
HatScheT: A Contribution to Agile HLS
Patrick Sittela, Julian Oppermannb, Martin Kumma, Andreas Kochb, and Peter Zipfa

aUniversity of Kassel, Germany
bTU Darmstadt, Germany

Abstract

Today, the design of hardware implementations using FPGAs, SoCs or ASICs is driven by tight project time and cost
constraints. Additionally, it is impossible to specify every step and functionality of a complex project beforehand.
Therefore, large teams from different areas of expertise, e.g., software, hardware development, system integration, need
to work hand in hand as they are confronted with an ever changing environment of specifications. Detailed simulations
and prototyping are used to keep track of the project status and for the identification of failed developments as early as
possible. Over the recent years, high-level synthesis (HLS) is used more and more for hardware design. Unfortunately,
run times can become very long when close to optimal implementations are demanded. It follows that an inflexible HLS
design flow is not applicable for large, complex and changing projects. With the open-source C++ scheduling library
HatScheT we provide a tool for run time flexible scheduling, which is the most important and time consuming step
of HLS. The user of HatScheT is able to chose from a variety of scheduling algorithms, which enables control over a
scheduling run time vs. quality tradeoff. Additionally, an adaptive decider program is presented that will automatically
chose one from a set of scheduling algorithms based on the size of the input problem. This enables a flexible scheduling
flow, where optimal algorithms are applied when a low complexity is identified, while heuristics are chosen for large and
time consuming scheduling problems.

1 Introduction

The flexibility and performance of modern FPGAs
is attractive to many in order to accelerate complex
applications like neural networks or image processing.
High-level synthesis (HLS) was one of the key factors for
enabling the usage of FPGAs for software developers in
the recent years. But, long run times and inflexible tools
are considered to be major drawbacks of HLS. It follows
that the time consuming process of generating hardware
from high-level specifications restricts the overall project
development time.
In general, this is a project management problem, which
appears in a lot of different environments [8]. Over
the years, flexible design methods got developed and are
widely used in industry and research projects. In the field
of software development, agile design methods such as
SCRUM are very well established. Agile design methods
are able to respond to modifications when working in an
uncertain and ever changing environment. The main idea is
to maximize the transparency and flexibility of each design
step in order to minimize overall risks during the design
process.
The idea of agile software design could be adopted
to the design of hardware [10]. Figure 1 shows two
different hardware design methods. In general, an abstract
specification has to be transformed into a physical design.
Often, HLS is used for transforming this specification into
a hardware description language (HDL), e.g., VHDL or
Verilog. After that, the generated HDL code has to be
verified. In case the target architecture is a system-on-

Specification
Design/HLS
Verification
Software

Physical Design

}SOC

P
ro

g
re

ss

(a) Waterfall Model

Specification
Design/HLS
Verification
Software

Physical Design

}ASIC/
FPGA

Progress

(b) Agile Model

Figure 1 Hardware Design Methods

chip (SOC), also software has to be designed. When
the target architecture is an application specific integrated
circuit (ASIC) or an FPGA, the focus will be on hardware
development. Finally, the physical design can be done.
The traditional waterfall model, which describes a top-
down development process, is shown in Figure 1a. Using
the waterfall design model, each step is started after the
previous one was finished. In this case, no interaction
between design steps and teams is intended. Usually,
identified problems are not solved but postponed to the
next generation. Another model that is shown in Figure
1b is the agile model. The agile model can be seen
as an iterative design process, where each design step
is processed multiple times. Using the agile model
prototypes or simulation runs are available even at very
early project stages. Additionally, communication that
manifests in immediate changes between specification,
design, verification and software teams is enabled. But,
this is only realistic when each design step can be

processed with short run times in early project stages.
An often time consuming step of HLS is scheduling.
Therefore, we propose with the HatScheT scheduling
library a tool that is able to adapt scheduling run times
as needed. Based on the input application that shall
be implemented, operations are assigned an execution
time and a hardware unit to be performed on by the
scheduler. Examples for scheduling algorithms are the
basic as soon as possible (ASAP) and the more complex
integer-linear programing (ILP) based loop pipelining or
modulo scheduling approaches [2, 14, 17]. In general,
exchanging scheduling algorithms results in trading off
runtime against scheduling quality regarding throughput
and latency.
Over the years, lots of different scheduling algorithms
that are suited for different problem descriptions were
published. In the majority of cases, it is not easy to switch
between schedulers to adapt to the current situation due to
the lack of incompatible interfaces. For the same reason,
new scheduling algorithms are difficult to compare to the
state-of-art. But for implementation, the determined values
passed to the next step in the HLS tool after scheduling,
which are time steps for operations, initiation invervall
(II) and latency, can be unified for all schedulers. In this
paper, we want to tackle those problems and present the
open-source C++ library HatScheT [1], which provides
the following features:

• an open source C++ scheduling library

• unified interface and resource model

• interchangeable schedulers

• ILP support

With HatScheT we take advantage of this general behavior
and provide a scheduling library that supports unified
interfaces for all scheduling approaches. In that way, an
HLS tool that uses HatScheT for scheduling is able to
interchange schedulers depending on the current demand.
While during an early project stage a feasible and fast
solution might be preferred, a close to optimal solution is
needed for release. Additionaly, HatScheT is an excellent
framework for the development of new scheduling
approaches, as many building blocks are provided, and
consistent comparisons to existing schedulers can be done
easily.

2 Background

HLS is considered to be the translation from a behavioral
description into hardware description languages [6].
Usually, this description is given as or can be parsed into
a set of directed data flow graphs. This behavioral input
description mainly captures data path dependencies. The
process of HLS involves three steps: allocation, scheduling
and binding [4]. During allocation, available hardware
resources are determined and possible area, throughput or
power constraints get managed. Each vertex of the input
graph is assigned an execution time step by the scheduling.

Finally, each scheduled operation is bound to a hardware
unit during the binding process . Additionally, the storage
of variables can be optimized using the concept of sharing
registers or memory [3].
The most basic scheduling problem is the scheduling
without constraints, which is usually solved using an
as soon as possible (ASAP) scheduler [13, 12]. Since
most of the relevant scheduling problems are either
resource or time constrained or both, we will consider the
unconstrained scheduling case as a trivial simplification
of the scheduling problem in the following. Often
times, the determination of a schedule that provides the
highest possible throughput under strict area constraints
is desired. But, optimal resource constraint scheduling is
NP-complete [11]. Depending on the chosen algorithm
and optimization criteria, the scheduling step might
become very time consuming. Also, the performance
of a hardware implementation regarding throughput and
sample latency directly correlates with the quality of the
determined schedule [13]. Therefore, choosing from a
set of available scheduling algorithms can be seen as
a trade off between algorithm runtime and scheduling
quality regarding the desired objective. With the presented
HatScheT scheduling library we want to provide users
with the ability to access this flexibility by enabling the
interchangeability of all types of scheduling algorithms
using a unified interface and ILP support. Doing this, an
agile and adjustable scheduling environment is generated.

2.1 Scheduling
Since area on FPGAs is precious, the resources used for
implementation of a behavioral description are usually
limited. Large area dominated applications, e.g., neural
networks, can not be implemented in parallel on FPGAs
due to their size. This leads to the problem of resource
constraint scheduling which is difficult to solve in general.
Resource constraints are used to model the area effort
of the resulting implementation [13]. They make the
scheduler aware of the available area by forcing it to
respect the fact that only a certain number of hardware
units are available at each time step. The solved
resource-constrained scheduling problem enables a time-
mulitplexed (FPGA) implementation, which consists of
functional units, a state machine and additional registers
to store intermediate variables for their respective lifetime.
It is possible to model the problem exactly using integer
linear programming (ILP). Then the solution is calculated
by a dedicated ILP-solver. This approach has the benefit
that the optimal solution of the scheduling problem can
be determined. Another benefit of ILP-based schedulers
is that they are easy to adopt and to expand. But, for
large input problems the run time might become very
long. Heuristics that can be used to avoid the long
run times of ILP-based scheduling are, e.g., ASAP with
hardware constraints, priority-based list scheduling or
force-directed scheduling [12]. In general, scheduling
algorithms can be constrained to respect a certain user
specified maximum latency constraint. Using a variation
of latency constraints, the area/latency tradeoff points

of each resource-constrained scheduling problem can be
generated.

2.2 Modulo Scheduling
A well known technique to increase throughput for
the resource constrained scheduling problems is modulo
scheduling. This is done by interleaving schedules
of subsequent samples, which decreases the initiation
interval (II) of each sample. A smaller II results in
a higher throughput and a better hardware utilization.
Consequently, the minimization of the II under the given
resource constraints is the first optimization criterion for
the modulo scheduling problem. As second objective,
different design goals, e.g., minimum sample latency [14]
or register costs [17], may be chosen. Many efforts to
apply integer linear programming for modulo scheduling
have been made and promising results could be shown [5,
3, 14, 17].

3 Motivation

A key principle of agile development is the ability to adopt
to change during all stages of the project. Long scheduling
run times are impediments to a project that uses HLS in
an agile and ever changing environment. As mentioned in
Section 2, many different scheduling algorithms that can
be used for HLS exist. Close to optimal schedules can only
be obtained using an uncertain amount of time. Especially
in an early development stage, where specifications, e.g.,
ports or interfaces, change very often, it is practical to
reduce synthesis runtimes and accept fast but possible
worse solutions for testing purposes. During later stages
of the design process, better solutions are desired. For the
final implementation, the best solution that can be found is
wanted.
Listing 1 shows example C++ code that describes a
realization of an agile scheduling using the proposed
HatScheT scheduling library. In this example, the design
step variable is considered to be global. To initialize
the scheduling problem, a graph representation of the
behavioral description and a resource model, containing
operator limits, operator latency and target architecture
information, is given as input in lines 3–4. Additionally,
a design step that controls the switch case statement,
declared in line 6, is provided. Based on this design step,
one class, that is chosen from a collection of classes that
implement different scheduling algorithms, is instantiated.
For a fast solution, an ASAP scheduler might be sufficient
(line 8). Note that the ASAP scheduler also takes the
resource model as input. In that way, it becomes an ASAP
scheduler with hardware constraints if the resource model
contains any limits for functional units. This behavior of
the HatScheT scheduling model is explained in depth in
Section 4. But, for the final implementation a close to
optimal modulo scheduler might be desired to determine a
high-throughput schedule. This is shown in line 14, where
an object that implements the modulo SDC scheduler [2]
gets instantiated. For each case, the scheduling problem is
solved in line 17.

Listing 1 Agile Scheduling using HatScheT
1 #include <HatScheT >

2

3 void schedule(Graph* g, ResourceModel* rm){

4 HatScheT :: SchedulerBase* sched;

5

6 switch(design_step){

7 case FAST:

8 sched = new ASAPScheduler(g,rm);

9 break;

10 case IMPROVED:

11 sched = new ULScheduler(g,rm);

12 break;

13 case FINAL:

14 sched = new ModuloSDCScheduler(g,rm);

15 break;

16 }

17 sched ->schedule ();

18 }

Table 1 shows the scheduling run time and achieved II of
the mips application from the CHStone benchmark. One
can observe that the ModuloSDC algorithm provides the
best throughput, i.e. lowest II, but needs 41 minutes to
compute. When a fast solution is needed and a worse
throughput is acceptable, the ASAP HC or list scheduler
is better suited.

Table 1 Mips scheduling run times in minutes and II

ASAP HC list scheduler ModuloSDC

time
(minutes) II time

(minutes) II time
(minutes) II

mips < 0.01 73 0.2 37 41 32

4 Scheduling Model

In order to be applicable to as many scheduling problems
as possible, a general graph description combined with
a resource model is used in HatScheT. The graph class,
explained in Section 4.1, is able to model data and
data sample dependencies. For scheduling problems
that contain feedbacks, the graph class supports the
representation of cyclic graphs. The resource model class
that is discussed in Section 4.2 models the behavior of
the target architecture and passes this information to the
graph and scheduling class. Additionally, implementation
constraints regarding hardware effort and throughput are
managed by the resource model. For example, the
number of pipeline stages of a fixed point adder unit with
a constrained frequency can be modeled and used for
multiple target FPGAs.
Using a general graph description and a resource
model for target architecture specifications, HatScheT

is able to solve realistic scheduling problems. In the
case of changing target architectures or implementation
constraints, a user is able to interchange resource model
objects and rerun the scheduling without rebuilding the
problem from scratch.

load1 load2

+

store

1

(a) Example Graph

Resource Latency Limit

load/store 2 1
add 0 1

(b) Example Resource Model

Figure 2 Scheduling Model Example

4.1 The Graph Model
A non-hierarchical, directed graph model G(V,E), where
every vertex vi in the vertex set V = {vi; i = 0,1, ...,n}
describes exactly one operation in the input description
and the set of directed, weighted edges E = {(vi,v j); i, j =
0,1, ...,n} represents dependencies, is used in HatScheT.
In this model, data samples from previous iterations, like
they are used in, e.g., digital filters, can be referenced. The
weight of every edge e ∈ E describes this distance to a
previous data sample as a positive integer value. A distance
of zero means that the output of vertex vi is passed to the
input of v j without storing data from previous samples.
Note that the distance to the n-th previous data sample
corresponds to n· II time steps.

4.2 The Resource Model
The resource model of the HatScheT library is able to
handle target architecture specifics in combination with
resource and implementation constraints, e.g., area and
frequency. A resource model describes the hardware units
that implement the operations of the input description.
Formally, a resource model contains nres different
resources and we denote Γ : V → {1,2, ...,nres} as the
function that assigns each v ∈V a unique resource.
For initialization, every vertex added to the graph is
assigned an unlimited resource with a latency of zero
cycles. To include implementation details into the
scheduling problem, target specific and possibly limited
resources, e.g., a floating point adder with 300 MHz
operation frequency on a Virtex 7, can be declared as
resource in the resource model. After that, vertices can
be registered with those resources. Using this concept,
each registered vertex is assigned a latency as integer value
that represents the behavior of the respective resource. It
is possible to limit resources which allows HatScheT to
model resource-constrained scheduling problems.
In contrary to other scheduling models [6, 12], our
approach detaches all specifics that are determined by the
backend from the vertex and graph description. In that
way, the graph description remains an abstraction of the
behavioral input description and the target architecture is
fully represented using the resource model. In this resource
model, all resources are considered to be fully pipelined,
i.e., they can accept a new set of input data in every time
step. After the model is built, the solving of scheduling
problems is done by dedicated scheduling classes that are

fed with the graph representation of the input description
and resource model.

4.3 Example
Figure 2 shows a scheduling problem that is taken from
Canis et. al. [3]. But, the operator latencies got detached
from the graph description in Figure 2a and are listed in
the resource model that is shown in Figure 2b. In the
following, we show how this example problem is modeled
using the HatScheT graph and the resource model. It
follows that the limits that are used in this example can
be considered arbitrary.

Listing 2 Generating the example problem
1 HatScheT ::Graph g;

2 HatScheT :: Vertex& a = g.createVertex (1);

3 HatScheT :: Vertex& b = g.createVertex (2);

4 HatScheT :: Vertex& c = g.createVertex (3);

5 HatScheT :: Vertex& d = g.createVertex (4);

6

7 g.createEdge(a,c,0);

8 g.createEdge(b,c,0);

9 g.createEdge(c,d,0);

10 g.createEdge(d,a,1);

11

12 HatScheT :: ResourceModel rm;

13 //limit resource to 1 unit with latency 2:

14 auto &ls = rm.makeResource("loadstore" ,1,2);

15 //limit resource to 1 unit with latency 0:

16 auto &add = rm.makeResource("add" ,1,0);

17

18 rm.registerVertex (&a, &ls);

19 rm.registerVertex (&b, &ls);

20 rm.registerVertex (&c, &add);

21 rm.registerVertex (&d, &ls);

Listing 2 shows a way to generate the example problem in
HatScheT using the C++ interface. In line 1, a graph object
is instantiated and four vertices are created in lines 2–5.
Using the provided distances, the edges of the example
graph are generated in lines 7–10. In line 12, a resource
model object is instantiated. After that, the resource for
load, store and add are inserted according to the example
model from Figure 2b. Finally, the vertices are registered
with their respective resource in lines 18–21.

5 Design Paradigm

The presented scheduling library HatScheT provides
access to numerous scheduling algorithms using the
described graph and resource model classes and a unified
scheduling interface. The scheduling algorithms in
HatScheT range from simple ASAP to ILP-based modulo
scheduler implementations. HatScheT is written in C++

and is therefore easy to integrate into any HLS toolflow.
The only optional dependency other than the C++ standard
library is the open source ILP support library ScaLP [18]
for ILP-based scheduling problem formulations.

5.1 Class Model
Figure 3 shows the C++ class model of HatScheT. As
mentioned in Section 4, the graph and resource model
classes are kept general and are used to generate every

SchedulerBase

+SchedulerBase(Graph& g, ResourceModel& rm)
+virtual schedule()
+virtual getII()
+getSchedule()
+getLifetimes()
+setMaxLatencyConstraint(int l)

ModuloSchedulerBase

#int II

+ModuloSchedulerBase()
+getMinII()
+getMaxII()

ILPSchedulerBase

+ILPSchedulerBase(string solver)
+setSolverTimeout(long timeoutInSeconds)
+setThreads(unsigned int i)
#virtual constructProblem()
#virtual setObjective()

ASAPScheduler ModuloSDC

Graph

+createVertex(int id)
+createEdge(Vertex &Vsrc, Vertex &Vdst, int distance = 0)

ResourceModel

+makeResource(string name, int limit, int latency)
+registerVertex(const Vertex* v, const Resource* r)

ScaLP ILPWrapper

ALAPScheduler

+virtual schedule()
+virtual getII()

ListScheduler

+virtual schedule()
+virtual getII()

Moovac

#virtual constructProblem()
#virtual setObjective()
+virtual schedule()
+virtual getII()

Figure 3 HatScheT C++ class model

scheduling problem formulation. To do this, abstract
base classes are used as interface to implement every
scheduler class. The SchedulerBase class is the base of
all schedulers and demands a reference to a graph and a
resource model in the constructor. This base class provides
all general methods that are implemented differently by
each derived scheduler class as virtual functions. Other
functions that are used in the same way for every
scheduling algorithm, for example the getSchedule()

method, are implemented in the SchedulerBase class.
As one can see in Figure 3, the basic scheduling
algorithms, e.g., ASAP, ALAP or list scheduling, are only
derived from the SchedulerBase class. These scheduling
algorithms do not support modulo scheduling. Therefore,
the getII() and getScheduleLength() functions both
return the length of the schedule.
The ModuloSchedulerBase class provides further
functionality required in modulo schedulers. HatScheT

uses the concept of multiple inheritance, so modulo
schedulers are additionally derived from this class. Most
current modulo scheduling algorithms use an iterative
approach, starting at a lower bound of II (minII) and
ending with an upper bound (maxII), to determine
the smallest possible II. To support this behavior, the
ModuloSchedulerBase class of HatScheT provides
methods to calculate the respective values based on the
user given input description.
Many of the modern schedulers like ModuloSDC or
Moovac use (integer) linear programming to solve
the scheduling problem. For that, the abstract
ILPSchedulerBase class provides an interface for
formulating and solving scheduling problems as (I)LP.

Internally, the open source ILP wrapper library ScaLP [18]
is used, which offers a simple and effective interface to
ILP-solvers, currently the solvers CPLEX, Gurobi, SCIP
and lpsolve are supported. Those solvers can be selected
in the ILPSchedulerBase constructor. This abstract base
class also provides interfaces for defining the ILP problem
and setting the objective. Additionally, several parameters
of the solvers, e.g., timeout or thread count, can be set
using the ILPSchedulerBase class.

6 Adaptive Scheduling

In this section, we discuss how HatScheT can be used
for adaptive scheduling. Using an adaptive scheduling
function, the scheduling of a large number of instances can
be adjusted automatically to a feasible run time.
Listing 3 shows an example of such an adaptive scheduling
function. In this example, we use three schedulers to adjust
the run time of each scheduling problem. The scheduling
problem is defined by the graph g and the resource model
rm, which are provided as input to the adaptive scheduling
method in line 3. As the function chooses between three
different schedulers in this example, two boundary values
k1 and k2 have to be provided as input.
Then, the complexity of the scheduling problem is
calculated in line 5. Note that we do not claim to provide
a measurement for the scheduling complexity in this
paper. The users of HatScheT are able to implement their
own methods to determine a complexity for a scheduling
problem. For now, the function that is used in this example
returns the number of vertices that can be found in the

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

10−2

10−1

100

101

102

103

104

10 sec

vertices

ru
n

tim
e

(s
ec

)
ASAP HC List Scheduler ModuloSDC Moovac

Figure 4 Scheduling run times of the MachSuite Benchmark Suite

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600

10−2

10−1

100

101

102

103

104

10 sec

vertices

ru
n

tim
e

(s
ec

)

ASAP HC List Scheduler ModuloSDC Moovac

Figure 5 Scheduling run times of the CHStone Benchmark Suite

10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

run time (sec)

sc
he

du
le

qu
al

ity
(m

in
II

/I
I)

ASAP HC List Scheduler ModuloSDC Moovac

Figure 6 Scheduling quality (MachSuite)

10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

run time (sec)

sc
he

du
le

qu
al

ity
(m

in
II

/I
I)

ASAP HC List Scheduler ModuloSDC Moovac

Figure 7 Scheduling quality (CHStone)

input graph g. Ways how to determine a useful complexity
and fitting boundaries will be examined in future work
on adaptive scheduling. The performance of this function
using the number of vertices in the input graph as decision
boundary will be evaluated in the following section.

Listing 3 Adaptive Scheduling using HatScheT
1 #include <HatScheT >

2

3 void adaptiveScheduling(Graph* g,

ResourceModel* rm, int k1, int k2){

4 HatScheT :: SchedulerBase* sched;

5 int k = Utility :: getComplexity(g,rm);

6

7 if(k>k1) sched = new ASAPScheduler(g,rm);

8 else if(k<=k1 && k>k2) sched = new

ULScheduler(g,rm);

9 else sched = new ModuloSDCScheduler(g,rm);

10

11 sched ->schedule ();

12 }

After the complexity is calculated, the respective
scheduling algorithm is chosen in the lines 7-9 based on the
input values k1 and k2. Finally, the scheduling problem is
solved in line 11. After that, the next scheduling problem
can be provided to the adaptive scheduling method until all
needed schedules got determined.

7 Experiments

In this section, the applicability of HatScheT for agile
and adaptive scheduling is shown. We evaluated the
performance regarding throughput and run time of four
scheduling algorithms that are available in the proposed
scheduling library. Additionally, the proposed adaptive
scheduling approach from Section 6 is examined.

7.1 Experimental Setup
As traditional scheduling algorithms, an ASAP HC
scheduler and a list scheduler with mobility based priority
were evaluated. For modulo scheduling, ModuloSDC [2]
and Moovac [14] were chosen. We used the C++ based
open-source library ScaLP [18] as ILP interface and CPLEX
[9] as ILP solver in single thread mode. All schedulers
were evaluated on a large number of graphs from the
widely used C based CHStone [7] and MachSuite [16]
benchmarks. We derived a resource model from the Bambu
HLS framework’s [15] extensive operator library for a
Xilinx xc7vx690 device. All problems were run on a
server system with Intel Xeon E5-2650 v3 with 128 GB
RAM operating at 2.3 GHz. The time limit for each II
in the case of ModuloSDC and Moovac was set to five
minutes. All implementations, graph descriptions and
resource constraints are available as open-source [1].

7.2 Results
The scheduling run times of the four examined algorithms
are displayed in Figure 4 for the MachSuite and in Figure 5
for the CHStone benchmark set. It can be seen that all four
algorithm are able to solve the problems in a reasonable
time of under 2 minutes as long as the number of vertices

in the scheduling problem does not exceed 180. Note that
this might only true for examined benchmark sets.
After the problem size surpasses this point, the observed
scheduling run times of the ILP-based modulo schedulers
were very large, reaching up to almost 3 hours. The ASAP
HC algorithm shows no scheduling run time that is larger
than 10 seconds and performs best regarding scheduling
run time. As to be expected, the list scheduler is more
time consuming than the ASAP HC scheduler, but is still
applicable for large scheduling problems. The longest
scheduling run time observed for the list scheduler was 5.6
minutes for an input graph with 2651 vertices.
A very important metric to evaluate scheduling algorithms
is the quality of the throughput achieved. A lower bound
(minII) for the II can be determined. The used definition of
minII can be found in the work of Oppermann et.al. [14].
For comparison of four scheduling algorithms over 354
graphs, we use the ratio minII

II . Using this ratio, a schedule
that achieves an II = minII is rated with a quality of 1,
further decreasing when the obtained II is large than the
minII. Note that not every minII can be achieved.
The scheduling quality over run time is displayed in Figure
6 for the MachSuite and in Figure 7 for the CHStone
benchmark. One can observe that the quality achieved
using the ASAP HC and the list scheduler is distributed
widely. The ILP-based modulo schedulers on the other
hand achieve a better quality on average. When the
scheduling run time is lower than one second, ModuloSDC
and Moovac are always able to identify a schedule with
quality that is larger than 0.8. But, when the scheduling
run time is longer, worse solutions regarding throughput
quality can be observed. Still, a lower quality than 0.5 was
never observed for the ILP-based modulo schedulers.
The complete scheduling results of both benchmarks are
summarized in Table 2. For every scheduling algorithm,
the total run time in minutes, the geometric mean and
median of the quality results are shown. Additionally,
the number of schedules where the II was larger than the
minII is shown. As expected, the overall run time for
the ASAP HC and list schedulers is very small compared
the ILP-based schedulers. The scheduling of the complete
CHStone benchmark takes almost 10 hours using Moovac
and over 10 hours using ModuloSDC. But, it can be
seen that the scheduling quality is almost 1 on average
for the ILP-based schedulers. Since the median is 1 for
Moovac and ModuloSDC, a schedule with II=minII got
determined in more than 50% of the cases. The ASAP HC
and list scheduler perform significantly worse regarding
scheduling quality compared to the ILP-based schedulers.
This is especially true for the CHStone benchmark where
a mean quality of 0.49 is achieved using the list scheduler.
Additionally, the performance of an adaptive scheme is
shown in the last row of Table 2. For this experiment,
the results that are shown in Figure 4 and 5 were used.
One out of the four examined schedulers were chosen for
the respective scheduling problem based on the input graph
vertex size such that no single scheduling run time exceeds
10 seconds. This is indicated by the red horizontal line
in Figures 4 and 5 respectively. The results show that
using an adaptive approach the overall scheduling run time

Table 2 Complete benchmark scheduling results

MachSuite (91 graphs) CHStone (263 graphs)

algorithm
run time
(minutes) mean(minII

II) median(minII
II) II > minII

run time
(minutes) mean(minII

II) median(minII
II) II > minII

ASAP HC < 0.01 0.59 0.71 69 0.09 0.46 0.44 224
List scheduler 0.03 0.61 0.75 67 7.9 0.49 0.5 223
ModuloSDC 13.8 0.96 1 12 605 0.96 1 57

Moovac 91.2 0.98 1 8 588 0.98 1 31

adaptive 0.34 0.94 1 13 1.4 0.91 1 56

can be reduced significantly compared to ModuloSDC and
Moovac while keeping the scheduling quality at a high
level. Achieving a quality mean of 0.94 for the MachSuite
benchmark, the run time could be reduced to 0.34 minutes.
For the CHStone benchmark the overall run time could
be reduced to 1.4 minutes keeping the mean scheduling
quality at 0.91.

8 Conclusion & Outlook

In this work, the HatScheT open-source C++ scheduling
library was presented [1]. Using HatScheT, designers
are able to interchange scheduling algorithms according
to their needs or automatically. Additionally, it is
straightforward to implement new scheduling algorithms
for comparison and experimental work. In the future,
we plan to implement more schedulers and to support the
chaining of operators.

9 Literature

[1] http://www.uni-kassel.de/go/hatschet.
[2] A. Canis, S. D. Brown, and J. H. Anderson. Modulo

SDC Scheduling with Recurrence Minimization in
High-level Synthesis. In Field Programmable Logic
and Applications (FPL), 2014 24th International
Conference on, pages 1–8. IEEE, 2014.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, J. H. Anderson, S. Brown, and
T. Czajkowski. LegUp: High-level Synthesis for
FPGA-based Processor/Accelerator Systems. In
Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
FPGA ’11, pages 33–36. ACM, 2011.

[4] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach.
An Introduction to High-level Synthesis. IEEE
Design & Test of Computers, 26(4):8–17, 2009.

[5] A. E. Eichenberger and E. S. Davidson. Stage
Scheduling: A Technique to Reduce the Register
Requirements of a Modulo Schedule. In
Microarchitecture, 1995., Proceedings of the
28th Annual International Symposium on, pages
338–349. IEEE, 1995.

[6] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y.
Lin. High—Level Synthesis: Introduction to Chip and
System Design. Springer, 2012.

[7] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and Quantitative Analysis of the CHStone
Benchmark Program Suite for Practical C-based
High-Level Synthesis. Journal of Information
Processing, 17:242–254, 2009.

[8] J. Highsmith. Agile Project Management: Creating
Innovative Products. Pearson Education, 2009.

[9] IBM Software. CPLEX Optimizer.
[10] N. Johnson. Agile Hardware Development –

Nonsense or Necessity?, 2011.
[11] G. Liu, K.-L. Poh, and M. Xie. Iterative List

Scheduling for Heterogeneous Computing. Journal
of Parallel and Distributed Computing, 65(5):654–
665, 2005.

[12] P. Michel, U. Lauther, and P. Duzy. The Synthesis
Approach to Digital System Design, volume 170.
Springer Science & Business Media, 2012.

[13] G. D. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill Higher Education, 1994.

[14] J. Oppermann, A. Koch, M. Reuter-Oppermann,
and O. Sinnen. ILP-based Modulo Scheduling
for High-level Synthesis. In Proc. of the Int.
Conf. on Compilers, Architectures and Synthesis for
Embedded Systems, page 1. ACM, 2016.

[15] C. Pilato and F. Ferrandi. Bambu: A modular
framework for the high level synthesis of memory-
intensive applications. In 23rd International
Conference on Field programmable Logic and
Applications, FPL 2013, Porto, Portugal, September
2-4, 2013, pages 1–4. IEEE, 2013.

[16] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and
D. Brooks. Machsuite: Benchmarks for Accelerator
Design and Customized Architectures. In Workload
Characterization (IISWC), 2014 IEEE International
Symposium on, pages 110–119. IEEE, 2014.

[17] P. Sittel, M. Kumm, J. Oppermann, K. Möller,
P. Zipf, and A. Koch. ILP-based Modulo Scheduling
and Binding for Register Minimization. 28th
International Conference on Field Programmable
Logic and Application (FPL), 2018.

[18] P. Sittel, T. Schönwälder, M. Kumm, and P. Zipf.
ScaLP: A Light-Weighted (MI) LP Library.
Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen
und Systemen (MBMV), pages 1–10, 2018.

