
Design-Space Exploration with Multi-Objective
Resource-Aware Modulo Scheduling

Julian Oppermann1[0000−0002−8073−720X], Patrick Sittel2[0000−0003−2896−3709],
Martin Kumm3[0000−0002−8593−3138], Melanie

Reuter-Oppermann4[0000−0003−2231−7749], Andreas Koch1[0000−0002−1164−3082],
and Oliver Sinnen5

1 Embedded Systems and Applications Group, Technische Universität Darmstadt,
Germany, {oppermann, koch}@esa.tu-darmstadt.de

2 Circuits and Systems Group, Imperial College London, UK, psittel@ic.ac.uk
3 Faculty of Applied Computer Science, University of Applied Sciences Fulda,

Germany, martin.kumm@cs.hs-fulda.de
4 Discrete Optimization and Logistics Group, Karlsruhe Institute of Technology,

Germany, melanie.reuter@kit.edu
5 Parallel and Reconfigurable Computing Lab, University of Auckland, New Zealand,

o.sinnen@auckland.ac.nz

Abstract. Many of today’s applications in parallel and concurrent com-
puting are deployed using reconfigurable hardware, in particular field-
programmable gate arrays (FPGAs). Due to the complexity of modern
applications and the wide spectrum of possible implementations, manual
design of modern custom hardware is not feasible. Computer-aided de-
sign tools enable the automated transformation of high-level descriptions
into hardware. However, the efficient identification of Pareto-optimal so-
lutions to trade-off between resource utilisation and throughput is still an
open research topic. Combining resource allocation and modulo schedul-
ing, we propose a new approach for design-space exploration of cus-
tom hardware implementations. Using problem-specific rules, we are able
to exclude obviously dominated solutions from the design space before
scheduling and synthesis. Compared to a standard, multi-criteria optimi-
sation method, we show the benefits of our approach regarding runtime
at the design level.

1 Introduction

The use of reconfigurable platforms including field-programmable gate arrays
(FPGAs) is common for hardware acceleration in the area of applied and high-
performance embedded computing. Compared to costly and inflexible application-
specific integrated circuits, FPGAs provide relatively high throughput and low
power implementations while enabling rapid-prototyping [4]. Due to the expo-
nential rise of complexity of digital systems and FPGA capacity, the process of
manually implementing specifications in hardware is inefficient regarding design
time and quality [5]. To overcome this, high-level synthesis (HLS) can be ap-
plied to automatically transform behavioural descriptions into hardware. The

2 J. Oppermann et al.

three main steps of HLS are resource allocation, operation scheduling and bind-
ing [9]. In the allocation step, physical resources are determined. Using only
the allocated resources, the scheduling step assigns execution times, usually in
clock cycles, to every operation such that no data dependency is violated. Next,
the operations are bound to specific functional units in hardware. Finally, the
high-level input description is transformed into a hardware description language
(HDL) representation that implements the operations, memory interfacing and
data flow control at the register-transfer level.

The scheduling phase is crucial for the accelerator’s performance, and is there-
fore typically the most time-consuming step in this process. Using conventional
scheduling algorithms, the achievable throughput is reciprocally proportional to
the determined schedule length (latency). The throughput can be increased by
using modulo scheduling, which interleaves successive schedules [15]. Usually al-
location, scheduling and binding are performed sequentially in order to reduce
design time. This limits the number and quality of trade-off points in the design
space. Detaching resource allocation from scheduling, state-of-the-art modulo
schedulers only determine a single solution without providing any information
about trade-offs or resource saving opportunities [3] [12]. The research question
of how to use resource allocation and scheduling efficiently to obtain Pareto-
optimal trade-off points, remains open. Enumerating all possible allocations and
scheduling each of them typically leads to prohibitively long runtimes. Fan et
al. proposed cost-sensitive modulo scheduling [8] to synthesise the smallest (in
terms of resource use) accelerator for a loop at a given, externally specified ini-
tiation interval. While their goal is similar to ours, they compute the number of
functional units before scheduling using heuristic rules, whereas we can minimise
the allocation as part of an exact scheduling formulation. We can thus handle
the situation where the trivial resource allocation is infeasible for a given inter-
val. The only published formulation that includes the minimisation of allocated
resources in a modulo scheduling formulation is the one proposed by Šůcha and
Hanzálek [18]. The above works did not address design-space exploration (DSE),
however.

In this work, we make the following contributions. Firstly, we establish a
formal definition and a framework for resource-aware modulo schedulers, dis-
cussing the necessary changes required to make existing, exact formulations
suitable for multi-objective, resource-aware optimisation. Secondly, we discuss
how to apply a standard method from multi-criteria optimisation, and propose
a novel problem-specific approach compatible with our extended formulations.
Our evaluation shows that the problem-specific approach outperforms the stan-
dard method in terms of both overall runtime and number of trade-off points.

2 Scheduling Framework

At the beginning of an HLS flow, an intermediate data flow graph (DFG) rep-
resentation is constructed from the input loop description, modelling the op-
erations that constitute the computation as vertices, and the data flow and

DSE with Modulo Scheduling 3

+

1

×

5

×

6

×

7

×

8

+

2

+

3

+

4

c1

c2

c3

c4

4

Fig. 1. Data flow graph of example.

other precedence relationships between the operations as edges. In contrast to
general-purpose processors, HLS tools employ a spatial approach to computa-
tion, meaning that in the extreme case, an individual operator is instantiated
for each operation. However, as each operator occupies a certain amount of an
FPGA device’s finite number of resources, an HLS compiler can choose to share
operators among several operations in different time steps.

Fig. 1 shows an example DFG which we use to further illustrate the problem
and introduce our notation. The DFG contains four multiplications and four
additions which are represented as vertices. The result of operation 3 is delayed
by four iterations (edge marked with ‘4’) and fed back into the input of opera-
tion 1. There are different ways to schedule the execution of the operations, as
illustrated in Fig. 2. Fig. 2(a) shows one extreme where a separate operator is in-
stantiated for each operation. It takes five time steps to compute one iteration,
i.e. the result of operation 4, due to the data dependencies illustrated by the
non-shaded parts. However, with modulo scheduling, each operator can accept
new operands in each time step such that up to five iterations are processed
concurrently as represented by the different colours. Since a new iteration can
be initiated at operation 1 at every time step, the initiation interval (II) is equal
to one. Fig. 2(b) shows the other extreme where only one instance is used per
operator type. Here, it takes eight time steps to compute one result value, but
new iterations can be initiated every II = 4 time steps. Usually, several solu-
tions exist between these extremes providing trade-offs between throughput and
resource utilisation.

2.1 Formal Definitions

We now introduce the necessary terms and notations used throughout the paper,
starting with the definition of the resource-aware modulo scheduling (RAMS)
problem. The target device is abstracted to the different types of low-level
resources R, and the number of elements Nr available of each resource r ∈ R.
Typical resources include lookup tables (LUTs), digital signal-processing blocks
(DSPs), and memory elements such as flip-flops and on-chip block RAM. The
set of operator types Q is derived from the HLS tool’s library, which usually

4 J. Oppermann et al.

+
1

×
5

×
6

×
7

×
8

+
2

+
3

×
5

×
6

×
7

×
8

+
2

+
3

+
4

+
1

×
5

×
6

×
7

×
8

+
2

+
1

×
5

×
6

×
7

×
8

+
1

+
2

+
3

+
4

+
3

+
4

+
4

... ...
+

1

×
5

×
6

×
7

×
8

+
2

+
3

+
4... ...

ti
m

e
operators

(a)

+
1

×
5

×
6

×
7

×
8

+
2

+
3

+
3

... ...
+

1

×
5

×
6

×
7

×
8

+
2

+
3

+
4

ti
m

e

operators

... ...
(b)

Fig. 2. Two example schedules of DFG in Fig. 1 with (a) eight parallel operators and
II = 1 and (b) two parallel operators and II = 4

provides modules for the basic arithmetic/logic functionality, as well as ports
to random-access memories. Each instance of operator type q performs a single
function that takes lq time steps to complete, and has an associated demand
nq,r ∈ N0 in terms of the device’s resources r ∈ R. Most operator types are
simple enough to implement on FPGAs to have nq,r � Nr regarding all re-
sources. Therefore, it is reasonable for the HLS tool to treat them as practically
unlimited, i.e. instantiate as many operators as needed. In contrast, operators
whose resource demands exceed a certain threshold are candidates to be time-
multiplexed by the HLS tool. Their types constitute the set of shared operator
types Q̂ ⊆ Q. While the concrete threshold is tool-dependent, we assume that
the resource demand of the multiplexing logic required for sharing is negligible
in comparison to the resource demands of shared operators. Accordingly, inte-
ger addition is the canonical example for an unlimited operator type, whereas
floating-point division would be a typical shared operator type. We assume that
shared operators can accept new input data, i.e. coming from a different opera-
tion, at every time step.

The sets of operations O and edges E = {(i→j)} ⊆ O×O together form the
dependence graph, which represents the semantics of the computation. In our
model, each operation i ∈ O maps to exactly one operator type. For notational
convenience, we introduce the sets Oq that contain all operations using a specific
operator type q. Each dependence edge (i→j) models a precedence relationship
between the operations i, j ∈ O, and is associated with two integer attributes.
The delay δij mandates additional time steps between the completion time of i

DSE with Modulo Scheduling 5

and the start time of j. The distance βij expresses how many iterations later the
precedence has to be satisfied. We call edges with a non-zero-distance backedges.
The dependence graph may contain cycles that include at least one backedge.
The example of Fig. 1 contains one backedge: that between operation 3 to oper-
ation 1. We denote the sum of i’s operator type’s latency and the edge delay as
dij . In addition, we may optionally limit the maximum schedule length (latency)
U ∈ N0.

A solution S to the RAMS problem consists of an initiation interval IIS ,
an allocated number of instances aSq for all operator types q ∈ Q that together
form an allocation AS , and a start time tSi for all operations i ∈ O, i.e. the
schedule. Note that for all unlimited operator types q′ ∈ Q \ Q̂, the allocation
is fixed to aSq′ = |Oq′ |. We define the solution’s utilisation of resource r as:

ηr(A
S) =

∑
q∈Q

aSq · nq,r (1)

Any feasible solution S must satisfy the following constraints

tSi + dij ≤ tSj + βij · IIS ∀(i→j) ∈ E (2)∣∣∣{i ∈ Oq : tSi mod IIS = m}
∣∣∣ ≤ aSq ∀q ∈ Q̂ and m ∈ [0, IIS − 1] (3)

ηr(A
S) ≤ Nr ∀r ∈ R (4)

where constraints (2) assert that all dependence edges are honoured, (3) state
that no operator type shall be oversubscribed and (4) ensure that the allocation
does not exceed the target device’s limits.

In our setting, two competing objectives exist, i.e. the minimisation of the
initiation interval (II), and the minimisation of the resource utilisation (RU):

fII(S) = IIS fRU(S) =
1

|R|
∑
r∈R

ηr(A
S)

Nr
(5)

As no universally applicable weighting exists, we seek to compute a set S of
Pareto-optimal solutions with different trade-offs between the two objectives, and
refer to this endeavour as the multi-objective resource-aware modulo scheduling
(MORAMS) problem. A solution S ∈ S is Pareto-optimal if it is not dominated
by any other solution, i.e. @S′ ∈ S with (fII(S

′), fRU(S
′)) < (fII(S), fRU(S)).

2.2 Bounds

The solution space for the MORAMS problem can be confined by simple bounds
derived from the problem instance.

We define the minimum allocation A⊥ to contain a⊥q = 1 instances for each
shared operator type q ∈ Q, and a⊥q′ = |Oq′ | instances for each unlimited type
q′ ∈ Q \ Q̂. Note that the minimum allocation may be infeasible for any II if
a MORAMS instance contains backedges, or an additional latency constraint is

6 J. Oppermann et al.

minimise fRU(X)

subject to formulation-specific dependence constraints (→ 2)

formulation-specific constraints that ensure at most aXq operations using
operator type q are started in each congruence class modulo IIX (→ 3)

ηr(A
X) ≤ Nr ∀r ∈ R (→ 4)

aXq ∈ N0, and a⊥q ≤ aXq ≤ a>q ∀q ∈ Q

Fig. 3. Template model for resource-aware modulo scheduling

given. We assume that ηr(A
⊥) ≤ Nr, regarding all resources r, as otherwise the

problem instance is trivially infeasible.
The maximum allocation A> models how many operators of a particular type

would fit on the device if all other operator types were fixed at their minimum
allocation. Formally, we define, for each q ∈ Q̂:

a>q = min

{
1︸︷︷︸
(a)

+ min
r∈R:nq,r>0

⌊
Nr − ηr(A

⊥)

nq,r

⌋
︸ ︷︷ ︸

(b)

, |Oq|︸︷︷︸
(c)

}
(6)

Here, (a) represents the one q-instance already considered in the minimum al-
location, (b) models how many extra q-instances would fit using the remaining
elements of resource r, i.e. when subtracting the r-utilisation of the minimum
allocation. Lastly, (c) limits the allocation to its trivial upper bound, i.e. the
number of operations that use q. For completeness, we set a>q′ = |Oq′ | for the
remaining, unlimited operator types q′ ∈ Q \ Q̂.

The minimum initiation interval II⊥ is usually defined (e.g. in [15]) as II⊥ =
max{II⊥rec, II

⊥
res}, i.e. the maximum of the recurrence-constrained minimum II

and the resource-constrained minimum II. II⊥rec is induced by (2) and the recur-
rences (cycles) in the dependence graph, while II⊥res follows from (3):

II⊥res = max
q∈Q̂

⌈
|Oq|
a>q

⌉
(7)

The upper bound for the initiation interval II> is obtained by scheduling the
instance with a non-modulo scheduler that uses heuristic resource constraints
according to the minimum allocation.

3 ILP Formulations for the RAMS Problem

The template formulation in Figure 3 illustrates how ILP-based modulo schedul-
ing formulations can be made resource-aware with small changes. In principle,
it suffices to replace formerly constant limits in the base formulation with inte-
ger decision variables modelling the allocation. For notational convenience, we
consider these variables to be part of an intermediate solution X. Then, one

DSE with Modulo Scheduling 7

would minimise the ILP according to the objective function fRU(X). The spe-
cific changes required to extend state-of-the-art schedulers are described in the
following.

Formulation by Eichenberger and Davidson The formulation by Eichen-
berger and Davidson (abbreviated here as ED) limits the use of an operator (Mq,
in their notation) per modulo slot only on the right-hand sides of constraints (5)
[7]. Replacing Mq by the appropriate allocation variables and the objective are
thus the only changes required to their model.

Formulation by Šůcha and Hanzálek The formulation by Šůcha and
Hanzálek (SH), is the only formulation for which a resource-aware extension
was already proposed [18]. We reimplemented their unit-processing time formu-
lation to be used in our MORAMS approach. Note though that we needed to
use the weaker form of their constraints (9), i.e. before applying their Lemma 1,
as otherwise the number of constraints would need to be adapted according to
the dynamic values of the allocation decision variables (m1 in their notation),
which is not possible in ILPs.

Formulation by Oppermann et al. The Moovac formulation (MV) by Op-
permann et al. was presented in two variants: Moovac-S, which is a single-II
scheduler, and Moovac-I, which models the initiation interval as a decision vari-
able [12]. The changes needed to make them resource-aware are the same for
both, however. Note that the formulation, as presented in [12], does compute a
binding, i.e. mapping of operations to concrete operators, in contrast to the ED
and SH formulations, which only ensure that no more than the allocated number
of operators are used in each modulo congruence class. For a fairer comparison,
we adapted Šůcha and Hanzálek’s idea of counting the modulo slot conflicts
among the operations competing for the same shared operator type. To this
end, we drop the variables ri (in their notation) and the constraints (M3-M5),
(M9) and (M11) from the formulation, and instead add the following constraints
(again, in their notation):∑

j∈Lk,i6=j

1− µij − µji ≤ ak − 1 ∀i ∈ Lk (8)

The binary variables µij and µji are both zero iff operations i and j occupy the
same congruence class. The formulation can be made resource-aware by replacing
the parameter ak with the appropriate allocation variable.

4 Approaches for the MORAMS Problem

In the following, we discuss two different approaches to solve the MORAMS
problem, i.e. computing a set S of Pareto-optimal solutions regarding fII(X)
and fRU(X), with the help of the RAMS formulations described above.

8 J. Oppermann et al.

4.1 ε-Approach

The ε-approach is a standard method from the multi-criteria optimisation field
[6]. Its core idea, given two objectives, is to optimise for only one objective and
add a constraint for the other. In order to apply the method for solving the
MORAMS problem, we need to employ a RAMS formulation where all com-
ponents of a solution are decision variables, such as the Moovac-I formulation
with the extensions discussed above. The approach starts with determining an
extreme point by one objective, fII(X) in our case, and determining the value
for the other, i.e. the resource utilisation fRU(X). For the next iteration, a con-
straint forcing the resource utilisation to be less than current value minus an ε,
is added, and the model is again solved with the II minimisation objective. We
use ε = minr∈R

1
Nr·|R| , i.e. the smallest possible decrease in the objective value

according to the device resources. This algorithm is iterated until the succes-
sively stronger ε-constraints prevent any new feasible solution to be discovered.
We deviate slightly from the standard method by lexicographically minimising
both the II and the resource utilisation, to ensure that we obtain the smallest
possible allocation for each interval. As a bonus, we know that the II will increase
in each iteration, and encode this insight in the form of a second, non-standard ε-
constraint regarding fII(X). We only accept ILP solutions that were proven to be
optimal by the solver, as suboptimal solutions could yield dominated MORAMS
solutions and interfere with the convergence of the algorithm. Conversely, the re-
turned set of solutions S is guaranteed to only contain Pareto-optimal solutions,
thus no post-filtering is needed.

4.2 Iterative Approach

As an alternative to the ε-approach that requires the II to be a decision variable,
we propose an iterative approach, in which the II is a constant for each iteration,
to tackle the MORAMS problem. This approach is outlined in Algorithm 1. We
choose successively larger candidate IIs from the range of possible intervals (Line
3), construct the ILP parameterised to that II, solve it with the resource utili-
sation objective (Line 6) and, given that the ILP solver has proven optimality,
retrieve and record the solution (lines 11–13). We stop the exploration if the
solver returns either no solution, or a suboptimal one, due to a violated time
limit. Note that the resulting set of solutions can contain dominated solutions.
While filtering out these solutions after scheduling (Line 16) is easy, significant
time may be wasted in computing them. To this end, we propose two heuris-
tic rules to skip scheduling attempts that would result in obviously dominated
solutions.

The first rule is shown in lines 4–5. We already used the feasibility constraint
in (3) to establish a static lower bound for the II. However, with knowledge
of the current interval IIX , we can also use it to derive a lower bound for the
allocation of each shared operator type q ∈ Q̂. Recall that each q-instance can

DSE with Modulo Scheduling 9

Algorithm 1 Iterative approach to the RAMS problem
1: Let ILP be an exact modulo scheduling formulation with a candidate interval IIX

(a parameter), and decision variables aXq ∀q ∈ Q and tXi ∀i ∈ O. Consider the
candidate II and the decision variables as part of an intermediate solution X.

2: S ← ∅ ; S−1 ← null
3: for IIX ∈ [II⊥, II>] do . Iterate in ascending order
4: if S−1 6= null and ∀q ∈ Q̂ : aS

−1

q =
⌈
|Oq|
IIX

⌉
then

5: continue with next candidate II to skip obviously dominated solutions
6: ILP.construct(IIX) ; ILP.solveWithObjective(fRU(X))
7: if solver status is “infeasible” then
8: S−1 ← null ; continue with next candidate II
9: else if solver status is not “optimal” then
10: stop exploration
11: S ← new solution
12: IIS ← IIX ; aSq ← ILP.value(aXq) ∀q ∈ Q ; tSi ← ILP.value(tXi) ∀i ∈ O
13: S ← S ∪ {S} ; S−1 ← S
14: if AS = A⊥ then
15: stop exploration, as minimal allocation is achieved
16: return FilterDominatedSolutions(S)

only accommodate IIX operations, which yields:

aXq ≥
⌈
|Oq|
IIX

⌉
(9)

We call an allocation AX trivial for an IIX if all aXq are equal to the right-hand
side of (9).

Now, we can skip the current candidate II if the previously computed allo-
cation AS

−1

is equivalent to the trivial allocation for IIX , because it cannot be
improved with respect to the previous solution. Li et al. used a similar rule to fil-
ter candidate IIs’ based on the respective trivial allocations [11]. However, their
definition disregards the possibility that these allocations may be infeasible, and
therefore can lead to incorrectly excluded candidate IIs.

The second rule (lines 14–15) stops the exploration if the minimum allocation
A⊥ is achieved. All remaining solutions would be dominated by the current
solution because the allocation cannot be improved further, and those solutions
would have larger IIs. Note that both rules can only be applied if the respective
minimal allocations are feasible, which may not be the case in the presence of
deadlines imposed by either backedges or latency constraints.

4.3 Dynamic Lower Bound for the Allocation

In order to make it easier for the ILP solver to prove that it has reached the
optimal allocation for the current II, we propose to include bound (9) in the
models. When using the iterative approach, we can simply add it as a linear

10 J. Oppermann et al.

Table 1. Complexity of problem instances

min. median mean max.

operations 14 49 104 1374
shared operations 0 4 16 416
edges 17 81 237 4441
backedges 0 3 23 1155

constraint to the formulation, since IIX is a constant. For the ε-approach, (9)
would be a quadratic constraint. To linearise it, we introduce binary variables
IIXπ with IIXπ = 1 ⇔ IIX = π for π ∈ [II⊥, II>], adding the following linear
constraints to the formulation:

aXq ≥
⌈
|Oq|
π

⌉
· IIXπ ∀π ∈ [II⊥, II>] (10)

5 Evaluation

We evaluated the presented MORAMS approaches on a set of 204 realistic test
instances. These modulo scheduling problems were extracted from two different
HLS environments: 16 instances originate from Simulink models compiled by
the Origami HLS project [2], whereas 188 instances represent loops from the
well-known C-based HLS benchmark suites CHStone [10] and MachSuite [16].
The latter were compiled by the Nymble C-to-hardware compiler as described
in [13], using an operator library from the Bambu HLS framework [14]. Table 1
summarises the instances’ complexity. Our target device was the Xilinx Zynq
XC7Z020, a popular low-cost FPGA found on several evaluation boards. As
resources, we model its number of lookup tables (53200), DSP slices (220), and,
specifically for the C-based benchmark instances, assume the availability of up
to 16 memory ports that can be used to either read from or write to an address
space shared with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi 8.1 as ILP
solver on 2×12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz with 64
GiB RAM. The schedulers were allowed to use up to 8 threads, 6 hours wall-
clock time and 16 GiB of memory per instance. We report each instance’s best
result from two runs, considering first the number of solutions, and then the
accumulated runtime of the exploration.

In modulo schedulers, the II can be much lower than its latency. However,
the latency should not be unbounded and there exist latency critical applications
(like in closed control loops) where a low latency is important in addition to a
low II. Hence, we consider the latency as a separate user constraint. As this
can significantly influence the results, we scheduled our test instances subject to
three different latency constraints that cover the whole spectrum of cases: The
strongest constraint is to limit the schedule length U to the length of the critical
path UCP. Using II>, i.e. the length of a non-modulo schedule with heuristic
resource constraints, relaxes the operations’ deadlines slightly. Lastly, we adapt

DSE with Modulo Scheduling 11

0 5 10 15 20 25 30 35
II

0

2

4

6

8

10

12

14
Re

so
ur

ce
 u

til
isa

tio
n

[%
]

Latency U constrained to ... UCP

minimum allocation
dominated solutions
Pareto-optimal solutions
trivial allocation
skipped attempts

1 2 3 4 5 6 7 8 9
II

0

2

4

6

8

10

12

14

... II

1 2 3 4 5 6 7 8
II

0

2

4

6

8

10

12

14

... UIm

Fig. 4. Trade-off points for instance splin_pf, computed with the iterative approach

the loose but conservative bound UIm from [12] to the maximum allocation, which
by construction does not exclude any modulo schedule with minimal length.

Let SC be the set of solutions computed by a particular approach. We dis-
tinguish the set of Pareto-optimal solutions S and dominated solutions SD with
SC = S ∪ SD. Additionally, we define the set ST ⊆ S of trivial solutions, i.e.
solutions with the trivial allocation for their respective II.

Fig. 4 illustrates these metrics and the shape of the solution space resulting
from the exploration with our iterative approach for the instance representing
the Simulink model splin_pf. We picked this particular instance because it be-
haves differently under the three latency constraints, and showcases the effects
of our heuristic rules. In the case U = UCP, many dominated solutions were com-
puted because the minimal allocation A⊥ was not feasible, and consequently, the
early-termination rule (Lines 14–15) in Algorithm 1 was not applicable. Also,
the candidate-skipping rule (Lines 4–5) was only able to skip candidate IIs 6–7.
For U = II>, the situation was significantly relaxed, as we only computed one
dominated solution at II = 8, and were able stop the exploration at II = 9.
Lastly, with U = UIm, all solutions were trivial, and no extra dominated solu-
tions were computed. The equivalent plots for the ε-approach, which we omit
here for brevity, only contain the orange-coloured Pareto-optimal solutions by
construction. All approaches completed the exploration for splin_pf within three
seconds of runtime.

The results of the exploration across all 204 test instances are summarised
in Table 2 for the ε-approach of Section 4.1, as well as the iterative approach
of Section 4.2 together with the ED, SH or MV formulations. The scheduler
runtimes are accumulated in the columns “RT [h]” to give intuition into the
computational effort required by the different approaches. Note that in practice,
one would not need to schedule a set of instances sequentially. We then count
the number of solutions in the aforementioned categories.

According to the complete exploration, the clear winner is the resource-aware
ED formulation within our problem-specific, iterative approach, as it computes
the most Pareto-optimal solutions (columns “ |S|”) in the least amount of time
(columns “RT [h]”), across all latency constraints, by a large margin. The SH for-
mulation performs slightly better than the Moovac formulation in the MORAMS

12 J. Oppermann et al.

Table 2. Design-space exploration results for 204 instances

U ≤ UCP U ≤ II> U ≤ UIm

Method RT [h] |SC | |S| |ST | RT [h] |SC | |S| |ST | RT [h] |SC | |S| |ST |
ε-app. 12.2 285 285 168 48.4 372 372 302 70.6 321 321 290
ED (iter) 2.4 1510 290 170 26.4 498 453 381 34.9 441 422 382
SH (iter) 16.2 1502 289 170 48.1 448 412 341 47.7 416 408 371
MV (iter) 16.0 1492 289 170 48.2 422 379 308 54.3 353 346 312

RT [h] = “total runtime in hours”. SC , S, ST = “computed, Pareto-optimal, trivial solutions”.

setting. We observe that for the tightest latency constraint UCP, fewer trivial
allocations are feasible than for the other bounds, which causes the iterative
approaches to compute |SC | � |S|, due to the non-applicability of the heuristic
tweaks in Algorithm 1. On the other hand, the fact that |S| > |ST | demonstrates
that only considering solutions with the trivial allocation for the respective II
(e.g. as suggested in [8]) would, in general, not be sufficient to perform a complete
exploration.

By design, the ε-approach computes only the Pareto-optimal solutions, re-
gardless of the latency constraint (columns “|SC |” ≡ “|S|”). However, this benefit
is apparently outweighed by the additional complexity introduced by modelling
the II as a decision variable in the Moovac-I formulation, causing the ε-approach
to be outperformed by the ED formulation.

6 Conclusion and Outlook

We presented a framework to perform a scheduler-driven design-space explo-
ration in the context of high-level synthesis. Despite of leveraging ILP-based
modulo scheduling formulations, the MORAMS problem can be tackled in a
reasonable amount of time, and yields a variety of throughput vs. resource utili-
sation trade-off points. An open-source implementation of the proposed iterative
MORAMS approach, as well as the test instances used in the evaluation, are
available as part of the HatScheT scheduling library [1].

We believe that this work can serve as the foundation for the development
of heuristic approaches, as well as an environment to investigate binding-aware
objective functions, such as register minimisation [17], or balancing the workload
of the allocated operators for interconnect optimisation.

It could also be investigated, if the formulation by Eichenberger and David-
son, which already yielded the best results with our proposed, iterative approach,
can be sped up further by applying a problem-reduction technique [13].

Acknowledgements The authors would like to thank James J. Davis for pro-
viding detailed feedback regarding the clarity of this paper. The experiments for
this research were conducted on the Lichtenberg high-performance computing
cluster at TU Darmstadt.

DSE with Modulo Scheduling 13

References

1. HatScheT – Project Website (2019), http://www.uni-kassel.de/go/hatschet
2. Origami HLS – Project Website (2019), http://www.uni-kassel.de/go/origami
3. Canis, A., Brown, S.D., Anderson, J.H.: Modulo SDC Scheduling with Recurrence

Minimization in High-level Synthesis. In: Field Programmable Logic and Applica-
tions, 24th Intl. Conf. on (2014)

4. Chen, F., Shan, Y., Zhang, Y., Wang, Y., Franke, H., Chang, X., Wang, K.: En-
abling FPGAs in the Cloud. In: Proc. of the 11th ACM Conf. on Computing
Frontiers (2014)

5. De Michell, G., Gupta, R.K.: Hardware/software Co-design. Proc. of the IEEE
85(3) (1997)

6. Ehrgott, M.: Multicriteria Optimization. Springer, second edition edn. (2005)
7. Eichenberger, A.E., Davidson, E.S.: Efficient Formulation for Optimal Modulo

Schedulers. In: Proc. of the ACM SIGPLAN ’97 Conf. on Programming Language
Design and Implementation, Las Vegas, USA (1997)

8. Fan, K., Kudlur, M., Park, H., Mahlke, S.A.: Cost Sensitive Modulo Scheduling in
a Loop Accelerator Synthesis System. In: 38th Annual IEEE/ACM Intl. Symp. on
Microarchitecture, Barcelona, Spain (2005)

9. Gajski, D.D., Dutt, N.D., Wu, A.C., Lin, S.Y.: High-level Synthesis: Introduction
to Chip and System Design (2012)

10. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and Quantitative Anal-
ysis of the CHStone Benchmark Program Suite for Practical C-based High-level
Synthesis. JIP 17, 242–254 (2009)

11. Li, P., Zhang, P., Pouchet, L., Cong, J.: Resource-aware throughput optimization
for high-level synthesis. In: Proc. of the 2015 ACM/SIGDA Intl. Symp. on Field-
Programmable Gate Arrays, Monterey, CA, USA (2015)

12. Oppermann, J., Reuter-Oppermann, M., Sommer, L., Koch, A., Sinnen, O.: Exact
and Practical Modulo Scheduling for High-Level Synthesis. ACM Trans. Reconfig-
urable Technol. Syst. 12(2) (May 2019)

13. Oppermann, J., Reuter-Oppermann, M., Sommer, L., Sinnen, O., Koch, A.: De-
pendence Graph Preprocessing for Faster Exact Modulo Scheduling in High-Level
Synthesis. In: 28th Intl. Conf. on Field Programmable Logic and Applications,
Dublin, Ireland (2018)

14. Pilato, C., Ferrandi, F.: Bambu: A Modular Framework for the High Level Synthe-
sis of Memory-intensive Applications. In: 23rd Intl. Conf. on Field programmable
Logic and Applications, Porto, Portugal (2013)

15. Rau, B.R.: Iterative Modulo Scheduling. Intl. Journal of Parallel Programming
24(1) (1996)

16. Reagen, B., Adolf, R., Shao, Y.S., Wei, G., Brooks, D.M.: MachSuite: Benchmarks
for Accelerator Design and Customized Architectures. In: IEEE Intl. Symp. on
Workload Characterization, Raleigh, USA (2014)

17. Sittel, P., Kumm, M., Oppermann, J., Möller, K., Zipf, P., Koch, A.: ILP-Based
Modulo Scheduling and Binding for Register Minimization. In: 28th Intl. Conf. on
Field Programmable Logic and Applications, Dublin, Ireland (2018)

18. Šůcha, P., Hanzálek, Z.: A Cyclic Scheduling Problem with an Undetermined Num-
ber of Parallel Identical Processors. Comp. Opt. and Appl. 48(1) (2011)

