
Design-Space Exploration with
Multi-Objective Resource-Aware

Modulo Scheduling
Julian Oppermann1, Patrick Sittel2, Martin Kumm3, 

Melanie Reuter-Oppermann4, Andreas Koch1, Oliver Sinnen5

1: 3: 5:

2: 4:

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Agenda

Introduction to high-level synthesis

	Resource-aware modulo scheduling

	Exploration of trade-off solutions

 Experimental evaluation

�2

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators

�3

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators

• comprised of resources
• look-up tables (LUT)
• DSP blocks
• …
• programmable interconnect

�3

LUT

LUT

LUT

LUT

LUT

LUT

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT

1 01
10 1
01 1
0 00
in2 outin1

in1

in2
out

out = in1 xor in2

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

FPGAs
■ Field-Programmable Gate Arrays

• semiconductor chips, ideal for energy-
efficient, application-specific accelerators

• comprised of resources
• look-up tables (LUT)
• DSP blocks
• …
• programmable interconnect

• „programming“ FPGA 
= configuring and connecting resources

�3

LUT

LUT

LUT

LUT

LUT

LUT

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT LUT LUT DSP

LUT

1 01
10 1
01 1
0 00
in2 outin1

in1

in2
out

out = in1 xor in2

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Computing with FPGAs

■ Spatial computation is common

�4

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Computing with FPGAs

■ Spatial computation is common

■ Instantiate operators from a library
• requires certain amount of FPGA resources

■ Connect operators to form a  
datapath

�4

mul

add add

div

Input

Input

Output

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Computing with FPGAs

■ Spatial computation is common

■ Instantiate operators from a library
• requires certain amount of FPGA resources

■ Connect operators to form a  
datapath

■ Manual design in hardware  
description language is tedious 

�4

mul

add add

div

Input

Input

Output

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

�5

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

�5

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps

�5

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

add

div

mul mul

add add

sub

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?

�5

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Tim
e steps

add

div

mul mul

add add

sub

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?
• Scheduling	 — when is an operation 
	 	 	 	 	 	 executed?

�5

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Tim
e steps

Tim
e steps

add

div

mul mul

add add

sub

add

div

mul mul

add add

sub

High-Level Synthesis
■ HLS = Automatic design from 

behavioural description (think: C code)

■ Each loop is transformed to data-flow 
graph of operations
• operations need a hardware operator 

to execute

■ Algorithmic steps
• Allocation	 	 — how many operators?
• Scheduling	 — when is an operation 
	 	 	 	 	 	 executed?

• Binding		 	 — on which operator?

�5

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Key HLS Techniques

■ Operator sharing = reduce
resource demand by multiplexing

�6

div1 2

MUX

DEMUX

MUX

…

A B C D

X Y

A BC D

X Y

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Key HLS Techniques

■ Operator sharing = reduce
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

�6

div1 2

MUX

DEMUX

MUX

…

A B C D

X Y

A BC D

X Y

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Key HLS Techniques

■ Operator sharing = reduce
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution
time by overlapping iterations

�6

div1 2

MUX

DEMUX

MUX

…

A B C D

X Y

A BC D

X Y

Iter. 1
Iter. 2

Iter. 3

initiation interval

…

tim
e

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Key HLS Techniques

■ Operator sharing = reduce
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution
time by overlapping iterations
• smaller initiation interval (II) 		 	
	 	 	 	  
shorter execution times, more
overlap, but less sharing

⇔

�6

div1 2

MUX

DEMUX

MUX

…

A B C D

X Y

A BC D

X Y

Iter. 1
Iter. 2

Iter. 3

initiation interval

…

tim
e

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Key HLS Techniques

■ Operator sharing = reduce
resource demand by multiplexing
• only if: cost of operator 
	 	 	 ≫ cost multiplexers

■ Loop pipelining = reduce execution
time by overlapping iterations
• smaller initiation interval (II) 		 	
	 	 	 	  
shorter execution times, more
overlap, but less sharing

⇔

• enabled by modulo schedulers

�6

div1 2

MUX

DEMUX

MUX

…

A B C D

X Y

A BC D

X Y

Iter. 1
Iter. 2

Iter. 3

initiation interval

…

tim
e

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Motivation

■ HLS can construct many different microarchitectures
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation

�7

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Motivation

■ HLS can construct many different microarchitectures
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation

■ Resulting design space needs to be explored
manually, or by external tools…

�7

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Motivation

■ HLS can construct many different microarchitectures
from the same input specification
• Conflicting objectives

min initiation interval 
min resource utilisation

■ Resulting design space needs to be explored
manually, or by external tools…
• why not directly as part of the HLS algorithms?

�7

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Contributions

1. A framework for 
Resource-Aware Modulo Scheduling (RAMS)
• extends existing ILP-based formulations to

combine allocation and modulo scheduling

�8

ILP = Integer Linear Program

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Contributions

1. A framework for 
Resource-Aware Modulo Scheduling (RAMS)
• extends existing ILP-based formulations to

combine allocation and modulo scheduling

�8

Binding is
guaranteed to exist

for typical HLS
operators

ILP = Integer Linear Program

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Contributions

1. A framework for 
Resource-Aware Modulo Scheduling (RAMS)
• extends existing ILP-based formulations to

combine allocation and modulo scheduling

2. We investigate ways to efficiently 
compute different trade-off solutions

�8

Binding is
guaranteed to exist

for typical HLS
operators

ILP = Integer Linear Program

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Agenda

	Introduction to high-level synthesis

Resource-aware modulo scheduling

	Exploration of trade-off solutions

 Experimental evaluation

�9

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

…too „cheap“
to share

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Output: A solution � , comprised of:

� 	 initiation interval

� 	 start times for each operation („schedule“)

� 	 number of instances for each operator type („allocation“, �)

S
IIS

tS
i
aS

q AS

each � has 
	 a latency � , and 
	 resource demands �

q ∈ Q
lq

nq,r

Resource types

�R

Problem Signature

�10

Input: Dependence graph

�G = (O, E)

Operator types

�Q

� „shared“ Q̂

� „unlimited“ Q∖Q̂

subsets � group 
	 operations using 
	 operator type �

each �

	 has a distance �

Oq

q
i → j ∈ E

βij

LUT DSP

MEM

each � provides 
	 � elements

r ∈ R
Nr

= resource-aware extension

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Feasibility

�11

= resource-aware extension

■ A solution is feasible if and only ifS

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Feasibility

�11

= resource-aware extension

■ A solution is feasible if and only ifS

1. „all precedence constraints are satisfied“ 
tS
i + lq ≤ tS

j + βij ⋅ IIS ∀i → j ∈ E ∧ i ∈ Oq

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Feasibility

�11

= resource-aware extension

■ A solution is feasible if and only ifS

1. „all precedence constraints are satisfied“ 
tS
i + lq ≤ tS

j + βij ⋅ IIS ∀i → j ∈ E ∧ i ∈ Oq

2. „no more than the allocated number of operators are used at
any time“ 

{i ∈ Oq : tS
i mod IIS = m} ≤ aS

q ∀q ∈ Q ∧ m ∈ [0, IIS − 1]

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Feasibility

�11

= resource-aware extension

■ A solution is feasible if and only ifS

1. „all precedence constraints are satisfied“ 
tS
i + lq ≤ tS

j + βij ⋅ IIS ∀i → j ∈ E ∧ i ∈ Oq

2. „no more than the allocated number of operators are used at
any time“ 

{i ∈ Oq : tS
i mod IIS = m} ≤ aS

q ∀q ∈ Q ∧ m ∈ [0, IIS − 1]

3. „the resource demand is within the device capacity“ 

∑
q∈Q

aS
q ⋅ nq,r ≤ Nr ∀r ∈ R

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

Trade-offs & (In-)Feasibility

�12

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

II=1 latency=4
4 mul 3 add

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

add

mul

mul

mul

mul

add

add

add

Input

Output

II=1 latency=4
4 mul 3 add

II=4 latency=7
1 mul 1 add

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

■ Isn’t there an II to makes any
allocation feasible (& vice versa)?

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

add

mul

mul

mul

mul

add

add

add

Input

Output

II=1 latency=4
4 mul 3 add

II=4 latency=7
1 mul 1 add

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

■ Isn’t there an II to makes any
allocation feasible (& vice versa)?

■ Not if an operation is subject to
a deadline
• Inter-iteration dependences 
„a[i] = f(a[i-4])“

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

add

mul

mul

mul

mul

add

add

add

Input

Output

II=1 latency=4
4 mul 3 add

II=4 latency=7
1 mul 1 add

Inter-iteration
dependence

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Example: Different trade-offs

■ Isn’t there an II to makes any
allocation feasible (& vice versa)?

■ Not if an operation is subject to
a deadline
• Inter-iteration dependences 
„a[i] = f(a[i-4])“

• External latency constraints 
„output must be available after
5 cycles“

Trade-offs & (In-)Feasibility

�12

add

mul mul mul mul

add add

add

Input

Output

add

mul

mul

mul

mul

add

add

add

Input

Output

II=1 latency=4
4 mul 3 add

II=4 latency=7
1 mul 1 add

Inter-iteration
dependence

External latency
constraint

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Trivial Allocation
■ One operator provides II-many slots

�13

^^

operations’
start time
modulo II

Instance of
shared operator

type
Operations

0
1
2

II - 2
II - 1

…

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Trivial Allocation
■ One operator provides II-many slots

■ Pigeonhole principle: „Need enough
slots to bind all operations“ 

aS
q ≥ ⌈

|Oq |

IIS ⌉ ∀q ∈ Q̂

�13

^^

operations’
start time
modulo II

Instance of
shared operator

type
Operations

0
1
2

II - 2
II - 1

…

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Trivial Allocation
■ One operator provides II-many slots

■ Pigeonhole principle: „Need enough
slots to bind all operations“ 

aS
q ≥ ⌈

|Oq |

IIS ⌉ ∀q ∈ Q̂

■ We call an allocation trivial iff 
 is equal to the RHS for all

AS

aS
q q ∈ Q̂

�13

^^

operations’
start time
modulo II

Instance of
shared operator

type
Operations

0
1
2

II - 2
II - 1

…

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Trivial Allocation
■ One operator provides II-many slots

■ Pigeonhole principle: „Need enough
slots to bind all operations“ 

aS
q ≥ ⌈

|Oq |

IIS ⌉ ∀q ∈ Q̂

■ We call an allocation trivial iff 
 is equal to the RHS for all

AS

aS
q q ∈ Q̂

■ Trivial allocation may be infeasible!

�13

^^

operations’
start time
modulo II

Instance of
shared operator

type
Operations

0
1
2

II - 2
II - 1

…

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

Resource-Aware Extension

�14

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

■ We extended:
• ED: formulation by Eichenberger & Davidson (1997) 
 

Resource-Aware Extension

�14

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

■ We extended:
• ED: formulation by Eichenberger & Davidson (1997) 
 

• SH: formulation by Šůcha & Hanzálek (2009) 
 

Resource-Aware Extension

�14

76 P. Šůcha, Z. Hanzálek

(i.e. Tj is followed by Ti). Let ŷij be a binary decision variable such that ŷij = 1 iff
ŝi = ŝj (i.e. tasks Ti and Tj are processed at the same time on different processors).

In the rest of this section we consider pi = 1 ∀i ∈ {1, . . . , n1}. The period w is
assumed to be a constant, since the multiplication of two decision variables cannot
be formulated as a linear inequality. Therefore, the optimal w is found by iterative
calls of the ILP problem (explained in Sect. 3.2). The ILP model using the variables
defined above is:

min
n1∑

i=1

q̂i (4)

subject to:

ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w · hij , ∀(i, j);∃eij ∈ E (5)

ŝi − ŝj + w · x̂ij + (1 − w) · ŷij ≥ 1, ∀i, j ∈ {1, . . . , n1} ; i < j (6)

ŝi − ŝj + w · x̂ij − ŷij ≤ w − 1, ∀i, j ∈ {1, . . . , n1} ; i < j (7)

−x̂ij + ŷij ≤ 0, ∀i, j ∈ {1, . . . , n1} ; i < j (8)
n1∑

j=i+1

ŷij ≤ m1 − 1, ∀i ∈ {1, . . . , n1 − m1} (9)

where:

ŝi ∈ {0, . . . ,w − 1} ; q̂i ∈ Z+
0 ; x̂ij , ŷij ∈ {0,1}

3.1 Constraints of the ILP model

Constraint (5) is a direct application of the precedence constraint (1). Constraints (6),
(7), (8) and (9) limit the number of processors used at a given time. The binary de-
cision variables x̂ij and ŷij define the mutual relationship of tasks Ti and Tj (i ≠ j)
within the execution period. Their relation is expressed with constraints (6) and (7).
There are three feasible combinations:

1. When x̂ij = 0 and ŷij = 0, constraint (7) is effectively eliminated. Constraint (6)
is reduced to ŝj + 1 ≤ ŝi , i.e. Tj is followed by Ti within the execution period.

2. When x̂ij = 1 and ŷij = 0, constraint (6) is effectively eliminated. Constraint (7)
is reduced to ŝi + 1 ≤ ŝj , i.e. Ti is followed by Tj within the execution period.

3. When x̂ij = 1 and ŷij = 1, constraints (6) and (7) are equivalent to ŝi = ŝj , i.e. Ti

and Tj are scheduled at the same time within the execution period.
4. The combination x̂ij = 0 and ŷij = 1 is not feasible due to constraint (8).

The number of available processors is limited by variable ŷij . When ŷij = 1, there
is a resource conflict between tasks Ti , Tj and they cannot be scheduled on the same
processor. Since we consider the unit processing time of the tasks, this relation ex-
pressed with ŷij is symmetric (ŷij = ŷj i) and transitive (if ŷij = 1 and ŷjk = 1 then
ŷik = 1). The relationship can be expressed by graph Gy where the nodes represent
the tasks in T . There is an edge between Ti and Tj iff ŷij = 1. Due to the symme-
try and transitivity, graph Gy consists of disjoint complete subgraphs H

y
u , such that

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

■ Making an ILP-based modulo scheduler resource-aware
= replace formerly constant limits, adapt objectives

■ We extended:
• ED: formulation by Eichenberger & Davidson (1997) 
 

• SH: formulation by Šůcha & Hanzálek (2009) 
 

• MV: „Moovac“ formulation by Oppermann et al. (2019)

Resource-Aware Extension

�14

8:12 J. Oppermann et al.

min T (M1)
s.t. ti + �i j  tj + �i j · � 8(i!j) 2 E (M2)

�i j + �ji  1 8k 2 R : 8i, j 2 Lk , i , j (M3)
r j � ri � 1 � (�i j � 1) · ak � 0 8k 2 R : 8i, j 2 Lk , i , j (M4)
r j � ri � �i j · ak  0 8k 2 R : 8i, j 2 Lk , i , j (M5)

µi j + µ ji  1 8k 2 R : 8i, j 2 Lk , i , j (M6)
mj �mi � 1 � (µi j � 1) · � � 0 8k 2 R : 8i, j 2 Lk , i , j (M7)
mj �mi � µi j · �  0 8k 2 R : 8i, j 2 Lk , i , j (M8)

�i j + �ji + µi j + µ ji � 1 8k 2 R : 8i, j 2 Lk , i , j (M9)

ti = �i · � +mi 8i 2 L (M10)
ri  ak � 1 8k 2 R : 8i 2 Lk (M11)
mi  � � 1 8i 2 L (M12)

ti + Di  T 8i 2 O : @j 2 O : (i!j) 2 E ^ �i j = 0 (M13)

ti 2 N0 8i 2 O (M14)
ri ,�i ,mi 2 N0 8i 2 L (M15)
�i j , µi j 2 {0, 1} 8k 2 R : 8i, j 2 Lk , i , j (M16)

Fig. 5. Moovac-S: Objective function and constraints for a candidate interval �

In order to integrate the II minimisation into the Moovac-S formulation, we replace the formerly
constant candidate II with a new integer decision variable � that is bounded to the II search space
as �?  �  �

>. However, integrating the II minimisation naively has a major drawback: It results
in quadratic (i.e. containing a multiplication of decision variables) constraints (M7), (M8) and (M10).
We linearise constraints (M7), (M8) by replacing the occurrence of � with the upper bound of

the II search space, �>:

mj �mi � 1 � (µi j � 1) · �
> � 0 8k 2 R : 8i, j 2 Lk , i , j (M17)

mj �mi � µi j · �
>  0 8k 2 R : 8i, j 2 Lk , i , j (M18)

This has no e�ect on the constraints’ functionality, as the interval value is used as a big-M constant
here.
The remaining quadratic constraints (M10) are broken down into individual constraints for all

possible values of �i . To this end, we need to introduce an upper bound Y for the �i variables. Recall
that the �i variables represent the value

⌅ ti
�
⇧
in the calculation of operation i’s congruence class.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 12, No. 2, Article 8. Publication date: April 2019.

8:12 J. Oppermann et al.

min T (M1)
s.t. ti + �i j  tj + �i j · � 8(i!j) 2 E (M2)

�i j + �ji  1 8k 2 R : 8i, j 2 Lk , i , j (M3)
r j � ri � 1 � (�i j � 1) · ak � 0 8k 2 R : 8i, j 2 Lk , i , j (M4)
r j � ri � �i j · ak  0 8k 2 R : 8i, j 2 Lk , i , j (M5)

µi j + µ ji  1 8k 2 R : 8i, j 2 Lk , i , j (M6)
mj �mi � 1 � (µi j � 1) · � � 0 8k 2 R : 8i, j 2 Lk , i , j (M7)
mj �mi � µi j · �  0 8k 2 R : 8i, j 2 Lk , i , j (M8)

�i j + �ji + µi j + µ ji � 1 8k 2 R : 8i, j 2 Lk , i , j (M9)

ti = �i · � +mi 8i 2 L (M10)
ri  ak � 1 8k 2 R : 8i 2 Lk (M11)
mi  � � 1 8i 2 L (M12)

ti + Di  T 8i 2 O : @j 2 O : (i!j) 2 E ^ �i j = 0 (M13)

ti 2 N0 8i 2 O (M14)
ri ,�i ,mi 2 N0 8i 2 L (M15)
�i j , µi j 2 {0, 1} 8k 2 R : 8i, j 2 Lk , i , j (M16)

Fig. 5. Moovac-S: Objective function and constraints for a candidate interval �

In order to integrate the II minimisation into the Moovac-S formulation, we replace the formerly
constant candidate II with a new integer decision variable � that is bounded to the II search space
as �?  �  �

>. However, integrating the II minimisation naively has a major drawback: It results
in quadratic (i.e. containing a multiplication of decision variables) constraints (M7), (M8) and (M10).
We linearise constraints (M7), (M8) by replacing the occurrence of � with the upper bound of

the II search space, �>:

mj �mi � 1 � (µi j � 1) · �
> � 0 8k 2 R : 8i, j 2 Lk , i , j (M17)

mj �mi � µi j · �
>  0 8k 2 R : 8i, j 2 Lk , i , j (M18)

This has no e�ect on the constraints’ functionality, as the interval value is used as a big-M constant
here.
The remaining quadratic constraints (M10) are broken down into individual constraints for all

possible values of �i . To this end, we need to introduce an upper bound Y for the �i variables. Recall
that the �i variables represent the value

⌅ ti
�
⇧
in the calculation of operation i’s congruence class.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 12, No. 2, Article 8. Publication date: April 2019.

8:12 J. Oppermann et al.

min T (M1)
s.t. ti + �i j  tj + �i j · � 8(i!j) 2 E (M2)

�i j + �ji  1 8k 2 R : 8i, j 2 Lk , i , j (M3)
r j � ri � 1 � (�i j � 1) · ak � 0 8k 2 R : 8i, j 2 Lk , i , j (M4)
r j � ri � �i j · ak  0 8k 2 R : 8i, j 2 Lk , i , j (M5)

µi j + µ ji  1 8k 2 R : 8i, j 2 Lk , i , j (M6)
mj �mi � 1 � (µi j � 1) · � � 0 8k 2 R : 8i, j 2 Lk , i , j (M7)
mj �mi � µi j · �  0 8k 2 R : 8i, j 2 Lk , i , j (M8)

�i j + �ji + µi j + µ ji � 1 8k 2 R : 8i, j 2 Lk , i , j (M9)

ti = �i · � +mi 8i 2 L (M10)
ri  ak � 1 8k 2 R : 8i 2 Lk (M11)
mi  � � 1 8i 2 L (M12)

ti + Di  T 8i 2 O : @j 2 O : (i!j) 2 E ^ �i j = 0 (M13)

ti 2 N0 8i 2 O (M14)
ri ,�i ,mi 2 N0 8i 2 L (M15)
�i j , µi j 2 {0, 1} 8k 2 R : 8i, j 2 Lk , i , j (M16)

Fig. 5. Moovac-S: Objective function and constraints for a candidate interval �

In order to integrate the II minimisation into the Moovac-S formulation, we replace the formerly
constant candidate II with a new integer decision variable � that is bounded to the II search space
as �?  �  �

>. However, integrating the II minimisation naively has a major drawback: It results
in quadratic (i.e. containing a multiplication of decision variables) constraints (M7), (M8) and (M10).
We linearise constraints (M7), (M8) by replacing the occurrence of � with the upper bound of

the II search space, �>:

mj �mi � 1 � (µi j � 1) · �
> � 0 8k 2 R : 8i, j 2 Lk , i , j (M17)

mj �mi � µi j · �
>  0 8k 2 R : 8i, j 2 Lk , i , j (M18)

This has no e�ect on the constraints’ functionality, as the interval value is used as a big-M constant
here.
The remaining quadratic constraints (M10) are broken down into individual constraints for all

possible values of �i . To this end, we need to introduce an upper bound Y for the �i variables. Recall
that the �i variables represent the value

⌅ ti
�
⇧
in the calculation of operation i’s congruence class.

ACM Transactions on Recon�gurable Technology and Systems, Vol. 12, No. 2, Article 8. Publication date: April 2019.

76 P. Šůcha, Z. Hanzálek

(i.e. Tj is followed by Ti). Let ŷij be a binary decision variable such that ŷij = 1 iff
ŝi = ŝj (i.e. tasks Ti and Tj are processed at the same time on different processors).

In the rest of this section we consider pi = 1 ∀i ∈ {1, . . . , n1}. The period w is
assumed to be a constant, since the multiplication of two decision variables cannot
be formulated as a linear inequality. Therefore, the optimal w is found by iterative
calls of the ILP problem (explained in Sect. 3.2). The ILP model using the variables
defined above is:

min
n1∑

i=1

q̂i (4)

subject to:

ŝj + q̂j · w − ŝi − q̂i · w ≥ lij − w · hij , ∀(i, j);∃eij ∈ E (5)

ŝi − ŝj + w · x̂ij + (1 − w) · ŷij ≥ 1, ∀i, j ∈ {1, . . . , n1} ; i < j (6)

ŝi − ŝj + w · x̂ij − ŷij ≤ w − 1, ∀i, j ∈ {1, . . . , n1} ; i < j (7)

−x̂ij + ŷij ≤ 0, ∀i, j ∈ {1, . . . , n1} ; i < j (8)
n1∑

j=i+1

ŷij ≤ m1 − 1, ∀i ∈ {1, . . . , n1 − m1} (9)

where:

ŝi ∈ {0, . . . ,w − 1} ; q̂i ∈ Z+
0 ; x̂ij , ŷij ∈ {0,1}

3.1 Constraints of the ILP model

Constraint (5) is a direct application of the precedence constraint (1). Constraints (6),
(7), (8) and (9) limit the number of processors used at a given time. The binary de-
cision variables x̂ij and ŷij define the mutual relationship of tasks Ti and Tj (i ≠ j)
within the execution period. Their relation is expressed with constraints (6) and (7).
There are three feasible combinations:

1. When x̂ij = 0 and ŷij = 0, constraint (7) is effectively eliminated. Constraint (6)
is reduced to ŝj + 1 ≤ ŝi , i.e. Tj is followed by Ti within the execution period.

2. When x̂ij = 1 and ŷij = 0, constraint (6) is effectively eliminated. Constraint (7)
is reduced to ŝi + 1 ≤ ŝj , i.e. Ti is followed by Tj within the execution period.

3. When x̂ij = 1 and ŷij = 1, constraints (6) and (7) are equivalent to ŝi = ŝj , i.e. Ti

and Tj are scheduled at the same time within the execution period.
4. The combination x̂ij = 0 and ŷij = 1 is not feasible due to constraint (8).

The number of available processors is limited by variable ŷij . When ŷij = 1, there
is a resource conflict between tasks Ti , Tj and they cannot be scheduled on the same
processor. Since we consider the unit processing time of the tasks, this relation ex-
pressed with ŷij is symmetric (ŷij = ŷj i) and transitive (if ŷij = 1 and ŷjk = 1 then
ŷik = 1). The relationship can be expressed by graph Gy where the nodes represent
the tasks in T . There is an edge between Ti and Tj iff ŷij = 1. Due to the symme-
try and transitivity, graph Gy consists of disjoint complete subgraphs H

y
u , such that

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

Relating the more efficient formulation investigated
in this paper to the traditional formulation, the more
efficient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more efficient for-
mulation differs in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = {V, Esched, Ereg}, where the set of vertices
V represents operations and the sets of edges Esched and
E,,, correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be+
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, 20 iterations
later, is associated with a latency li,j and a dependence
distance wi,j = w. A register edge corresponds to a
data flow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II x N binary matrix, called A, where o,i = 1 if and
only if operation i is scheduled in row T of the MRT and
0 otherwise.

The first condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II-1 c G,i = 1 vi E [OJV) (1)
r=ll

Equation (1) defines all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix defines the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N, where
Ici is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely define the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are defined as follows:

II-1

TOWi =
c r * G,i timei = ki * II+ TOWi (2)
r=l

Note that since o,i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, TOWi is
correctly computed and satisfies the following property:
ruwi E [O,ZI).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, wi,j iterations later,
is fulfilled if operation j is scheduled at least li,j cycles
after operation i:

(timej + W&j * II) - timei 1 Ei,j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II-1

C r * (a,,j - a,i) + (kj - IEi) * 11 2 k,j -

r=l

Wi,j * II v(i,i) E Eached (4)

Inequality (4) defines all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances Wi,j and de-
pendence latencies Ei,j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N-l

cc a(r-e)modlI,i 5 Mq
i=O ~EResi,,

Vq E Q, T E [O,II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c E Resi,, indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation’s resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise definition of the
machines for which Inequality (5) is applicable is found
in [lo].

197

 0 2
 1 1 . 0 9 . 1 5

 J . O p p . . .

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Agenda

	Introduction to high-level synthesis

 Resource-aware modulo scheduling

Exploration of trade-off solutions

 Experimental evaluation

�15

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

MORAMS

■ Multi-Objective Resource-Aware Modulo Scheduling

�16

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

MORAMS

■ Multi-Objective Resource-Aware Modulo Scheduling

■ Given a RAMS problem, the goal is to compute all
Pareto-optimal solutions

�16

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

MORAMS

■ Multi-Objective Resource-Aware Modulo Scheduling

■ Given a RAMS problem, the goal is to compute all
Pareto-optimal solutions
• i.e. a solution that is not dominated by any other

solution

�16

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

MORAMS

■ Multi-Objective Resource-Aware Modulo Scheduling

■ Given a RAMS problem, the goal is to compute all
Pareto-optimal solutions
• i.e. a solution that is not dominated by any other

solution
• Example: 

II=3, RU=30% … 
… does not dominates II=4, RU=40% 
… does not dominates II=2, RU=40%

�16

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

ε-Approach
■ standard method from multi-

criteria optimisation

�17

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

ε-Approach
■ standard method from multi-

criteria optimisation

• basically: optimise one
objective, and successively
add constraints for the other

�17

minimise II-objective

get value � of RU-objectivey

add constraint �RU ≤ y − ε

STOP if infeasible

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

ε-Approach
■ standard method from multi-

criteria optimisation

• basically: optimise one
objective, and successively
add constraints for the other

• we minimise both objectives
to speed up convergence

�17

minimise II-objective

get value � of RU-objectivey

minimise RU-objective

add constraint �RU ≤ y − ε

add constraint �II ≥ x + 1

get value � of II-objectivex

temporarily fix II to �x

= MORAMS-specific

STOP if infeasible

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

ε-Approach
■ standard method from multi-

criteria optimisation

• basically: optimise one
objective, and successively
add constraints for the other

• we minimise both objectives
to speed up convergence

• requires RAMS formulation
with variable II 
Here: extended „Moovac-I“
formulation (Oppermann et al., 2019)

�17

minimise II-objective

get value � of RU-objectivey

minimise RU-objective

add constraint �RU ≤ y − ε

add constraint �II ≥ x + 1

get value � of II-objectivex

temporarily fix II to �x

= MORAMS-specific

STOP if infeasible

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Iterative Approach
■ Most existing modulo schedulers

already try candidate IIs until the
first feasible solution is found

�18

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Iterative Approach
■ Most existing modulo schedulers

already try candidate IIs until the
first feasible solution is found

■ Instead, we explore by trying all
candidate IIs ...

�18

forall candidate IIs in
increasing order

minimise RU-objective

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Iterative Approach
■ Most existing modulo schedulers

already try candidate IIs until the
first feasible solution is found

■ Instead, we explore by trying all
candidate IIs ...

■ ... and filter out dominated
solutions afterwards

�18

forall candidate IIs in
increasing order

minimise RU-objective

filter dominated solutions

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Iterative Approach
■ Most existing modulo schedulers

already try candidate IIs until the
first feasible solution is found

■ Instead, we explore by trying all
candidate IIs ...

■ ... and filter out dominated
solutions afterwards

■ We propose rules R1, R2 to
compute fewer dominated
solutions

�18

forall candidate IIs in
increasing order

minimise RU-objective

R1: SKIP if solution will
be dominated by

previously computed
solution

R2: STOP if minimum
allocation is reached

filter dominated solutions� next slide→

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Domain-Specific Rules

■ R1: Skip candidate interval ifIIX

�19

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Domain-Specific Rules

■ R1: Skip candidate interval ifIIX

• we have a solution with , andP IIP < IIX

�19

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Domain-Specific Rules

■ R1: Skip candidate interval ifIIX

• we have a solution with , andP IIP < IIX

• its allocation is trivial for AP IIX

�19

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Domain-Specific Rules

■ R1: Skip candidate interval ifIIX

• we have a solution with , andP IIP < IIX

• its allocation is trivial for AP IIX

■ R2: Stop exploration if

�19

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Domain-Specific Rules

■ R1: Skip candidate interval ifIIX

• we have a solution with , andP IIP < IIX

• its allocation is trivial for AP IIX

■ R2: Stop exploration if
• solution with the minimum allocation 
	 	 	 	 	 	 	  
is found

aq = 1 q ∈ Q̂

�19

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Agenda

	Introduction to high-level synthesis

 Resource-aware modulo scheduling

 Exploration of trade-off solutions

Experimental evaluation

�20

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Setup

■ Gurobi 8.1, 8 threads, 16 GiB RAM, 
6h time limit per instance  
on Xeon E5-2680 v3 servers @ 2.8 GHz

�21

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Setup

■ Gurobi 8.1, 8 threads, 16 GiB RAM, 
6h time limit per instance  
on Xeon E5-2680 v3 servers @ 2.8 GHz

■ 204 realistic test instances 
from Simulink models and  
C-based HLS benchmark suites

�21

10 J. Oppermann et al.

Table 1. Complexity of problem instances

min. median mean max.

operations 14 49 104 1374
shared operations 0 4 16 416
edges 17 81 237 4441
backedges 0 3 23 1155

constraint to the formulation, since IIX is a constant. For the "-approach, (9)
would be a quadratic constraint. To linearise it, we introduce binary variables
IIX⇡ with IIX⇡ = 1 , IIX = ⇡ for ⇡ 2 [II?, II>], adding the following linear
constraints to the formulation:

a
X
q �

⇠
|Oq|
⇡

⇡
· IIX⇡ 8⇡ 2 [II?, II>] (10)

5 Evaluation

We evaluated the presented MORAMS approaches on a set of 204 realistic test
instances. These modulo scheduling problems were extracted from two different
HLS environments: 16 instances originate from Simulink models compiled by
the Origami HLS project [2], whereas 188 instances represent loops from the
well-known C-based HLS benchmark suites CHStone [10] and MachSuite [16].
The latter were compiled by the Nymble C-to-hardware compiler as described
in [13], using an operator library from the Bambu HLS framework [14]. Table 1
summarises the instances’ complexity. Our target device was the Xilinx Zynq
XC7Z020, a popular low-cost FPGA found on several evaluation boards. As
resources, we model its number of lookup tables (53200), DSP slices (220), and,
specifically for the C-based benchmark instances, assume the availability of up
to 16 memory ports that can be used to either read from or write to an address
space shared with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi 8.1 as ILP
solver on 2⇥12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz with 64
GiB RAM. The schedulers were allowed to use up to 8 threads, 6 hours wall-
clock time and 16 GiB of memory per instance. We report each instance’s best

result from two runs, considering first the number of solutions, and then the
accumulated runtime of the exploration.

In modulo schedulers, the II can be much lower than its latency. However,
the latency should not be unbounded and there exist latency critical applications
(like in closed control loops) where a low latency is important in addition to a
low II. Hence, we consider the latency as a separate user constraint. As this
can significantly influence the results, we scheduled our test instances subject to
three different latency constraints that cover the whole spectrum of cases: The
strongest constraint is to limit the schedule length U to the length of the critical
path UCP. Using II>, i.e. the length of a non-modulo schedule with heuristic
resource constraints, relaxes the operations’ deadlines slightly. Lastly, we adapt

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Setup

■ Gurobi 8.1, 8 threads, 16 GiB RAM, 
6h time limit per instance  
on Xeon E5-2680 v3 servers @ 2.8 GHz

■ 204 realistic test instances 
from Simulink models and  
C-based HLS benchmark suites

■ Modelled resources for Xilinx XC7Z020 
FPGA: LUT (53,200), DSP (220), 
memory ports (16)

�21

10 J. Oppermann et al.

Table 1. Complexity of problem instances

min. median mean max.

operations 14 49 104 1374
shared operations 0 4 16 416
edges 17 81 237 4441
backedges 0 3 23 1155

constraint to the formulation, since IIX is a constant. For the "-approach, (9)
would be a quadratic constraint. To linearise it, we introduce binary variables
IIX⇡ with IIX⇡ = 1 , IIX = ⇡ for ⇡ 2 [II?, II>], adding the following linear
constraints to the formulation:

a
X
q �

⇠
|Oq|
⇡

⇡
· IIX⇡ 8⇡ 2 [II?, II>] (10)

5 Evaluation

We evaluated the presented MORAMS approaches on a set of 204 realistic test
instances. These modulo scheduling problems were extracted from two different
HLS environments: 16 instances originate from Simulink models compiled by
the Origami HLS project [2], whereas 188 instances represent loops from the
well-known C-based HLS benchmark suites CHStone [10] and MachSuite [16].
The latter were compiled by the Nymble C-to-hardware compiler as described
in [13], using an operator library from the Bambu HLS framework [14]. Table 1
summarises the instances’ complexity. Our target device was the Xilinx Zynq
XC7Z020, a popular low-cost FPGA found on several evaluation boards. As
resources, we model its number of lookup tables (53200), DSP slices (220), and,
specifically for the C-based benchmark instances, assume the availability of up
to 16 memory ports that can be used to either read from or write to an address
space shared with the ARM CPU-based host system of the Zynq device.

We performed the proposed design-space exploration using Gurobi 8.1 as ILP
solver on 2⇥12-core Intel Xeon E5-2680 v3 systems running at 2.8 GHz with 64
GiB RAM. The schedulers were allowed to use up to 8 threads, 6 hours wall-
clock time and 16 GiB of memory per instance. We report each instance’s best

result from two runs, considering first the number of solutions, and then the
accumulated runtime of the exploration.

In modulo schedulers, the II can be much lower than its latency. However,
the latency should not be unbounded and there exist latency critical applications
(like in closed control loops) where a low latency is important in addition to a
low II. Hence, we consider the latency as a separate user constraint. As this
can significantly influence the results, we scheduled our test instances subject to
three different latency constraints that cover the whole spectrum of cases: The
strongest constraint is to limit the schedule length U to the length of the critical
path UCP. Using II>, i.e. the length of a non-modulo schedule with heuristic
resource constraints, relaxes the operations’ deadlines slightly. Lastly, we adapt

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

�22

tight = 36 time steps moderate = 37 loose = 120

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

non-trivial solution

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

R1

non-trivial solution

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

R1 R2 not applicable

non-trivial solution

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

R2 applicable

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Effectiveness of Rules
■ Effectiveness of R1, R2 for iterative approach depends on

feasibility of trivial solutions

■ Experimented with different external latency constraints:
„tight“, „moderate“ and „loose“

�22

tight = 36 time steps moderate = 37 loose = 120

no dominated
solutions

computed

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Scheduling Results
■ Question: which approach computes the most

Pareto-optimal solutions within 6 hours per instance?

�23

Ru
nt

im
e

[h
ou

rs
]

0

15

30

45

60

75

0

250

500

750

1000

1250

Loose latency constraint

EPS ED SH MV
0

15

30

45

60

75

0

250

500

750

1000

1250

Moderate latency constraint

EPS ED SH MV
0

15

30

45

60

75

of

 s
ol

ut
io

ns

0

250

500

750

1000

1250

Tight latency constraint

EPS ED SH MV

Pareto-optimal… dominated solutions | Accumulated runtime [hours] (204 instances)

Proving optimality becomes harder

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Conclusion

■ Presented framework to make ILP-based modulo
schedulers resource aware

�24

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Conclusion

■ Presented framework to make ILP-based modulo
schedulers resource aware

■ ED-formulation + iterative approach is fastest, and
computes the most Pareto-optimal solutions

�24

J. Oppermann, TU Darmstadt: Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling / 25

Conclusion

■ Presented framework to make ILP-based modulo
schedulers resource aware

■ ED-formulation + iterative approach is fastest, and
computes the most Pareto-optimal solutions

■ Outlook: probably too many solutions per instance
— how to determine relevant ones?

�24

Thank you!
Check out the HatScheT scheduler library  

http://uni-kassel.de/go/hatschet

