(rows/
µs)

Accidents 17,009 2,798.27 6.08 2,162.59 7.87 63,090 0.27 17,249 86.25 197.22 696.00 24.44
Audio 20,000 4,271.78 4.68 3,683.71 5.43 78,253 0.26 20,317 101.59 196.88 761.00 26.28
Netflix 20,000 4,892.22 4.09 4,098.88 4.88 67,172 0.30 20,322 106.95 187.00 654.00 30.58
MSNBC200 388,434 15,476.05 25.10 12,713.55 30.55 62,349 6.23 388,900 1,944.50 199.76 5,008.00 77.56
MSNBC300 388,434 10,060.78 38.61 9,418.29 41.24 50,558 7.68 388,810 1,944.05 199.81 4,933.00 78.74
NLTCS 21,574 791.80 27.25 687.25 31.39 35,544 0.61 21,904 109.52 196.99 566.00 38.12
Plants 23,215 3,621.71 6.41 3,521.04 6.59 67,004 0.35 23,592 117.96 196.80 778.00 29.84
NIPS5 10,000 25.11 398.31 26.37 379.23 8,210 1.22 10,236 51.18 195.39 337.30 29.65
NIPS10 10,000 83.60 119.61 84.39 118.49 11,550 0.87 10,279 51.40 194.57 464.30 21.54
NIPS20 10,000 191.30 52.27 182.73 54.72 18,689 0.54 10,285 51.43 194.46 543.60 18.40
NIPS30 10,000 387.61 25.80 349.84 28.58 25,355 0.39 10,308 51.80 193.06 592.30 16.88
NIPS40 10,000 551.64 18.13 471.26 21.22 30,820 0.32 10,306 51.53 194.06 632.20 15.82
NIPS50 10,000 812.44 12.31 792.13 12.62 36,355 0.28 10,559 52.80 189.41 720.60 13.88
NIPS60 10,000 1046.38 9.56 662.53 15.09 40,778 0.25 12,271 61.36 162.99 799.20 12.51
NIPS70 10,000 1,148.17 8.71 1,134.80 8.81 46,759 0.21 14,022 70.11 142.63 858.60 11.65
NIPS80 10,000 1,556.99 6.42 1,277.81 7.83 63,217 0.16 14,275 78.51 127.37 961.80 10.40

adding one or two more pipeline stages to the multiplier;
however, we see a notable degradation of the operating fre-
quency for NIPS80 and Netflix.

5.3. CPU & GPU Implementation

To have a complete performance comparison, we compiled
the same SPNs used in the FPGAs to both C++ and Tensor-
Flow (Abadi et al., 2015). Both implementations were exe-
cuted on a Linux workstation with an AMD Ryzen 1950X
Processor, 128GB of RAM and an NVIDIA 1080Ti GPU
with 11GB of memory. We implemented the C++ version
via code generation, writing inlined functions with look-up
tables for the leaves. The rest of the SPN was expressed as
a single function of additions and multiplications of the leaf
functions. We compiled the generated C++ source code us-
ing GCC 7.2.0 and the flag -O3 and created two versions,
one with the flag -ffast-math enabled, called CPUF, and
one without it, called CPU. Both C++ implementations
load all the data in memory and evaluate each complete
dataset 1000 times. We report the average time for each
instance of the dataset. For the GPU version, we imple-
mented a TensorFlow graph of additions and multiplica-
tions. For the leaves, we used a look-up table implemented
as a tf.gather operation over placeholders containing the
data. We then executed each complete dataset 1000 times
and measured execution times including data-transfer to the

GPU, just as for the heterogeneous system with the FPGA.

5.4. Performance evaluation

To compare the performance of our FPGA implementation
with the CPU and GPU, we report two different execution
times for the FPGA: One only for the actual SPN com-
putation, measured using a performance counter (Cycle
Counter) inside the accelerator, with the corresponding ac-
tual time shown as (FPGAC). The second time (FPGA) is
measured on the host side and includes the time for data
transfer to/from the device memory and the launch of HW-
execution. The performance counter also allows us to as-
sess the effectiveness of our pipelining. The performance
results are given in Table 2, Rows gives the number of
samples processed for each example. Besides the execu-
tion time in microseconds, we also report the throughput in
samples per microsecond (e.g. T-GPU).

The GPU performance clearly shows that the naive Ten-
sorFlow parallelization model is not very suitable for the
tree-structure of the SPNs. The analysis of the traces shows
that most lanes are only used for a few operations and are
idle most of the time. Additionally, a lot of inter-lane com-
munication takes place, as the computation of the tree is
spread across multiple lanes. This a general problem of the
TensorFlow GPU-model, which is tailored more towards
neural networks, and not linked to a specific GPU.

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

The comparison of CPU and CPUF shows that, except for
the two smallest networks, the CPU execution profits from
the compilation with the fastmath-flag.

Comparing the performance of CPU and the performance
measured using the FPGA performance counter, one can
see that, aside from NIPS5, the pipelined computation in
the FPGA outperforms the CPU implementation regarding
execution time and throughput. The values reported by the
performance counter also demonstrate the effectiveness of
our pipelining: Especially for the cases with binary input
data, we are able to achieve an almost perfect pipelining,
where we process a sample per clock cycle (equivalent to
a throughput of 200 samples (rows) per µs). From the de-
velopment of the NIPS-examples, one can also see that the
accelerator is memory bound: With a larger number of in-
put values, more data has to be loaded from memory, and
the pipeline cannot be fed every clock cycle.

The comparison of the performance counter and the total
FPGA execution time including interaction in the hetero-
geneous system shows that there is significant overhead for
data transfers to/from FPGA memory and the HW-launch.
However, the FPGA is still able to outperform the CPU for
all binary examples and most of the larger NIPS-examples
(NIPS50, NIPS70, NIPS80), demonstrating the potential of
offloading the inference in SPNs to the FPGA, in particular
for larger SPNs.

Note that for platforms having true shared memory be-
tween the CPU and the FPGA, such as the Xilinx Zynq
devices, or the Intel HARP2 systems, these explicit data
transfers between CPU and FPGA memory can be com-
pletely avoided and the full speed-up (based on the FPGAC
measurement) realized.

6. Conclusion and Future Work
We have presented the first FPGA-based accelerator archi-
tecture for the inference problem in sum-product networks
(SPNs), a deep architecture for probability distributions.
Our automatic synthesis flow generates a fully-pipelined
accelerator from an input description of the SPN and also
provides a software interface for interaction with the accel-
erator in a heterogeneous system. The accelerator architec-
ture features pipelined access to the external memory on the
FPGA-board and double-precision floating-point computa-
tion. The results of our experimental evaluation demon-
strate that the pipelined computation in the FPGA can out-
perform CPU- and TensorFlow-GPU-implementations, al-
most processing a complete input sample per cycle for
many examples.

There are several interesting avenues for future work. One
could extend our synthesis flow and hardware implemen-
tation for resource-sharing of operators, in order to be

able to map bigger networks. One could also further op-
timize the arithmetic operators, e.g., by using log-space
computations, a very common arithmetic optimization in
the ML-domain. Another interesting research avenue is
pre-compiling a randomly generated structure and doing
weight optimization in the FPGA, with the aim of having
a full implementation of a PGM in a chip. If the random
structure is large enough it could be retrained on different
domains to fit any kind of data. This could also account
for domains with concept drifting. Finally, other poten-
tial usage scenarios should be explored, such as comput-
ing mutual information, maximum a posteriori estimation
and approximate queries within databases. These scenar-
ios require fast processing of many input combinations but
require less data-transfer from host to FPGA.

Acknowledgements. The authors would like to thank
Xilinx Inc. for supporting their work by donations of hard-
and software.

References
Abadi, M. et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software
available from tensorflow.org.

Alves, J., Ferreira, J., Lobo, J., and Dias, J. Brief survey on
computational solutions for bayesian inference. In Work-
shop on Unconventional computing for Bayesian infer-
ence, 2015.

Bekker, J., Davis, J., Choi, A., Darwiche, A., and Van den
Broeck, G. Tractable learning for complex probability
queries. In Proc. of NIPS, 2015.

Choi, A. and Darwiche, A. On relaxing determinism in
arithmetic circuits. In Proceedings of ICML, pp. 825–
833, 2017.

Choi, J. and Rutenbar, R. A. Video-rate stereo matching
using markov random field TRW-S inference on a hybrid
CPU+FPGA computing platform. IEEE Trans. Circuits
Syst. Video Techn., 2016.

Darwiche, A. A differential approach to inference in
bayesian networks. J. ACM, 50(3):280–305, 2003.

de Dinechin, F. and Pasca, B. Designing custom arithmetic
data paths with FloPoCo. IEEE Design & Test of Com-
puters, 28(4):18–27, July 2011.

Dormiani, P., Omoto, D., Adharapurapu, P., and Ercego-
vac, M. D. A design of online scheme for evaluation
of multinomials. In Advanced Signal Processing Algo-
rithms, Architectures, and Implementations XV, volume

Automatic Synthesis of FPGA-based Accelerators for the Sum-Product Network Inference Problem

5910, pp. 59100S. International Society for Optics and
Photonics, 2005.

Geist, J., Rozier, K. Y., and Schumann, J. Runtime observer
pairs and bayesian network reasoners on-board fpgas:
flight-certifiable system health management for embed-
ded systems. In International Conference on Runtime
Verification, pp. 215–230. Springer, 2014.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Proceedings of NIPS,
pp. 2672–2680, 2014.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., et al. In-
datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, pp.
1–12. ACM, 2017.

Korinth, J., d. l. Chevallerie, D., and Koch, A. An Open-
Source Tool Flow for the Composition of Reconfig-
urable Hardware Thread Pool Architectures. In Field-
Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on,
May 2015.

Lowd, D. and Davis, J. Learning markov network structure
with decision trees. In Data Mining (ICDM), 2010 IEEE
10th International Conference on, pp. 334–343. IEEE,
2010.

Molina, A., Vergari, A., Di Mauro, N., Natarajan, S., Es-
posito, F., and Kersting, K. Mixed sum-product net-
works: A deep architecture for hybrid domains. AAAI,
2018.

Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., et al.
Can fpgas beat gpus in accelerating next-generation
deep neural networks? In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2017, pp. 5–14.
ACM, 2017.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domingos,
P. On theoretical properties of sum-product networks. In
Proc. of AISTATS, 2015.

Poon, H. and Domingos, P. Sum-Product Networks: a New
Deep Architecture. Proc. of UAI, 2011.

Pronobis, A., Ranganath, A., and Rao, R. LibSPN: A Li-
brary for Learning and Inference with Sum-Product Net-
works and TensorFlow. In Principled Approaches to
Deep Learning Workshop, 2017.

Van Haaren, J. and Davis, J. Markov network structure
learning: A randomized feature generation approach. In
AAAI, pp. 1148–1154, 2012.

Zermani, S., Dezan, C., Chenini, H., Euler, R., and Diguet,
J. FPGA implementation of bayesian network inference
for an embedded diagnosis. In 2015 IEEE Conference
on Prognostics and Health Management, ICPHM 2015,
pp. 1–10. IEEE, 2015.

Zhao, H., Melibari, M., and Poupart, P. On the Relation-
ship between Sum-Product Networks and Bayesian Net-
works. In Proc. of ICML, 2015.

