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Abstract—A key element for achieving high throughput, e.g.
circuits generated with high-level synthesis (HLS) methods and
model-based hardware design, is the use of modulo scheduling.
Integer linear programming (ILP)-based modulo schedulers are
capable of computing schedules that are optimal regarding
throughput and latency, while keeping run times to practically
usable lengths. However, the generated schedules may lead to
an excessive number of registers for storing intermediate values.
We propose extensions for ILP-based modulo scheduling that
minimizes these registers. The ILP formulation incorporates the
elimination of redundant registers by post binding optimization.
Extensive experiments on different benchmark sets show average
register reductions of 30.4 % compared to commonly used
minimum lifetime approaches that reduce register requirements.
This comes without any loss in throughput or latency and with
less than 4% additional scheduling run time compared to state-
of-the-art ILP-based modulo schedulers.

I. INTRODUCTION

Scheduling and binding plays a major role in the design
of complex hardware systems. To reduce design time,
overall project costs and hardware effort, methods like high-
level synthesis (HLS) or model-based hardware design were
proposed and became popular in recent years [4], [17]. Due
to the constrained resources of hardware implementations,
high-level descriptions are typically transformed into a time-
multiplexed architecture. To do so, the classical steps of
scheduling, allocation, and binding have to be performed. A
key element for achieving high throughput is to find a good
schedule. Modulo scheduling, where new values (samples)
are input into a computation after a fixed number of time
steps, called the initiation interval (II), is a commonly used
technique for increasing the throughput of an implementation.
Given a data flow graph representing the operations to be
scheduled, the main task of a modulo scheduler is finding
the smallest possible II in order to maximize throughput.
Frequently, the secondary objective is the minimization of
latency. Note that modulo scheduling is sometimes referred
to as cyclic scheduling [7], pipeline scheduling [14] or
overlapped scheduling [16]. The resulting schedule is used for
the generation of a time-multiplexed architecture. Depending
on the context, this architecture generation is called software
pipelining [23], loop pipelining [3], or folding [22].
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Fig. 1: High-level description of a biquad IIR-filter

In these time-multiplexed architectures, registers are used
to store intermediate results. In the following, we refer to this
registers as lifetime registers. We consider in this work that
these registers will be placed close to the data processing
operations to achieve short routing delays. Addtionally,
the technique of pipelining is commonly used to fulfill
throughput constraints [28]. Consequently, lifetime registers
require additional logic resources in field-programmable gate
array (FPGA) implementations. Therefore, lifetime registers
lead to a resource overhead for application-specific integrated
circuits (ASICs) and also pipelined FPGA implementations
due to additionally required slices. It can be observed that
there exist different schedules and bindings with optimal II
and minimal latency that lead to significantly different register
requirements in the resulting architecture. This paper extends
integer linear programming (ILP) formulations of the modulo
scheduling problem minimizing the required registers while
keeping the optimal II.

A. Motivational Example

Figure 1 shows the structure of a biquad infinite
impulse response (IIR) filter [21]. This high level behavioral
description can be seen as a directed labeled graph which
consists of vertices oi ∈ O (which represent operations) and
directed edges oi → oj ∈ E (which represent connections).
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Fig. 2: Time-multiplexed biquad filter using (a) non register-
aware modulo schedule (b) minimum register modulo schedule

An important step in the design of the time-multiplexed circuit
is the determination of variable lifetimes, which also specifies
the number of registers in the implementation. The lifetime of
a variable is given by

nij = tj − ti −Di + dijII, ∀oi → oj ∈ E , (1)

where ti and tj are the respective start times, Di is the latency
of node oi, dij is the algorithmic delay on edge oi → oj
and II represents the initiation interval for the next sample.
By algorithmic delay, we refer to delays which are part of
the algorithm (such as, e.g., the sample delays D1 and D2 in
Fig. 1), but not for storing intermediate results in the time-
multiplexed circuit, which are called register in the following.
Note that (1) is also called the folding equation [21]. The
value nij represents the number of time steps the variable
represented by edge oi → oj has to be stored (by using
registers). Obviously, nij ≥ 0 has to hold for a valid schedule.

For our example, let the latencies of the add and mult
units be four and five, respectively. Also, assume that no
more than two add and two mult hardware units shall be
used. Fig. 2a and 2b show two different time-multiplexed
architectures, which result from the two different schedules
and bindings that are given in Table I. Both schedules provide
an optimal II of 13 and a minimum latency (for the given
II) of 17. One significant difference between both solutions is
that the minimum register approach binds the three operations,
A1, A2 and A4, to the same hardware add1, resulting in an
implementation that uses fewer lifetime registers (14 instead
of 17) after the adder units. Additionally, the mult1 operation
is scheduled at time step 1 mod 13 instead of 4 mod 13,
which effectively saves three lifetime registers of the mult2

unit that are needed in the non-register aware solution in
Fig. 2a. Both architectures use register sharing, i.e., registers
that originate from the same source are shared as illustrated in
Fig. 3. Summing up the total registers including sharing, the
solution of Fig. 2a requires 20 registers, while the solution of
Fig. 2b only requires 14 registers. Note that the number of 2:1
MUXes remained identical, assuming that a 3:1 MUX is built
from two 2:1 MUXes. As the operations are usually pipelined
and have an output register, the removal of these registers
does not change the critical path delay. Worse solutions like
the one in Fig. 2a are common, because state-of-the-art ILP-
based modulo schedulers are not aware of the register count
and chose any out of many possible solutions with minimum
II. This motivates our work on considering the register cost in
the ILP-based modulo scheduling.

B. Related Work

Modulo schedulers can be classified into exact approaches
that are capable of computing optimal solutions regarding
II and often a target-dependent secondary objective (e.g.,
[16], [8], [7], [27], [1], [19]), and heuristic approaches that
cannot give such optimality guarantees, but are chosen for
their shorter run times (e.g., [23], [12], [18], [2]). A common
secondary objective in the context of very long instruction
word (VLIW) compilers is to reduce the register pressure, i.e.,
to minimize the maximum number of life variables in any time
step in the schedule. While it is possible to model this in an
exact manner [9], [16], the minimization of the cumulative
register lifetimes in the schedule was proposed as a substitute
[12], [6], [18], as it can be expressed in a linear form.

HLS tools create application-specific hardware architectures
that spatially distribute operations to individual hardware
operators. Similar to the VLIW compiler, the absolute
minimum number of realized registers in the architecture is
given by the maximum number of variables that are alive
at the same time [16]. However, the implementation of a
corresponding hardware architecture may require a significant
overhead for multiplexing data from and to the registers.
Instead, HLS tools may instantiate as many parallel registers as
needed, which minimizes multiplexing overhead. But, passing
data between the hardware operators requires a register for
every time step that separates the producer and the consumer
of a value, leaving ample opportunity for optimization.

In the extreme case, all operations may be mapped
to individual hardware operators (spatially distributing the
computation). Then, the problem to minimize the total number
of registers required is equivalent to the aforementioned
cumulative lifetime minimization. However, this is not a
practical assumption. Usually, operations that require access
to unique (e.g., memory ports) or expensive (e.g., floating-
point operators) on-chip resources are resource-constrained in
the scheduling problem, and will be time-multiplexed in the
final hardware design. The binding decision, i.e., the concrete
hardware resource an operation is mapped to, needs to be
considered when minimizing the register demand. Specifically,
registers from the same hardware operator can be shared, and



TABLE I: Two schedules and bindings of the example in
Fig. 1 with II= 13 and latency= 17

non register-aware minimum register

Operation time slot bound unit time slot bound unit

A1 9 add2 9 add1
A2 5 add2 5 add2
A3 9 add1 6 add1
A4 13 add1 13 add1

P1 0 mult1 0 mult2
P2 0 mult2 0 mult1
P3 1 mult2 1 mult2
P4 4 mult1 1 mult1
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Fig. 3: Example of implementing the registers: (a) without
sharing using 9 registers (b) with sharing using 4 registers

only the maximum of the registers required in each time step,
over the entire schedule, has to be implemented in the final
hardware. To the best knowledge of the authors, none of the
existing work considers register sharing in their scheduling
and binding [15], [12], [6], [8], [18].

C. Contributions

Previous approaches aim to minimize variable lifetimes for
register minimization. This paper proposes an optimal solution
for modulo scheduling such that the number of implemented
registers is minimized. Using the methods introduced in
this work, modulo schedules which lead to register-minimal
hardware implementations can be determined without any
quality loss regarding throughput or latency, and only little
scheduling algorithm run time overhead. We support our
claims with detailed scheduling experiments on widely spread
applications and problem sizes from C code and model-based
design. To explore the bounds of the complete design space
we also evaluated a complementary objective that maximizes
the number of implemented registers.

II. ILP FORMULATION

In the following, the complete ILP formulation of the state-
of-the-art Moovac scheduler [19] is given which was shown
to outperform previous modulo schedulers including Modulo
SDC [2] used in LegUp. Subsequent, our new approach to
model the register cost is given and linear ILP constraints
are derived to model the register minimization. For the
experimental results provided in Section III, these constraints
are used to extend the Moovac formulation, but they are
applicable for any ILP-based scheduler.

TABLE II: Constants (top) and variables of Moovac (middle)
and the proposed extension (bottom)

Constant/Variable Meaning

O Set of operations
L ⊆ O Set of resource constrained operations

C
Set of classes for resource constrained
operations (i.e., add, mult, ...)

Lc ⊆ L
Set of resource constrained operations of
class c ∈ C, i.e.,

⋃
c∈C Lc = L

E Edges in the DFG
dij Algorithmic delay on edge oi → oj
ac ∈ N No of instances of resource class c ∈ C

Di ∈ N0
Latency (in clock cycles) of operation
oi ∈ O

ti ∈ N0 Start time of operation oi ∈ O

mi = ti mod II Modulo start time (congruence class) of
operation oi ∈ L

yi = bti/IIc Helper in congruence class computation.
ri ∈ {0, 1, . . . , ac−1} Resource instance of operation oi ∈ Lc

εij =

{
1 ri < rj
0 otherwise

Overlap variable for resource for pair of
operations oi, oj ∈ Lc with i 6= j and
c ∈ C. True when oi’s resource index is
strictly less then oj ’s resource index

µij =

{
1 mi < mj

0 otherwise

Overlap variable for congruence class for
pair of operations oi, oj ∈ Lc with i 6= j
and c ∈ C. True when oi’s congruence class
is strictly less then oj ’s congruence class

nij Life time of variable on edge oi → oj ∈ E

Rcl, Ri

Number of registers at the output of instance
l ∈ {0 . . . ac − 1} of resource class c or
unconstrained operation oi (incl. reg.
sharing)

ρil =

{
1 ri = l

0 otherwise
Operation oi ∈ Lc is bound to instance
l ∈ {0 . . . ac − 1}

A. Moovac ILP Formulation

The input to the Moovac ILP instance is summarized at the
top of Table II. The different inputs are constants from the
ILP optimizer’s point of view. Basically, the operations (O)
are divided into resource constrained (L) and unconstrained
operations (O \ L). L is further split up into sets (Lc)
of different resource classes (c ∈ C) like add, mult, etc.
Each resource class is constrained by a maximum number of
instances ac. Each operation is assigned a latency Di.

The outputs of the optimization are the start times ti for
each operation for the minimum possible II. As a direct
minimization of the II is difficult to realize due to non-linear
constraints, the II is considered as a constant and typically
several optimization runs are performed starting from a lower
bound of II. As the ILP solver is typically fast in proving
infeasibility for IIs which are too small, a quick convergence is
achieved. In addition to the start times, a number of additional
variables are used in the formulation, which are given in the
middle part of Table II. Variables yi and mi represent the
quotient and the remainder in the modulo operation such that
ti = yiII +mi. Variables ri encode which hardware instance
(out of ac) is used to implement node oi which enables
resource constraints. The µij and εij variables are so-called
overlap variables [29], which model whether two operations
overlap in the start times of the same congruence class (µij)



or use the same resource instance εij .
In contrast to the original Moovac [19], where the sum

of start times was minimized, we aim for the minimization
of the overall latency as a secondary objective (in addition
to keeping the min II as the primary objective). To realize
this, we introduce an artificial node which is called the super
sink [5] that follows all output nodes. By simply minimizing
the start time tss of this super sink, we minimize the overall
schedule length, and thus the latency. The overall Moovac ILP
formulation is given as follows:

minimize tss

subject to

C1: tj − ti −Di + dijII ≥ 0 ∀oi → oj ∈ E
C2: ti = yiII +mi ∀oi ∈ L
C3: mi ≤ II− 1 ∀oi ∈ L
C4: ri ≤ ac − 1 ∀c ∈ C, oi ∈ Lc

C5: εij + εji ≤ 1 

∀ c ∈ C,
oi, oj ∈ Lc,
i 6= j

C6: rj − ri − 1− (εij − 1)ac ≥ 0

C7: rj − ri − εijac ≤ 0

C8: µij + µji ≤ 1

C9: mj −mi − 1− (µij − 1)II ≥ 0

C10: mj −mi − µijII ≤ 0

C11: εij + εji + µij + µji ≥ 1

Constraints C1 represent the precedence relations. Note that
the left-hand side is identical to the lifetime (or delay) in (1)
which, of course, has to be zero or positive. Constraints C2 and
C3 ensure the necessary modulo relations between ti and mi.
The maximum number of resources for each resource class is
defined by constraints C4. Constraints C5–C11 guarantee that
every pair of operations oi, oj is either assigned to different
resources or mapped to different congruence classes, or both.
Note that we pre-scheduled the input nodes to start time zero.

B. Preliminaries on Register Modeling

For optimal register minimization, the ILP formulation has
to take all lifetimes into account that actually describe registers
in the implementation. The variable computed by node oi has
to be stored (delayed) by exactly nij clock cycles as given in
(1), before fed into the hardware unit that computes node oj .
A naive way to implement time-multiplexed circuits is to put
nij registers in each corresponding path as shown in Fig. 3a.
The number of registers used in such an architecture is then
identical to the cumulative lifetime

Rcl =
∑

oi→oj∈E
nij , (2)

as used in [12], [6], [18]. Hence, a straightforward extension is
to introduce nij as an ILP variable and to replace the objective
by the minimization of Rcl to result in a minimum cumulative
lifetime.

As can be seen in Fig. 3b, every time the data from node
oi is computed in the same hardware unit, the corresponding

registers are redundant and leave room for optimization. This
has been naturally utilized before in the generation of time-
multiplexed circuits [22], but never with the objective to
minimize the real number of registers, including possible
sharing during binding and scheduling. Without changing the
critical path, registers can be moved to the same branch,
further reducing the number of implemented registers and to
increasing the respective workload. Another possibility would
be to reduce retiming. In the example that is shown in Fig. 3b,
it is possible to move one register to the other side of the MUX.
This could be profitable for the resulting clock frequency of
the implementation. However, this optimization was not part
of this work and will be investigated in the future.

Formally, let Ecl be the set of edges of resource-constrained
operations which are bound to the same hardware unit

Ecl = {oi → oj ∈ E : ri = l, oi ∈ Lc} , (3)

the total number of registers using register sharing is

Rshare =
∑
c∈C

ac−1∑
l=0

max
oi→oj∈Ecl

nij︸ ︷︷ ︸
=Rcl

+
∑

oi∈O\L

max
oi′→oj∈E:i′=i

nij︸ ︷︷ ︸
=Ri

,

(4)

where Rcl and Ri denote the registers of resource constrained
operations of class c bound to unit l as well as the non-
constrained nodes oi, respectively. Note that Rshare is always
less than or equal to Rcl.

C. ILP Formulation for Register Minimization

To make the ILP model aware of registers, we propose the
addition of the variables given in the lower part of Table II.
Variables Rcl and Ri are identical to the max terms in
(4). Summing over all Rcl’s and Ri’s results in our desired
minimum register objective

minimize
∑
c∈C

ac−1∑
l=0

Rcl +
∑

oi∈O\L

Ri .

Now, the following constraints have to be exchanged/added
in the ILP formulation to minimize registers:

C1a: tj − ti −Di + dijII = nij
}
∀oi → oj ∈ EC1b: nij ≥ 0

C14: ri =

ac−1∑
l=0

lρil oi ∈ Lc : ∀c ∈ C

C15:
ac−1∑
l=0

ρil = 1 oi ∈ Lc : ∀c ∈ C

C16a: Rcl ≥ nij − (1− ρil)M
∀oi → oj ∈ E,∀c ∈ C,
l = 0 . . . ac − 1 : oi ∈ Lc

C16b: Ri ≥ nij
∀oi′ → oj ∈ E :

oi′ = oi ∈ O \ L

Constraints C1a and C1b simply split C1 of the original
formulation to access the lifetime nij as ILP variables. One



TABLE III: Results of the average register counts (avg. regs) and the number optimal solutions found within 5 minutes (opt)
using maximum registers (maxReg), Moovac [19], minimum lifetime (minLife) [6] and minimum register (minReg)

Graph properties maxReg Moovac [19] minLife [6] minReg (prop.) Register impr. [%]

instance graph
no.

min
ops

max
ops

avg
ops avg regs opt avg regs opt avg

regs opt avg
regs opt maxReg Moovac minLife

M
ac

hS
ui

te

aes2 16 29 225 70.8 191.1 14 123.5 14 47.1 14 31.8 14 83.4 74.3 32.5
bfsqueue 2 105 121 113.0 216.0 2 125.0 2 49.5 2 47.0 2 78.2 62.4 5.1
fftstrided 2 40 161 100.5 562.0 1 490.5 1 206.5 1 125.0 1 77.8 74.5 39.5
gemmblocked 5 25 52 36.8 55.8 5 41.8 5 12.4 5 10.2 5 81.7 75.6 17.7
gemmncubed 3 28 54 40.7 55.0 3 45.3 3 10.7 3 9.7 3 82.4 78.6 9.3
kmp 4 33 92 58.0 63.8 4 45.8 4 25.0 4 24.5 4 61.6 46.5 2.0
mdgrid 10 23 302 108.7 467.4 8 365.0 8 91.6 8 68.4 8 85.4 81.3 25.3
mdknn 2 102 105 103.5 995.0 0 563.5 2 219.0 2 138.5 2 86.1 75.4 36.8
sortmerge 8 26 80 41.9 38.6 8 24.4 8 11.4 8 9.5 8 75.4 61.1 16.7
sortradix 15 20 75 36.5 34.1 15 20.5 15 8.0 15 7.7 15 77.4 62.4 3.7
spmvcrs 2 52 56 54.0 92.5 2 80.5 2 17.0 2 16.0 2 82.7 80.1 5.9
spmvellpack 2 49 54 51.5 85.5 2 72.0 2 17.0 2 16.0 2 81.3 77.8 5.9
stencil2d 4 29 43 36.8 24.8 4 19.3 4 5.0 4 5.0 4 79.8 74.1 0.0
stencil3d 9 25 76 40.9 30.8 9 24.2 9 9.2 9 7.1 9 76.9 70.7 22.8
viterbi 7 33 81 60.9 131.4 7 104.3 7 34.0 7 30.1 7 77.1 71.1 11.5

C
H

St
on

e

adpcm 30 20 689 82.7 596.7 28 324.7 28 108.2 28 84.4 28 85.9 74.0 22.0
aes 22 26 1147 173.9 226.7 21 151.4 21 62.1 21 41.3 21 81.8 72.7 33.5
blowfish 1 767 767 767.0 7495.0 0 4029.0 0 2968.0 0 2490.0 0 66.8 63.0 16.1
dfdiv 2 40 43 41.5 18.0 2 15.5 2 8.0 2 8.0 2 55.6 48.4 0.0
dfsin 3 40 2654 912.3 17338.3 2 9113.0 3 6020.0 2 3419.7 2 80.3 62.5 43.2
gsm 15 20 194 64.7 76.7 14 51.9 15 22.7 14 21.7 14 71.7 58.2 4.4
jpeg 113 19 913 99.1 315.0 104 195.7 104 88.3 104 76.3 104 75.8 61.0 13.6
mips 1 1020 1020 1020.0 11232.0 0 5200.0 0 2116.0 0 858.0 0 92.4 83.5 59.5
motion 51 32 79 53.2 45.2 51 36.2 51 10.0 51 10.0 51 77.9 72.4 0.0
sha 25 20 146 70.2 82.8 25 58.7 25 24.9 25 23.9 25 71.1 59.3 4.0

O
ri

ga
m

i

butterworth 1 32 32 32 247 1 220 1 220 1 155 1 37.2 29.5 29.5
firlms 1 15 15 15 54 1 46 1 46 1 46 1 14.8 0.0 0.0
fir6dlms 1 16 16 16 25 1 13 1 8 1 4 1 84.0 69.2 50.0
fir8tap 1 25 25 25 57 1 41 1 2 1 1 1 98.2 97.6 50.0
fir16tap 1 49 49 49 114 1 103 1 2 1 2 1 98.2 98.1 0.0
Hilbertfilter 1 14 14 14 6 1 6 1 1 1 1 1 83.3 83.3 0.0
iirbiquad 1 14 14 14 20 1 16 1 17 1 14 1 30.0 12.5 17.6
iirorder4 1 25 25 25 53 1 39 1 34 1 27 1 49.1 30.8 20.6
PIAntiWindup 1 26 26 26 78 1 61 1 29 1 29 1 62.8 52.5 0.0
PID 1 14 14 14 15 1 11 1 10 1 6 1 60.0 45.5 40.0
RGBtoYCbCr 1 23 23 23 15 1 14 1 1 1 1 1 93.3 92.9 0.0
splineprefilter 1 21 21 21 12 1 6 1 6 1 6 1 50.0 0.0 0.0
YCbCrtoRGB 1 21 21 21 7 1 4 1 2 1 1 1 85.7 75.0 50.0
pct 1 25 25 25.0 4 1 3 1 2 1 2 1 50.0 33.3 0.0

To
ta

l MachSuite 91 20 302 59.6 158.8 84 113.7 86 37.7 86 27.9 86 82.4 75.5 26.0
CHStone 263 19 2654 104.8 512.5 247 288.5 249 149.1 247 103.1 247 79.9 64.3 30.9
Origami 14 14 49 22.9 50.5 14 41.6 14 27.1 14 21.1 14 58.2 49.3 22.1
all 368 14 2654 90.5 407.5 345 235.9 349 116.9 347 81.4 347 80.0 65.5 30.4

problem to compute Rcl and Ri in (4) is that the max operation
is non-linear. The common way to linearize it is to introduce
a binary decision variable for each pair of max operations,
indicating which of the operands is the largest one. Instead,
we use a set of binary variables ρil, which indicate whether
resource instance ri is bound to unit l (ri = l) or not. This
relation is modeled by constraint C14. While this leads to the
same number of decision variables compared to the common
linearization of the max operations, it allows the reduction of
the search space as exactly one ρil has to be one for each
oi as formulated by C15. This fixes many other variables
whenever one ρil is set to a binary value in the branch-and-
bound tree of the ILP solver. Now, the max operation can
be modeled by C16a for resource constrained and C16b for
non-resource constrained operations. Constraint C16a forces
Rcl ≥ nij when ρil = 1. For ρil = 0, setting constant M
(which is a so-called big-M constant) to a sufficiently large
value will lead to a negative value on the right hand side

of C16a with the effect that the constraint for this hardware
unit is deactivated and the delay can be set to the minimum
possible but usually constrained by another hardware unit.
For non-resource constrained operations, this distinction is not
necessary as given in constraint C16b. Due to the fact that Rcl

is minimized it is guaranteed that the pure maximum value is
selected and not a value larger than the maximum.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
minimum register modulo scheduling approach. Our work
is compared against the state-of-the-art modulo scheduler
Moovac [19] which was shown to outperform previous work
[8], [2]. As Moovac is not aware of the resulting registers
and randomly applies operation binding, the resulting schedule
usually requires a non-minimal register count. Additionally,
we evaluate the minimum cumulative lifetime approach which
is state-of-the-art when targeting register minimization [12],



[6], [18]. Finally, we examine a complementary objective that
aims to maximize register numbers. In that way, we show
the design space bounds regarding register counts for each
modulo scheduling problem. We implemented our approach
using Moovac as base. Minimizing Rcl, as given in (2), was
used as objective. Doing this, we provide an optimal modulo
schedule regarding both II (1st objective) and implemented
registers (2nd objective). For each scheduling problem, all
examined schedulers were constrained to fulfill the same
maximum latency Dmax. Note that this constraint limits the
number of registers that the maximum register approach can
utilize to a reasonable amount. In theory, an infinite amount of
registers could be inserted. Using identical II and maximum
latency for each scheduling problem, we examined the worst
possible binding regarding register counts. Doing this, the
displayed register counts are comparable. All methods were
evaluated on 368 graphs from the C-based CHStone [11] and
MachSuite [24] benchmarks as well as the Matlab/Simulink
benchmark of Origami HLS [20].

A. Test Setup

The investigated schedulers were implemented in the open-
source Origami HLS framework [20], [25]. We used the C++
based open-source library ScaLP [26] as ILP interface and
the Gurobi ILP solver [10] in single thread mode. For the C-
based benchmark, a graphml interface to read models from the
Nymble HLS compiler [13] was added. The resource limits in
the C-based experiments were unlimited for all integer units
except the integer division, which was limited to 8 units.
Floating point Add/Sub/Mult and Div were limited to 4 and
8 units, respectively. To model common pipelining of floating
point operations, the latencies for the model-based Origami
benchmark experiments were set to realistic values. In detail,
the add, mult and sin operations were set to 4, 5 and
12 clock cycles and resource constraints to 2, 2, 1 units,
respectively. All other operations in both experimental setups
were unconstrained and set to a single clock cycle latency.

All problems were run on a server system with Intel Xeon
CPU E5-2650 v3 processors with 128 GB RAM operating at
2.3 GHz. The time limit of the solver was set to five minutes.
Only if an optimal solution was found for the actual II and all
lower IIs were proven to be infeasible within this time limit,
the solution was counted to be optimal. Otherwise, the best
solution found was considered as heuristic solution.

B. Results

The results for all examined applications are presented in
Table III. Each row represents one application containing one
ore more data flow graphs (given as ‘graph no.’). For each of
these graph sets, information about the number of operations
in the smallest graph, largest graph and on average are given
as ‘min ops.’, ‘max ops.’ and ‘avg ops.’, respectively. As an
example, the aes2 instance of the MachSuite benchmark
consists of 16 graphs. The smallest graph representation
contains 29 and the largest 225 operations. On average, the
scheduled graphs of the aes2 instance have 70.8 operations.

The Origami benchmark set consists of several widely-used
model-based designs, e.g., (in)finite impulse response filters,
controllers and signal transformations.

In total, 368 graphs were used for the scheduling
experiments. Each graph was modulo scheduled using four
different formulations. As baseline, the Moovac formulation
was evaluated. In addition, Moovac with minimum lifetime
objective (‘minLife’) was evaluated to consider state-of-
the-art register minimization. The proposed method for
register minimization formulation (‘minReg’) as well as the
formulation having the complementary objective (‘maxReg’)
were examined to evaluate our approach as well as the possible
range of register counts. Note that the register count of the
conventional Moovac always must lie between the minReg and
maxReg solutions. The average number of additional registers
(‘avg regs’) for the different data flow graphs and methods
are given in each row of Table III. In addition, the number
of graphs for which the optimal schedule could be identified
within the time limit are given in column ‘opt’. The percentage
of register improvement (‘Register impr.’) is given in the last
three columns.

As expected, the results show that the minimum lifetime
approach performs best in terms of registers from the state-
of-the-art methods. However, the proposed minimum register
formulation is able to find solutions with significantly reduced
register counts in most of the cases. In the other cases, the
same register count could be achieved. Remember that the
solutions still fulfill the same II and latency for the examined
scheduling problems.

Taking the average over all benchmarks, the improvement
compared to the minimum cumulative lifetime approach and
Moovac is 30.4% and 65.5% respectively. One can observe
that larger graphs (like mips or dfsin in CHStone) seem
to offer more optimization potential for register minimization
than smaller graphs as less register sharing is possible. Here,
minimum registers are often obtained by minLife scheduling
and in two cases by Moovac (‘firlms’ and ‘splineprefilter’).
For most of the graphs, an optimal solution could be found.
If not, even for large problems of >1000 nodes like the
‘mips’ instance good heuristic solutions (83.6% register count
reduction compared to Moovac) were found which were
already shown to outperform previous heuristics [19]. This
shows that the proposed approach is applicable to commonly
used large problems.

While the overall run time of Moovac was 4h:39min, it
was 4h:55min for minimum cumulative lifetime and 5h:05min
with the proposed extensions which corresponds to a run time
increase of 9.3% and 3.4%, respectively. However, considering
the achieved register savings, this increase seems to be
acceptable.

IV. CONCLUSION & OUTLOOK

An exact register minimization extension to ILP-based
modulo scheduling was proposed that is capable to
utilize register sharing. While previous solutions generate
implementations using an arbitrary number of registers, this



paper shows that register optimal results can be achieved with
low run time overhead for benchmark problems of practical
size [11], [24]. Future work will be directed towards the
integration of real hardware costs. In that way, the ILP-
formulation is able to allocate hardware units dynamically and
the hardware costs can be constrained using realistic values
like the number of FPGA slices used or the area occupied on
an ASIC.
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