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FPGAs

= Field-Programmable Gate Arrays

- semiconductor chips, ideal for energy-
efficient, application-specific accelerators
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- ,programming“ FPGA
= configuring and connecting resources
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Computing with FPGAs

= Spatial computation is common
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Computing with FPGAs

= Spatial computation is common

= |nstantiate operators from a library
» requires certain amount of FPGA resources
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= Connect operators to form a 1 5 <L =
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Computing with FPGAs

= Spatial computation is common

= |nstantiate operators from a library
» requires certain amount of FPGA resources

= Connect operators to forma ~ { <*L FLE
datapath 1| add add -
. N 7 -
= Manual design in hardware - -
description language is tedious = nul -
- AN :

- div | OutpEt>
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High-Level Synthesis

= HLS = Automatic design from
behavioural description (think: C code)
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= Each loop is transformed to data-flow
graph of operations

- operations need a hardware operator
to execute
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= HLS = Automatic design from
behavioural description (think: C code)

= Each loop is transformed to data-flow
graph of operations

- operations need a hardware operator
to execute

= Algorithmic steps

» Allocation — how many operators?
- Scheduling — when is an operation
executed?
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High-Level Synthesis

- HLS — AUtOmath deS|gn from E“““““““““““'“““;
behavioural description (think: C code)

= Each loop is transformed to data-flow
graph of operations

- operations need a hardware operator

to execute
= Algorithmic steps -
- Allocation — how many operators? §
- Scheduling — when is an operation %’f
executed?
- Binding — on which operator?
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Key HLS Techniques

= Operator sharing = reduce

resource demand by multiplexing é é

ACBD

\ Y \ Y/
MUX | | MUX
C 7

‘ div ‘

DEMUX
A

XY
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Key HLS Techniques

= Operator sharing = reduce
resource demand by multiplexing

- only if: cost of operator
»> cost multiplexers

= Loop pipelining = reduce execution
time by overlapping iterations

- smaller initiation interval (ll)

<
shorter execution times, more
overlap, but less sharing

A B

time
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Key HLS Techniques

= Operator sharing = reduce AR

resource demand by multiplexing

- only if: cost of operator
»> cost multiplexers

= Loop pipelining = reduce execution
time by overlapping iterations
- smaller initiation interval (ll)
< =

shorter execution times, more
overlap, but less sharing

- enabled by modulo schedulers

-
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= HLS can construct many different microarchitectures
from the same input specification

- Conflicting objectives

min initiation interval
min resource utilisation
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= HLS can construct many different microarchitectures
from the same input specification

- Conflicting objectives

min initiation interval
min resource utilisation

= Resulting design space needs to be explored
manually, or by external tools...

* why not directly as part of the HLS algorithms?
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Contributions

( ILP = Integer Linear Program)

1. A framework for
Resource-Aware Modulo Scheduling (RAMS)

» extends existing ILP-based formulations to
combine allocation and modulo scheduling

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling 8 /25



Contributions

( ILP = Integer Linear Program)

1. A framework for
Resource-Aware Modulo Scheduling (RAMS)

» extends existing ILP-based formulations to
combine allocation and modulo scheduling

!

Binding is \
guaranteed to exist
for typical HLS

operators
N /

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling 8 /25



Contributions

( ILP = Integer Linear Program)

1. A framework for
Resource-Aware Modulo Scheduling (RAMS)

» extends existing ILP-based formulations to
combine allocation and modulo scheduling

2. We investigate ways to efficiently /j Binding is N

compute different trade-off solutions | guaranteed to exist
for typical HLS

operators
N /
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] Introduction to high-level synthesis
? Resource-aware modulo scheduling
] Exploration of trade-off solutions

] Experimental evaluation
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Problem Signature/ms

Input: Resource types
R

LUT DSP

MEM

each r € R provides
N, elements
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Problem Signature/ms

Input: Resource types Operator types
R Q

. Q\Q Junlimited”

_wev L5 HRO0

each r € R provides each g € Q has
N, elements a latency [, and

Va\

() ,shared”

LUT

DSP

resource demands 71, ,.
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Problem Signature/ms
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gIIIIIIIIIIIIIIIIIIIIIIIIIIIIIg Q ”Shared“
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Problem Signature/ms

Input: Resource types Operator types Dependence graph
R 0 G = (O,E)
gIIIIIIIIIIIIIIIIIIIIIIIIIIIIIg Q ”Shared“
e . (.
- . Q\Q  unlimited*
MEM
_IIIIIIIIIIIIIIIIIIIIIIIIIIIII_ IID ]
each r € R provides each g € O has subsets Oq group
N, elements a latency lq, and operations using
resource demands 1, , operator type g

eachi =>j €L
has a distance f;;
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Problem Signature/ms

Input: Resource types Operator types Dependence graph
R 0 G = (O,E)

gIIIIIIIIIIIIIIIIIIIIIIIIIIIIIg Q ”Shared“

e

- . Q\Q  unlimited*

MEM

_IIIIIIIIIIIIIIIIIIIIIIIIIIIII_ IID ]

each r € R provides each g € O has subsets Oq group
N, elements a latency lq, and operations using
resource demands 1, , operator type g
eachi > j € E

Output: A solution .S, comprised of: has a distance f;;

II° initiation interval

tiS start times for each operation (,schedule®)

ag number of instances for each operator type (,,allocation“, A
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F e d si b i I i-l-y -= resource-aware etensio |

= A solution § is feasible if and only if
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F e a si bi I i-l-y -= resource-aware etension

= A solution § is feasible if and only if

1. ,,all precedence constraints are satisfied”
S S ) . . .
L lqs;]. p;-I° Yi—>jeEANI€EQ,

l

2. ,no more than the allocated number of operators are used at
any time*

{ieaq:tfmodllszm} < agj Vge QAame |0, II° — 1]

3. ,the resource demand is within the device capacity”
S
Zaq -n,, < N, VreR
qeQ
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Trade-offs & (In-)Feasibility

= Example: Different trade-offs
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Trade-offs & (In-)Feasibility

=1 latency=4 _
4mul 3 add = Example: Different trade-offs

e

Output
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Trade-offs & (In-)Feasibility

=1 latency=4 _ 11=4 latency=7
4 mul 3add = Example: Different trade-offs 1mul 1add
Input / Input /

@ [

|\

Output

@\

Output
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Trade-offs & (In-)Feasibility

=1 latency=4 _ 11=4 latency=7
4 mul 3add = Example: Different trade-offs 1mul 1add
Input / Input /

N
= /sn’t there an Il to makes any

@@@ allocation feasible (& vice versa)? @/ / \\

|\

Output

@\

Output
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Trade-offs & (In-)Feasibility
=1 latency=4 Ig’;egéi;zrs:]igg 11=4 latency=7
4mul 3add urent trade-offs 1 mul 1 add

Input Input
—F

¥
= /sn’t there an Il to makes any
@@@@ allocation feasible (& vice versa)? @/ / \

\
@ = Not if an operation is subject to \@\\

a deadline
Output :

» Inter-iteration dependences
pnali] = f(ali-4])"
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Trade-offs & (In-)Feasibility
=1 latency=4 Ig’;egéi;zrs:]igg 11=4 latency=7
4mul 3add urent trade-offs 1 mul 1 add

Inpu\’i , npyt
= /sn’t there an Il to makes any
@@@@ allocation feasible (& vice versa)? @/ / \\

= Not If al? operation is subject to \@ \\
Om a deadline

» Inter-iteration dependences

pnali] = f(ali-4])"“
- External latency constraints
SREEL 'a.te”Cy> Loutput must be available after
constraint y
5 CyCl eS Output l
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Trivial Allocation

Instance of (- j

shared operator |Operations

= One operator provides lI-many slots

type

o 1+O
T —O
. +O

Ili2 < Q
- 1 e{)
\_

AN

J

operations’
start time
modulo |l
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Trivial Allocation

= One operator provides lI-many slots

= Pigeonhole principle: ,,Need enough
slots to bind all operations*

S L
KAl 7 1€ L

Instance of
shared operator
type
0 <
1 <
2 <
Il -2 <
Il -1 <
AN
operations’
start time
modulo |l

& A

Operations

O
O

O

O

{)
\—

J
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Trivial Allocation

= One operator provides lI-many slots

= Pigeonhole principle: ,,Need enough
slots to bind all operations*

S L
KAl 7 1€ L

= We call an allocation A trivial iff

aqS Is equal to the RHS for all g & Q

Instance of
shared operator
type
0 <
1 <
2 <
Il -2 <
Il -1 <
AN
operations’
start time
modulo |l

a A

Operations

{)
O
{)

O

{)
\—

_J
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Trivial Allocation

= One operator provides lI-many slots

= Pigeonhole principle: ,,Need enough
slots to bind all operations*

S L
KAl 7 1€ L

= We call an allocation A trivial iff

aqS Is equal to the RHS for all g & Q

= Trivial allocation may be infeasible!

Instance of
shared operator
type
0 <
1 <
2 <
Il -2 <
Il -1 <
AN
operations’
start time
modulo |l

a A

Operations

{)
O
{)

O

{)
\_

_J
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Resource-Aware Extension

= Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives
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Resource-Aware Extension

= Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

= \We extended:
- ED: formulation by Eichenberger & Davidson (1997)

N-1

Z Z Q(r—c)modIl,i < Mq Vq € Q1 re€ [01 II) (5)

1=0 ceRes;
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- ED: formulation by Eichenberger & Davidson (1997)

N-1
Z Z Q(r—c)modIl,i < Mq Vq € Q1 re [01 II) (5)
1=0 ceRes;

- SH: formulation by Slicha & Hanzélek (2009)
Y Pij<mi—1, Vie{l,...,n —mi} 9)
j=i+1
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= Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

= \We extended:
- ED: formulation by Eichenberger & Davidson (1997)

N-1

Z Z Q(r—c)modIl,i < Mq Vq € Q1 re [01 II) (5)
1=0 ceRes;

- SH: formulation by Slicha & Hanzélek (2009)
Y Pij<mi—1, Vie{l,...,n —mi} 9)
j=i+1

- MV: ,Moovac* formulation by Oppermann et al. (2019)

ri <ap —1 Vk e R:Vie L (M11)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling 14 /25



] Introduction to high-level synthesis
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= Multi-Objective Resource-Aware Modulo Scheduling
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= Multi-Objective Resource-Aware Modulo Scheduling

= Given a RAMS problem, the goal is to compute all
Pareto-optimal solutions
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= Multi-Objective Resource-Aware Modulo Scheduling

= Given a RAMS problem, the goal is to compute all
Pareto-optimal solutions

* |.e. a solution that is not dominated by any other
solution

- Example:
11=3, RU=30% ...
dominates I1=4, RU=40%
... does not dominate I1I=2, RU=40%
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e-Approach

s standard method from multi-
criteria optimisation
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e-Approach

v

s standard method from multi- minimise ll-objective
criteria optimisation

STOP if infeasible

 basically: optimise one
objective, and successively
add constraints for the other

A 4

get value y of RU-objective

add constraint RU <y — ¢

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling 17 /25



e-Approach

s standard method from multi-
criteria optimisation

 basically: optimise one
objective, and successively
add constraints for the other

* we minimise both objectives
to speed up convergence

minimise |l-objective

STOP if infeasible

v

get value x of ll-objective

temporarily fix Il to x

minimise RU-objective

get value y of RU-objective

add constraint RU <y — ¢

add constraint Il > x + 1
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e-Approach

v

s standard method from multi- minimise ll-objective
criteria optimisation

STOP if infeasible

v

 basically: optimise one
objective, and successively
add constraints for the other

get value x of ll-objective

temporarily fix Il to x

* we minimise both objectives sl HUkebiEaie
to speed up convergence

get value y of RU-objective

* requires RAMS formulation

with variable || add constraint RU <y — ¢
Here: extended ,,Moovac-I|*
formulation (Oppermann et al., 2019) add constraint Il > x + 1
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lterative Approach

= Most existing modulo schedulers

already try candidate lls until the
first feasible solution is found
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lterative Approach

l

= Most existing modulo schedulers T e e o

already try candidate lls until the increasing order
first feasible solution is found

= |[nstead, we explore by trying all
candidate llIs ...

v

minimise RU-objective
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lterative Approach

= Most existing modulo schedulers
already try candidate lls until the
first feasible solution is found

= |[nstead, we explore by trying all
candidate llIs ...

= ... and filter out dominated
solutions afterwards

l

forall candidate lls in
Increasing order

v

minimise RU-objective

\4

filter dominated solutions

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling 18 /25



lterative Approach

l

= Most existing modulo schedulers AT ek s e
already try candidate lls until the increasing order
first feasible solution is found

R1: SKIP if solution will

, be dominated by
= |[nstead, we explore by trying all oreviously computed

candidate lls ... solution

= ... and filter out dominated e

solutions afterwards R2- STOP if minimum

allocation is reached

= We propose rules R1, R2 to

compute fewer dominated v
solutions — next slide filter dominated solutions
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Domain-Specific Rules

= R1: Skip candidate interval I1* if
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Domain-Specific Rules

= R1: Skip candidate interval I1* if
. we have a solution P with II" < II*, and

. its allocation A is trivial for 1
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Domain-Specific Rules

= R1: Skip candidate interval I1* if
. we have a solution P with II" < II*, and

. its allocation A is trivial for 1

= R2: Stop exploration if
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Domain-Specific Rules

= R1: Skip candidate interval I1* if
. we have a solution P with II" < II*, and

. its allocation A is trivial for 1

= R2: Stop exploration if
* solution with the minimum allocation

a, =1 qge0
IS found
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] Introduction to high-level synthesis

] Resource-aware modulo scheduling
] Exploration of trade-off solutions

2 Experimental evaluation
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Effectiveness of Rules

= Effectiveness of R1, R2 for iterative approach depends on
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Scheduling Results

= Question: which approach computes the most
Pareto-optimal solutions within 6 hours per instance?
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Conclusion

s Presented framework to make ILP-based modulo
schedulers resource aware
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Conclusion

s Presented framework to make ILP-based modulo
schedulers resource aware

= ED-formulation + iterative approach is fastest, and
computes the most Pareto-optimal solutions

= Outlook: probably too many solutions per instance
— how to determine relevant ones?
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Thank youl

Check out the HatScheT scheduler library O=10

hitp://uni-kassel.de/go/hatschet
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