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Introduction to high-level synthesis 

	Resource-aware modulo scheduling


	Exploration of trade-off solutions


 Experimental evaluation

�2



J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators
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FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators

• comprised of resources
• look-up tables (LUT)
• DSP blocks
• …
• programmable interconnect
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FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators

• comprised of resources
• look-up tables (LUT)
• DSP blocks
• …
• programmable interconnect

• „programming“ FPGA 
= configuring and connecting resources
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Computing with FPGAs

■ Spatial computation is common
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Computing with FPGAs

■ Spatial computation is common

■ Instantiate operators from a library
• requires certain amount of FPGA resources

■ Connect operators to form a  
datapath
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Computing with FPGAs

■ Spatial computation is common

■ Instantiate operators from a library
• requires certain amount of FPGA resources

■ Connect operators to form a  
datapath

■ Manual design in hardware  
description language is tedious 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High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)
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High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute
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High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
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behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?
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High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?
• Scheduling	 — when is an operation 
	 	 	 	 	 	 executed?

�5



J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Tim
e steps

Tim
e steps

add

div

mul mul

add add

sub

add

div

mul mul

add add

sub

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?
• Scheduling	 — when is an operation 
	 	 	 	 	 	 executed?

• Binding		 	 — on which operator?
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Key HLS Techniques

■ Operator sharing = reduce 
resource demand by multiplexing
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Key HLS Techniques

■ Operator sharing = reduce 
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers
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Key HLS Techniques

■ Operator sharing = reduce 
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution 
time by overlapping iterations
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Key HLS Techniques

■ Operator sharing = reduce 
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution 
time by overlapping iterations
• smaller initiation interval (II) 		 	
	 	 	 	  
shorter execution times, more 
overlap, but less sharing

⇔
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Key HLS Techniques

■ Operator sharing = reduce 
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution 
time by overlapping iterations
• smaller initiation interval (II) 		 	
	 	 	 	  
shorter execution times, more 
overlap, but less sharing

⇔

• enabled by modulo schedulers
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Motivation

■ HLS can construct many different microarchitectures 
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation
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Motivation

■ HLS can construct many different microarchitectures 
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation

■ Resulting design space needs to be explored 
manually, or by external tools…
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Motivation

■ HLS can construct many different microarchitectures 
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation

■ Resulting design space needs to be explored 
manually, or by external tools…
• why not directly as part of the HLS algorithms?
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Contributions

1. A framework for 
Resource-Aware Modulo Scheduling (RAMS)
• extends existing ILP-based formulations to 

combine allocation and modulo scheduling
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Contributions

1. A framework for 
Resource-Aware Modulo Scheduling (RAMS)
• extends existing ILP-based formulations to 

combine allocation and modulo scheduling

2. We investigate ways to efficiently 
compute different trade-off solutions
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Binding is 
guaranteed to exist 

for typical HLS 
operators

ILP = Integer Linear Program
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	Introduction to high-level synthesis


Resource-aware modulo scheduling 
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 Experimental evaluation
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1. „all precedence constraints are satisfied“ 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2. „no more than the allocated number of operators are used at 
any time“ 

{i ∈ Oq : tS
i mod IIS = m} ≤ aS

q ∀q ∈ Q ∧ m ∈ [0, IIS − 1]
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Feasibility

�11

= resource-aware extension

■ A solution  is feasible if and only ifS

1. „all precedence constraints are satisfied“ 
tS
i + lq ≤ tS

j + βij ⋅ IIS ∀i → j ∈ E ∧ i ∈ Oq

2. „no more than the allocated number of operators are used at 
any time“ 

{i ∈ Oq : tS
i mod IIS = m} ≤ aS

q ∀q ∈ Q ∧ m ∈ [0, IIS − 1]

3. „the resource demand is within the device capacity“ 

∑
q∈Q

aS
q ⋅ nq,r ≤ Nr ∀r ∈ R
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■ Example: Different trade-offs

Trade-offs & (In-)Feasibility
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■ Example: Different trade-offs

■ Isn’t there an II to makes any 
allocation feasible (& vice versa)?
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■ Example: Different trade-offs

■ Isn’t there an II to makes any 
allocation feasible (& vice versa)?

■ Not if an operation is subject to 
a deadline
• Inter-iteration dependences 
„a[i] = f(a[i-4])“

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

add

mul

mul

mul

mul

add

add

add

Input

Output

II=1 latency=4 
4 mul 3 add

II=4 latency=7 
1 mul 1 add

Inter-iteration 
dependence



J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

■ Isn’t there an II to makes any 
allocation feasible (& vice versa)?

■ Not if an operation is subject to 
a deadline
• Inter-iteration dependences 
„a[i] = f(a[i-4])“

• External latency constraints 
„output must be available after 
5 cycles“

Trade-offs & (In-)Feasibility
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Trivial Allocation
■ One operator provides II-many slots
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Trivial Allocation
■ One operator provides II-many slots

■ Pigeonhole principle: „Need enough 
slots to bind all operations“ 

aS
q ≥ ⌈

|Oq |

IIS ⌉ ∀q ∈ Q̂

■ We call an allocation  trivial iff 
 is equal to the RHS for all 

AS

aS
q q ∈ Q̂

■ Trivial allocation may be infeasible!
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■ Making an ILP-based modulo scheduler resource-aware 
= replace formerly constant limits, adapt objectives

Resource-Aware Extension

�14
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■ Making an ILP-based modulo scheduler resource-aware 
= replace formerly constant limits, adapt objectives

■ We extended:
• ED: formulation by Eichenberger & Davidson (1997) 
 

Resource-Aware Extension

�14

Relating the more efficient formulation investigated 
in this paper to the traditional formulation, the more 
efficient formulation reuses the same variables, assign- 
ment constraints, and the resource constraints as the 
traditional formulation; however, the more efficient for- 
mulation differs in its formulation of the dependence 
constraints, which will be presented in Section 4. 

In this work, we represent a loop by a dependence 
graph G = {V, Esched, Ereg}, where the set of vertices 
V represents operations and the sets of edges Esched and 
E,,, correspond, respectively, to the scheduling depen- 
dences and the register dependences among operations. 
A scheduling edge enforces a temporal relationship be+ 
tween dependent operations or between any operations 
that cannot be freely reordered, such as load and store 
operations to ambiguous memory locations. A schedul- 
ing edge from operation i to operation j, 20 iterations 
later, is associated with a latency li,j and a dependence 
distance wi,j = w. A register edge corresponds to a 
data flow dependence carried in a register. 

3.1 Assignment Constraints 

Consider a loop with N operations and an initiation 
interval of II. We represent a schedule for this loop by 
a II x N binary matrix, called A, where o,i = 1 if and 
only if operation i is scheduled in row T of the MRT and 
0 otherwise. 

The first condition that a valid modulo schedule 
must satisfy is that each operation is scheduled exactly 
once in the MRT: 

II-1 c G,i = 1 vi E [OJV) (1) 
r=ll 

Equation (1) defines all the assignment constraints, i.e. 
the constraints that assign each operation to exactly 
one row of the MRT. 

3.2 Dependence Constraints 

While the A matrix defines the row in which each op- 
eration is scheduled, we must also select the stage in 
which each operation is placed. We represent the stage 
numbers by k, an integer vector of dimension N, where 
Ici is the stage number in which operation i is sched- 
uled. Matrix A and vector k uniquely define the cycle 
in which each operation is scheduled. 

We now introduce two derived parameters that char- 
acterize the MRT row and the time at which each op- 
eration is scheduled, which are defined as follows: 

II-1 

TOWi = 
c r * G,i timei = ki * II+ TOWi (2) 
r=l 

Note that since o,i = 1 precisely in the row in which 
operation i is scheduled, and is 0 otherwise, TOWi is 
correctly computed and satisfies the following property: 
ruwi E [O,ZI). 

A modulo schedule must enforce all the scheduling 
dependences of its dependence graph. A dependence be- 
tween operation i and operation j, wi,j iterations later, 
is fulfilled if operation j is scheduled at least li,j cycles 
after operation i: 

(timej + W&j * II) - timei 1 Ei,j (3) 

Substituting Equation (2) into Inequality (3) results in 
the following inequality: 

II-1 

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j - 

r=l 

Wi,j * II v(i,i) E Eached (4) 

Inequality (4) defines all the dependence constraints 
of a modulo schedule for a given initiation interval II 
with respect to the dependence distances Wi,j and de- 
pendence latencies Ei,j of a dependence graph G. 

3.3 Resource Constraints 

The third condition that a valid modulo schedule must 
satisfy is that no cycle of the schedule consumes more 
resources than are available in the machine. In this 
paper, we use the constraints derived in [4]: 

N-l 

cc a(r-e)modlI,i 5 Mq 
i=O ~EResi,, 

Vq E Q, T E [O,II) (5) 

where Q is the set of resource types, Mq is the number 
of resources of type q, and c E Resi,, indicates that op- 
eration i uses a resource of type q exactly c cycles after 
being issued. Note that for machines where a mapping 
from each operation’s resource usages to resource in- 
stances cannot be trivially found, the formulation pro- 
posed by Altman et al [5] should be used. A derivation 
of Inequality (5) as well as a precise definition of the 
machines for which Inequality (5) is applicable is found 
in [lo]. 
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Relating the more efficient formulation investigated 
in this paper to the traditional formulation, the more 
efficient formulation reuses the same variables, assign- 
ment constraints, and the resource constraints as the 
traditional formulation; however, the more efficient for- 
mulation differs in its formulation of the dependence 
constraints, which will be presented in Section 4. 
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E,,, correspond, respectively, to the scheduling depen- 
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0 otherwise. 

The first condition that a valid modulo schedule 
must satisfy is that each operation is scheduled exactly 
once in the MRT: 
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one row of the MRT. 
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While the A matrix defines the row in which each op- 
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which each operation is placed. We represent the stage 
numbers by k, an integer vector of dimension N, where 
Ici is the stage number in which operation i is sched- 
uled. Matrix A and vector k uniquely define the cycle 
in which each operation is scheduled. 

We now introduce two derived parameters that char- 
acterize the MRT row and the time at which each op- 
eration is scheduled, which are defined as follows: 
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c r * G,i timei = ki * II+ TOWi (2) 
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Note that since o,i = 1 precisely in the row in which 
operation i is scheduled, and is 0 otherwise, TOWi is 
correctly computed and satisfies the following property: 
ruwi E [O,ZI). 

A modulo schedule must enforce all the scheduling 
dependences of its dependence graph. A dependence be- 
tween operation i and operation j, wi,j iterations later, 
is fulfilled if operation j is scheduled at least li,j cycles 
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The third condition that a valid modulo schedule must 
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(i.e. Tj is followed by Ti ). Let ŷij be a binary decision variable such that ŷij = 1 iff
ŝi = ŝj (i.e. tasks Ti and Tj are processed at the same time on different processors).

In the rest of this section we consider pi = 1 ∀i ∈ {1, . . . , n1}. The period w is
assumed to be a constant, since the multiplication of two decision variables cannot
be formulated as a linear inequality. Therefore, the optimal w is found by iterative
calls of the ILP problem (explained in Sect. 3.2). The ILP model using the variables
defined above is:

min
n1∑

i=1

q̂i (4)

subject to:

ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w · hij , ∀(i, j);∃eij ∈ E (5)

ŝi − ŝj + w · x̂ij + (1 − w) · ŷij ≥ 1, ∀i, j ∈ {1, . . . , n1} ; i < j (6)

ŝi − ŝj + w · x̂ij − ŷij ≤ w − 1, ∀i, j ∈ {1, . . . , n1} ; i < j (7)

−x̂ij + ŷij ≤ 0, ∀i, j ∈ {1, . . . , n1} ; i < j (8)
n1∑

j=i+1

ŷij ≤ m1 − 1, ∀i ∈ {1, . . . , n1 − m1} (9)

where:

ŝi ∈ {0, . . . ,w − 1} ; q̂i ∈ Z+
0 ; x̂ij , ŷij ∈ {0,1}

3.1 Constraints of the ILP model

Constraint (5) is a direct application of the precedence constraint (1). Constraints (6),
(7), (8) and (9) limit the number of processors used at a given time. The binary de-
cision variables x̂ij and ŷij define the mutual relationship of tasks Ti and Tj (i ≠ j )
within the execution period. Their relation is expressed with constraints (6) and (7).
There are three feasible combinations:

1. When x̂ij = 0 and ŷij = 0, constraint (7) is effectively eliminated. Constraint (6)
is reduced to ŝj + 1 ≤ ŝi , i.e. Tj is followed by Ti within the execution period.

2. When x̂ij = 1 and ŷij = 0, constraint (6) is effectively eliminated. Constraint (7)
is reduced to ŝi + 1 ≤ ŝj , i.e. Ti is followed by Tj within the execution period.

3. When x̂ij = 1 and ŷij = 1, constraints (6) and (7) are equivalent to ŝi = ŝj , i.e. Ti

and Tj are scheduled at the same time within the execution period.
4. The combination x̂ij = 0 and ŷij = 1 is not feasible due to constraint (8).

The number of available processors is limited by variable ŷij . When ŷij = 1, there
is a resource conflict between tasks Ti , Tj and they cannot be scheduled on the same
processor. Since we consider the unit processing time of the tasks, this relation ex-
pressed with ŷij is symmetric (ŷij = ŷj i ) and transitive (if ŷij = 1 and ŷjk = 1 then
ŷik = 1). The relationship can be expressed by graph Gy where the nodes represent
the tasks in T . There is an edge between Ti and Tj iff ŷij = 1. Due to the symme-
try and transitivity, graph Gy consists of disjoint complete subgraphs H

y
u , such that

Relating the more efficient formulation investigated 
in this paper to the traditional formulation, the more 
efficient formulation reuses the same variables, assign- 
ment constraints, and the resource constraints as the 
traditional formulation; however, the more efficient for- 
mulation differs in its formulation of the dependence 
constraints, which will be presented in Section 4. 

In this work, we represent a loop by a dependence 
graph G = {V, Esched, Ereg}, where the set of vertices 
V represents operations and the sets of edges Esched and 
E,,, correspond, respectively, to the scheduling depen- 
dences and the register dependences among operations. 
A scheduling edge enforces a temporal relationship be+ 
tween dependent operations or between any operations 
that cannot be freely reordered, such as load and store 
operations to ambiguous memory locations. A schedul- 
ing edge from operation i to operation j, 20 iterations 
later, is associated with a latency li,j and a dependence 
distance wi,j = w. A register edge corresponds to a 
data flow dependence carried in a register. 

3.1 Assignment Constraints 

Consider a loop with N operations and an initiation 
interval of II. We represent a schedule for this loop by 
a II x N binary matrix, called A, where o,i = 1 if and 
only if operation i is scheduled in row T of the MRT and 
0 otherwise. 

The first condition that a valid modulo schedule 
must satisfy is that each operation is scheduled exactly 
once in the MRT: 

II-1 c G,i = 1 vi E [OJV) (1) 
r=ll 

Equation (1) defines all the assignment constraints, i.e. 
the constraints that assign each operation to exactly 
one row of the MRT. 

3.2 Dependence Constraints 

While the A matrix defines the row in which each op- 
eration is scheduled, we must also select the stage in 
which each operation is placed. We represent the stage 
numbers by k, an integer vector of dimension N, where 
Ici is the stage number in which operation i is sched- 
uled. Matrix A and vector k uniquely define the cycle 
in which each operation is scheduled. 

We now introduce two derived parameters that char- 
acterize the MRT row and the time at which each op- 
eration is scheduled, which are defined as follows: 

II-1 

TOWi = 
c r * G,i timei = ki * II+ TOWi (2) 
r=l 

Note that since o,i = 1 precisely in the row in which 
operation i is scheduled, and is 0 otherwise, TOWi is 
correctly computed and satisfies the following property: 
ruwi E [O,ZI). 

A modulo schedule must enforce all the scheduling 
dependences of its dependence graph. A dependence be- 
tween operation i and operation j, wi,j iterations later, 
is fulfilled if operation j is scheduled at least li,j cycles 
after operation i: 

(timej + W&j * II) - timei 1 Ei,j (3) 

Substituting Equation (2) into Inequality (3) results in 
the following inequality: 

II-1 

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j - 

r=l 

Wi,j * II v(i,i) E Eached (4) 

Inequality (4) defines all the dependence constraints 
of a modulo schedule for a given initiation interval II 
with respect to the dependence distances Wi,j and de- 
pendence latencies Ei,j of a dependence graph G. 

3.3 Resource Constraints 

The third condition that a valid modulo schedule must 
satisfy is that no cycle of the schedule consumes more 
resources than are available in the machine. In this 
paper, we use the constraints derived in [4]: 

N-l 

cc a(r-e)modlI,i 5 Mq 
i=O ~EResi,, 

Vq E Q, T E [O,II) (5) 

where Q is the set of resource types, Mq is the number 
of resources of type q, and c E Resi,, indicates that op- 
eration i uses a resource of type q exactly c cycles after 
being issued. Note that for machines where a mapping 
from each operation’s resource usages to resource in- 
stances cannot be trivially found, the formulation pro- 
posed by Altman et al [5] should be used. A derivation 
of Inequality (5) as well as a precise definition of the 
machines for which Inequality (5) is applicable is found 
in [lo]. 
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0 otherwise. 
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the constraints that assign each operation to exactly 
one row of the MRT. 

3.2 Dependence Constraints 

While the A matrix defines the row in which each op- 
eration is scheduled, we must also select the stage in 
which each operation is placed. We represent the stage 
numbers by k, an integer vector of dimension N, where 
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Note that since o,i = 1 precisely in the row in which 
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correctly computed and satisfies the following property: 
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A modulo schedule must enforce all the scheduling 
dependences of its dependence graph. A dependence be- 
tween operation i and operation j, wi,j iterations later, 
is fulfilled if operation j is scheduled at least li,j cycles 
after operation i: 

(timej + W&j * II) - timei 1 Ei,j (3) 

Substituting Equation (2) into Inequality (3) results in 
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Inequality (4) defines all the dependence constraints 
of a modulo schedule for a given initiation interval II 
with respect to the dependence distances Wi,j and de- 
pendence latencies Ei,j of a dependence graph G. 

3.3 Resource Constraints 

The third condition that a valid modulo schedule must 
satisfy is that no cycle of the schedule consumes more 
resources than are available in the machine. In this 
paper, we use the constraints derived in [4]: 
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where Q is the set of resource types, Mq is the number 
of resources of type q, and c E Resi,, indicates that op- 
eration i uses a resource of type q exactly c cycles after 
being issued. Note that for machines where a mapping 
from each operation’s resource usages to resource in- 
stances cannot be trivially found, the formulation pro- 
posed by Altman et al [5] should be used. A derivation 
of Inequality (5) as well as a precise definition of the 
machines for which Inequality (5) is applicable is found 
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r j � ri � 1 � (�i j � 1) · ak � 0 8k 2 R : 8i, j 2 Lk , i , j (M4)
r j � ri � �i j · ak  0 8k 2 R : 8i, j 2 Lk , i , j (M5)

µi j + µ ji  1 8k 2 R : 8i, j 2 Lk , i , j (M6)
mj �mi � 1 � (µi j � 1) · � � 0 8k 2 R : 8i, j 2 Lk , i , j (M7)
mj �mi � µi j · �  0 8k 2 R : 8i, j 2 Lk , i , j (M8)
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ti = �i · � +mi 8i 2 L (M10)
ri  ak � 1 8k 2 R : 8i 2 Lk (M11)
mi  � � 1 8i 2 L (M12)

ti + Di  T 8i 2 O : @j 2 O : (i!j) 2 E ^ �i j = 0 (M13)

ti 2 N0 8i 2 O (M14)
ri ,�i ,mi 2 N0 8i 2 L (M15)
�i j , µi j 2 {0, 1} 8k 2 R : 8i, j 2 Lk , i , j (M16)

Fig. 5. Moovac-S: Objective function and constraints for a candidate interval �

In order to integrate the II minimisation into the Moovac-S formulation, we replace the formerly
constant candidate II with a new integer decision variable � that is bounded to the II search space
as �?  �  �

>. However, integrating the II minimisation naively has a major drawback: It results
in quadratic (i.e. containing a multiplication of decision variables) constraints (M7), (M8) and (M10).
We linearise constraints (M7), (M8) by replacing the occurrence of � with the upper bound of

the II search space, �>:

mj �mi � 1 � (µi j � 1) · �
> � 0 8k 2 R : 8i, j 2 Lk , i , j (M17)

mj �mi � µi j · �
>  0 8k 2 R : 8i, j 2 Lk , i , j (M18)

This has no e�ect on the constraints’ functionality, as the interval value is used as a big-M constant
here.
The remaining quadratic constraints (M10) are broken down into individual constraints for all

possible values of �i . To this end, we need to introduce an upper bound Y for the �i variables. Recall
that the �i variables represent the value

⌅ ti
�
⇧
in the calculation of operation i’s congruence class.
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(i.e. Tj is followed by Ti ). Let ŷij be a binary decision variable such that ŷij = 1 iff
ŝi = ŝj (i.e. tasks Ti and Tj are processed at the same time on different processors).

In the rest of this section we consider pi = 1 ∀i ∈ {1, . . . , n1}. The period w is
assumed to be a constant, since the multiplication of two decision variables cannot
be formulated as a linear inequality. Therefore, the optimal w is found by iterative
calls of the ILP problem (explained in Sect. 3.2). The ILP model using the variables
defined above is:

min
n1∑

i=1

q̂i (4)

subject to:

ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w · hij , ∀(i, j);∃eij ∈ E (5)

ŝi − ŝj + w · x̂ij + (1 − w) · ŷij ≥ 1, ∀i, j ∈ {1, . . . , n1} ; i < j (6)

ŝi − ŝj + w · x̂ij − ŷij ≤ w − 1, ∀i, j ∈ {1, . . . , n1} ; i < j (7)
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n1∑
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0 ; x̂ij , ŷij ∈ {0,1}

3.1 Constraints of the ILP model

Constraint (5) is a direct application of the precedence constraint (1). Constraints (6),
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ŷik = 1). The relationship can be expressed by graph Gy where the nodes represent
the tasks in T . There is an edge between Ti and Tj iff ŷij = 1. Due to the symme-
try and transitivity, graph Gy consists of disjoint complete subgraphs H
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u , such that

Relating the more efficient formulation investigated 
in this paper to the traditional formulation, the more 
efficient formulation reuses the same variables, assign- 
ment constraints, and the resource constraints as the 
traditional formulation; however, the more efficient for- 
mulation differs in its formulation of the dependence 
constraints, which will be presented in Section 4. 

In this work, we represent a loop by a dependence 
graph G = {V, Esched, Ereg}, where the set of vertices 
V represents operations and the sets of edges Esched and 
E,,, correspond, respectively, to the scheduling depen- 
dences and the register dependences among operations. 
A scheduling edge enforces a temporal relationship be+ 
tween dependent operations or between any operations 
that cannot be freely reordered, such as load and store 
operations to ambiguous memory locations. A schedul- 
ing edge from operation i to operation j, 20 iterations 
later, is associated with a latency li,j and a dependence 
distance wi,j = w. A register edge corresponds to a 
data flow dependence carried in a register. 

3.1 Assignment Constraints 

Consider a loop with N operations and an initiation 
interval of II. We represent a schedule for this loop by 
a II x N binary matrix, called A, where o,i = 1 if and 
only if operation i is scheduled in row T of the MRT and 
0 otherwise. 

The first condition that a valid modulo schedule 
must satisfy is that each operation is scheduled exactly 
once in the MRT: 

II-1 c G,i = 1 vi E [OJV) (1) 
r=ll 

Equation (1) defines all the assignment constraints, i.e. 
the constraints that assign each operation to exactly 
one row of the MRT. 

3.2 Dependence Constraints 

While the A matrix defines the row in which each op- 
eration is scheduled, we must also select the stage in 
which each operation is placed. We represent the stage 
numbers by k, an integer vector of dimension N, where 
Ici is the stage number in which operation i is sched- 
uled. Matrix A and vector k uniquely define the cycle 
in which each operation is scheduled. 

We now introduce two derived parameters that char- 
acterize the MRT row and the time at which each op- 
eration is scheduled, which are defined as follows: 

II-1 

TOWi = 
c r * G,i timei = ki * II+ TOWi (2) 
r=l 

Note that since o,i = 1 precisely in the row in which 
operation i is scheduled, and is 0 otherwise, TOWi is 
correctly computed and satisfies the following property: 
ruwi E [O,ZI). 

A modulo schedule must enforce all the scheduling 
dependences of its dependence graph. A dependence be- 
tween operation i and operation j, wi,j iterations later, 
is fulfilled if operation j is scheduled at least li,j cycles 
after operation i: 

(timej + W&j * II) - timei 1 Ei,j (3) 

Substituting Equation (2) into Inequality (3) results in 
the following inequality: 

II-1 

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j - 

r=l 

Wi,j * II v(i,i) E Eached (4) 

Inequality (4) defines all the dependence constraints 
of a modulo schedule for a given initiation interval II 
with respect to the dependence distances Wi,j and de- 
pendence latencies Ei,j of a dependence graph G. 

3.3 Resource Constraints 

The third condition that a valid modulo schedule must 
satisfy is that no cycle of the schedule consumes more 
resources than are available in the machine. In this 
paper, we use the constraints derived in [4]: 

N-l 

cc a(r-e)modlI,i 5 Mq 
i=O ~EResi,, 

Vq E Q, T E [O,II) (5) 

where Q is the set of resource types, Mq is the number 
of resources of type q, and c E Resi,, indicates that op- 
eration i uses a resource of type q exactly c cycles after 
being issued. Note that for machines where a mapping 
from each operation’s resource usages to resource in- 
stances cannot be trivially found, the formulation pro- 
posed by Altman et al [5] should be used. A derivation 
of Inequality (5) as well as a precise definition of the 
machines for which Inequality (5) is applicable is found 
in [lo]. 
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MORAMS

■ Multi-Objective Resource-Aware Modulo Scheduling

■ Given a RAMS problem, the goal is to compute all 
Pareto-optimal solutions
• i.e. a solution that is not dominated by any other 

solution
• Example: 

II=3, RU=30% … 
… does not dominates II=4, RU=40% 
… does not dominates II=2, RU=40%
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ε-Approach
■ standard method from multi-

criteria optimisation

• basically: optimise one 
objective, and successively 
add constraints for the other

• we minimise both objectives 
to speed up convergence

• requires RAMS formulation 
with variable II 
Here: extended „Moovac-I“ 
formulation (Oppermann et al., 2019)

�17

minimise II-objective

get value �  of RU-objectivey

minimise RU-objective

add constraint �RU ≤ y − ε

add constraint �II ≥ x + 1

get value �  of II-objectivex

temporarily fix II to �x

= MORAMS-specific
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Iterative Approach
■ Most existing modulo schedulers 

already try candidate IIs until the 
first feasible solution is found

■ Instead, we explore by trying all 
candidate IIs ...

■ ... and filter out dominated 
solutions afterwards

■ We propose rules R1, R2 to 
compute fewer dominated 
solutions 

�18

forall candidate IIs in 
increasing order

minimise RU-objective

R1: SKIP if solution will 
be dominated by 

previously computed 
solution

R2: STOP if minimum 
allocation is reached

filter dominated solutions�  next slide→
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Domain-Specific Rules

■ R1: Skip candidate interval  ifIIX

• we have a solution  with , andP IIP < IIX

• its allocation  is trivial for AP IIX

■ R2: Stop exploration if
• solution with the minimum allocation 
	 	 	 	 	 	 	  
is found

aq = 1 q ∈ Q̂

�19
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C-based HLS benchmark suites
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10 J. Oppermann et al.

Table 1. Complexity of problem instances

min. median mean max.

# operations 14 49 104 1374
# shared operations 0 4 16 416
# edges 17 81 237 4441
# backedges 0 3 23 1155

constraint to the formulation, since IIX is a constant. For the "-approach, (9)
would be a quadratic constraint. To linearise it, we introduce binary variables
IIX⇡ with IIX⇡ = 1 , IIX = ⇡ for ⇡ 2 [II?, II>], adding the following linear
constraints to the formulation:

a
X
q �

⇠
|Oq|
⇡

⇡
· IIX⇡ 8⇡ 2 [II?, II>] (10)

5 Evaluation

We evaluated the presented MORAMS approaches on a set of 204 realistic test
instances. These modulo scheduling problems were extracted from two different
HLS environments: 16 instances originate from Simulink models compiled by
the Origami HLS project [2], whereas 188 instances represent loops from the
well-known C-based HLS benchmark suites CHStone [10] and MachSuite [16].
The latter were compiled by the Nymble C-to-hardware compiler as described
in [13], using an operator library from the Bambu HLS framework [14]. Table 1
summarises the instances’ complexity. Our target device was the Xilinx Zynq
XC7Z020, a popular low-cost FPGA found on several evaluation boards. As
resources, we model its number of lookup tables (53200), DSP slices (220), and,
specifically for the C-based benchmark instances, assume the availability of up
to 16 memory ports that can be used to either read from or write to an address
space shared with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi 8.1 as ILP
solver on 2⇥12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz with 64
GiB RAM. The schedulers were allowed to use up to 8 threads, 6 hours wall-
clock time and 16 GiB of memory per instance. We report each instance’s best

result from two runs, considering first the number of solutions, and then the
accumulated runtime of the exploration.

In modulo schedulers, the II can be much lower than its latency. However,
the latency should not be unbounded and there exist latency critical applications
(like in closed control loops) where a low latency is important in addition to a
low II. Hence, we consider the latency as a separate user constraint. As this
can significantly influence the results, we scheduled our test instances subject to
three different latency constraints that cover the whole spectrum of cases: The
strongest constraint is to limit the schedule length U to the length of the critical
path UCP. Using II>, i.e. the length of a non-modulo schedule with heuristic
resource constraints, relaxes the operations’ deadlines slightly. Lastly, we adapt
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Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on 

feasibility of trivial solutions

■ Experimented with different external latency constraints: 
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

no dominated 
solutions 

computed
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Scheduling Results
■ Question: which approach computes the most 

Pareto-optimal solutions within 6 hours per instance?
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Proving optimality becomes harder
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Conclusion

■ Presented framework to make ILP-based modulo 
schedulers resource aware

■ ED-formulation + iterative approach is fastest, and 
computes the most Pareto-optimal solutions

■ Outlook: probably too many solutions per instance 
— how to determine relevant ones?
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Thank you!
Check out the HatScheT scheduler library  

http://uni-kassel.de/go/hatschet


